Supplementary material

Original end-to-end smart diagnosis framework of systematic critical quality attributes benchmarking FDA standard of phytomedicine by biosensor and multi-information fusion coupled with AI algorithm

This Supplementary material contains 11 tables and one figure.

1. Materials and methods

1.1 Instruments and materials

The 30 batches of alcohol-precipitated intermediates, corresponding 30 batches of waterprecipitated intermediates, and corresponding 30 batches of products of Xiaoer Xiaoji Zhike oral liquid were provided by Lunan Pharmaceutical Group Co., Ltd., all of which were real-world materials. The specific lot number was shown as follows: 130121164, 130121165, 130121166, 130121167, 130121168, 130121169, 130121170, 130121171, 130121172, 130121173, 130121174, 130121175, 130121177, 130121178, 130121179, 130121180, 130121181, 130121182, 130121184, 130121185, 130121187, 130121188, 130121189, 130121190, 130121192, 130121224, 130121225, 130121226, 130121227, 130121228.

The diagnosis of additional 30 batches of samples to verify reliability. (Lot number: 204200112, 204200122, 204200102, 204200062, 204200072, 204200182, 204200092, 204200152, 304200383, 304200483, 304200403, 304200353, 304200393, 304200423, 304200563, 304200553, 304200473, 204200162, 304200413, 304200533, 304200543, 304200503, 204200132, 304200433, 304200373, 304200523, 304200493, 304200463, 204200142, 304200513)

1.2 Biological CQAs digitization and smart diagnosis for 30 batches of Xiao'er Xiaoji Zhike oral liquid in end-to-end real world by MIF-HEMT biosensor integrated UPLC-MS/MS

Table S1. The gradient elution table of UPLC-MS/MS for Biological CQAs digitization

No.	Retention (min)	Flow (mL·min ⁻¹)	%A	%B
1	0	0.3	99	1
2	0	0.3	99	1
3	1	0.3	99	1
4	6	0.3	90	10
5	15	0.3	82	18
6	25	0.3	70	30
7	28	0.3	50	50
8	31	0.3	20	80
9	32	0.3	0	100
10	35	0.3	0	100
11	37	0.3	99	1
12	40	0.3	99	1

Chromatographic column electrospray ion source (ESI) mode of positive and negative ions. The Fourier high-resolution scanning range was m/z from 100 to 1200, and the primary resolution was 30000. The secondary mass spectrometry adopted data dependent scanning, and selected the three ions with the highest primary abundance for CID secondary fragmentation. When the secondary fragment information was incomplete, the ion list scanning method was used to improve the acquisition efficiency of secondary mass spectrometry information. Flow rate was set as 0.30 mL·min-1 and injection volume as 3 μ L. Using 0.1% formic acid water and acetonitrile as mobile phases. The sheath gas flow rate was set to 40 ARB, the auxiliary gas flow rate to 20 ARB. The capillary voltage was set as -35 V, spray voltage as 3 kV and the tube lens voltage as -110 V. The capillary temperature was 350 centigrade. The activation energy unit was set to 0.25 Q and the activation time was 30 ms. The normalized collision energy was 35%. Finally, Xcalibur 2.1 workstation was used for data processing coupled with molecular prediction module. The parameters were set as, C [0-20], H [0-30], O [0-15], n [0-3], s [0-1], number of rings and unsaturated bonds [0-15], and the mass accuracy error was within 10.

1.3 Chemical CQAs digitization and smart diagnosis of 30 batches of end-to-end real-world Xiaoer Xiaoji Zhike oral liquid from three pharmaceutical units

According to the Pharmacopoeia of the People's Republic of China (2020) and previous basis, chemical CQAs and physical CQAs are essential to product quality in ETE-SDF. Based on the aforementioned biological CQAs, chemical CQAs were selected and further monitored. 30 batches of

Xiao'er Xiaoji Zhike oral liquid from three pharmaceutical units in end-to-end real world was implemented by UPLC. The 200 μ L alcohol-precipitated intermediate, water-precipitated intermediate, and product of Xiaoer Xiaoji Zhike oral liquid were precisely measured and put in a flask with a volume of 2 mL, respectively. Then water was added to the mark. And the samples were shaken well and filtered through a 0.22 μ m microporous membrane for measurement.

Chemical CQAs digitization and 30 batches of end-to-end real-world Xiaoer Xiaoji Zhike oral liquid from three pharmaceutical units were implemented by UPLC. The linear gradient elution program was shown in **Table S2**.

Sample	Retention (min)	A%	B%	Flow (mL·min ⁻¹)	Temperature (°C)
	0	100	0	0.3	35
	3	100	0	0.3	35
Water-	6	99	1	0.3	35
precipitation	15	88	12	0.3	35
products	48	79	21	0.3	35
products	59	70	30	0.3	35
	66	5	95	0.3	35
	0	100	0	0.3	35
	3	100	0	0.3	35
Alcohol-	6	99	1	0.3	35
precipitation	15	88	12	0.3	35
intermediates	53	79	21	0.3	35
	64	70	30	0.3	35
	70	5	95	0.3	35

Table S2. The linear gradient elution program of samples from three pharmaceutical units

Method validation for standard analysis of alcohol-precipitation intermediates is as follows.

(1) Linearity

Linear regression analysis of each of the four compounds (Forsythiaside E, Neoeriocitrin, Hesperidin, Neohesperidin) was performed in triplicate using six different concentrations.

The line for each compound was plotted using linear regression of the peak area vs concentration. y = ax + b, x indicated the concentrations of the marker compounds ($\mu g \cdot mL^{-1}$), y and R² were the peak area and coefficient of correlation of the equation, respectively. The R² was used to determine the linearity. All the marker compounds showed linearity (R² > 0.999) in the results shown in **Table S5**. (2) Limit of detection (LOD) and limit of quantification (LOQ)

The LOD and LOQ were determined at a signal-to-noise ratio (S/N) of 3 and 10, respectively as the lowest concentrations of the analyte.

(3) Precision

The Precision was determined from six analyses on the same day.

(4) Repeatability

The repeatability of the developed method was estimated by sampling six times a day.

(5) Stability

Furthermore, the stability was analyzed by injecting three aliquots of a sample solution during sixtime points, 0h, 3h, 6h, 12h 18h, and 24h. The RSD was considered a measure of precision.

(6) Recovery

An appropriate amount of the Xiao'er Xiaoji Zhike oral liquid was divided into one portion as the control group, and another three portions that were spiked with marker standards at three concentration levels (80%, 100%, and 120%). The filtrates were assayed using UPLC to determine the recoveries, which were calculated using the following equation:

Recovery (%) = (total amount detected - amount original)/amount spiked \times 100

Similarly, the results of the methodological validation of water precipitation intermediates and products were shown in **Table S5**.

In addition, the methodological verification of chromatographic fingerprint was as follows.

(1) Precision

After repeated determination of six chromatograms of the test article, the similarity of alcohol precipitation intermediates, water precipitation intermediates, and finished products was calculated using the software of *the similarity evaluation system of chromatographic fingerprint of traditional Chinese medicine (2012 version)*.

(2) Repeatability

Six test solutions were used respectively, and the similarity of alcohol precipitation intermediates, water precipitation intermediates, and finished products was calculated by using the software of *the similarity evaluation system of chromatographic fingerprint of traditional Chinese medicine (2012 Edition)*.

(3) Stability

One test solution was injected at 0, 2, 8, 16, 24, and 48 h respectively. The similarity of alcohol precipitation intermediates, water precipitation intermediates, and finished products was calculated using the software of *the similarity evaluation system of chromatographic fingerprints of traditional Chinese medicine (2012 Edition)*.

Similarly, the results of the methodological validation of three units of fingerprint analysis were shown in **Table S6**.

1.4 Physical CQAs digitization and smart diagnosis for physical CQAs of 30 batches of end-toend real-world Xiaoer Xiaoji Zhike oral liquid from three pharmaceutical units

The product of Xiao'er Xiaoji Zhike oral liquid was measured repeatedly for three times in a cuvette, and the average L*, a*, b* values and Eab value of the 3 times were calculated and adopted.

$$E_{ab} = (L^2 + a^2 + b^2)^{1/2} \tag{4}$$

Taste is a vital quality attribute of the oral preparation. It reflects the adaptability of drug quality, which plays a decisive role in patient compliance, especially for children, and directly affects its market sales. The electronic tongue is a modern qualitative quantitative analysis detection instrument for taste measurement, which mainly composed of the interactive sensitive sensor array, signal acquisition circuit, and pattern recognition-based data processing methods.

As a taste bionic technology, the C-tongue electronic tongue was introduced and blazed new trails for the taste characterization of 30 batches of real-world Xiaoer Xiaoji Zhike oral liquid samples. This type of electronic tongue is mainly composed of a stable sensor array with seven metal electrodes. The original idea of a combined pulse relaxation spectrum is realized through voltammetry electrochemical pulse technology excitation. Through interactive induction analysis technology, the overall information of the measured object is obtained.

More specifically, (1) Working electrode composition: platinum electrode, gold electrode, palladium electrode, titanium electrode, tungsten electrode, silver electrode.

- (2) Auxiliary electrode: platinum electrode.
- (3) Reference electrode: platinum electrode and Ag/AgCl electrode.
- (4) Signal acquisition: high-frequency relaxation pulse signal, from +1 v to -1 v, 0.2 v/time.
- (5) Frequency of the pulse signal: 1 Hz, 10 Hz, 100 Hz.

(6) Time interval of the pulse signal: 0.001 s.

(7) Data magnification factor: up to 10^6 .

(8) Signal excitation acquisition system: sampling rate $\geq 1 \text{ kb} \cdot \text{s}^{-1}$.

(9) Scanning sensitivity: 10^{-6} M.

(10) Hardware requirements: the sensor has stable performance, good reproducibility, long servicelife, rich detection information, 2 - 3 min cleaning time of sensors, which lasts 2.6 s at 0 V, 2.6 s at 1.2v, 2.6 s at -1.2 v, and improves the stability of detection.

(11) Signal description: the signal collected is the overall response of the sample, rather than the results of the concentration of a specific component.

Specific steps of the electronic tongue test for Xiaoer Xiaoji Zhike oral liquid are as follow.

Step 1. Electrode preheating. Taking 20 mL of deionized water with a sensitivity magnification of 100 times, the eight electrodes of the electronic tongue were preheated for 15 min.

Step 2. Sample test. The 2 mL product of Xiaoer Xiaoji Zhike oral liquid was measured precisely to a 20 mL volumetric flask for constant volume. The taste of 30 batches of the samples from three manufacturing units was measured by the C Tongue series electronic tongue with voltage acquisition mode at room temperature. Three samples were prepared for each batch. The data acquisition resolution was set as 16 bits and the acquisition voltage ranged from -10 v to 10 v. In particular, care was taken to guarantee that the electrodes did not contact the vessel during the measurement.

Step 3. Electrode cleaning. 20mL deionized water was used in the same operation as the product for cleaning and balancing to make the electrode signal response consistent with the initial test.

1.5 Smart diagnosis of systematic CQAs covering biological, chemical, and physical CQAs for 30 batches of Xiao'er Xiaoji Zhike oral liquid in end-to-end real-world by information fusion

The differences between inter-group samples and intra-group samples represented their discriminative power, and the ratio of inter-group variance and intra-group variance was used as a distinguishing index for different information methods.

$$SS_{inter} = \sum_{i=1}^{g} n_i (\overline{x_i} - \overline{x}) (\overline{x_i} - \overline{x})^{\prime}$$
(5)

$$SS_{intra} = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (x_{ij} - \overline{x_i}) (x_{ij} - \overline{x_i})^{\prime}$$
(6)

$$\alpha = SS_{out} / SS_{in} \tag{7}$$

$$W_g = \alpha_g / \sum_{k=1}^g \alpha_g \tag{8}$$

$$UCL(T_{A}^{2})_{\alpha} = \frac{(N-1)^{2}}{N} B_{(A/2)}, (N-A-1), \alpha$$
(9)

$$\text{UCL}(\text{SPE})_{\alpha} = \theta_1 \left[\frac{Z_{\alpha} \sqrt{2\theta_2 b_0^2}}{\theta_1} + 1 + \frac{\theta_2 b_0 (b_0 - 1)}{\theta_1^2} \right]^{1/b_0}$$
(10)

Where SS_{inter} is inter-group variance. SS_{intra} is intra group variance. A is discriminative power. W_g is weight. $UCL(T_A^2)_{\alpha}$ is D statistic Hotelling T^2 . $UCL(SPE)_{\alpha}$ is the Square prediction error of Q statistics.

MSPC model Specific steps: the input was a matrix formed by the batch with the respective corresponding signal values, followed by normalization preprocessing, and leave-one-out cross-validation. The algorithm had a maximum number of iterations of 100 and singular value decomposition. Model outputs were Hotelling T^2 and F-Residuals. The resulting result, the D statistic (Hotelling T^2), represented how far the sample data were projected within the latent variable space from the origin of the latent variable space. The Q statistic squared prediction error (SPE) represented the orthogonal distance change of the sample data to the latent variable space of the principal component model.

1.6 Mass transfer traceability of systematic CQAs for 30 batches of Xiao'er Xiaoji Zhike oral liquid in end-to-end real-world by multivariate process capability integrated with fuzzy mathematics

1.6.1 Fuzzy set theory is introduced to specify the specification of CQAs

Firstly, the normal distribution of each quality attribute was tested. If the normal distribution is satisfied, the upper and lower limits of each quality attribute are introduced into the fuzzy set theory to make the upper and lower limits fuzzy by restricting the corresponding α -cut set, membership function, and indicator function.

Let R be the set of all real numbers and $F(R) = \{A | A : R \to [0,1] A \text{ is a continuous function}\}$ be the set of all fuzzy sets on R.

$$\widetilde{USL} \ominus \widetilde{LSL} = \int_0^1 g(\alpha)(u_\alpha + l_\alpha)d\alpha \tag{11}$$

When the fuzzy specification is an indicator function $I_{\{x|x \ge LSL\}}$, $I_{\{x|x \le USL\}}$; And $l_{\alpha} = LSL$,

 $u_{\alpha} = USL$, for any $\alpha \in (0,1)$, there are $\widehat{USL}_{\mathbb{L}} \bigoplus \widehat{LSL}_{\mathbb{L}} = USL - LSL$, which stipulates that the membership functions of the upper fuzzy and the lower fuzzy are:

$$\widetilde{USL}_{\mathbb{L}}(x) = \begin{cases} 1, \ x \le u_1 \\ (x - u_0)/(u_1 - u_0), \ u_1 < x < u_0 \\ 0, \ u_0 \le x \end{cases}$$
(12)

$$\widetilde{LSL}(x) = \begin{cases} 0, \ x \le l_0 \\ (x - l_0)/(l_1 - l_0), \ l_0 < x < l_1 \\ 1, \ l_1 \le x \end{cases}$$
(13)

$$\widetilde{USL}_{L} \cong \widetilde{LSL}_{L} = \frac{1}{n+2} [(n+1)(u_{1}-l_{1}) + (u_{0}-l_{0})]$$
(14)

Then the process capability index (C_p) can be generalized as a fuzzy C_p, as follows:

$$C_{\tilde{p}} = \frac{\widetilde{USL} \otimes \widetilde{LSL}}{6\sigma} = \frac{\frac{l}{n+2} [(n+1)(u_l - l_l) + (u_0 - l_0)]}{6\sigma}$$
(15)

where, $\widehat{USL} \in F(R)$, \widehat{USL} is the upper fuzzy specification limit and $F_U(R)$ represents the set of all upper fuzzy specifications, $\widehat{LSL} \in F(R)$, \widehat{LSL} is the lower fuzzy specification limit and $F_L(R)$ represents the set of all lower fuzzy specifications. u_0 , l_0 are any real numbers, $g \in [0,1]$, which is a non-increasing function, satisfying g(0) = 0, $\int_0^1 g(\alpha) d\alpha = 1$, For example, $g(\alpha) = (n + 1)\alpha^n$, $n = 1,2,3, ..., \widehat{USL} = (u_1, u_0)_{UL}$ is the upper blur and $\widehat{LSL} = (l_0, l_1)_{LL}$ is the lower blur, when $g(\alpha) = (n + 1)\alpha^n$, n=1,2,3...

1.6.2 Mass transfer traceability of systematic CQAs for 30 batches of Xiao'er Xiaoji Zhike oral liquid in end-to-end real-world by multivariate process capability integrated with fuzzy mathematics

The integrated weight assignment method, AHP-CRITIC, was implemented for further weight assignment of multivariate quality attributes of 90 batches of Xiaoer Xiaoji Zhike oral liquid from 3 manufacturing units. Firstly, an analytic hierarchy process model (AHP) was constructed according to the influencing factors and correlations contained in the three units of Xiaoer Xiaoji Zhike oral liquid. Next, a judgment matrix of the electronic tongue, electronic eye, pH, and chemical composition were divided into four categories by adopting the scale method of level 1 - 9 (**Table S3**).

Next, according to the formula (16-20), the weight vector and subjective assignment of the quality attributes of Xiaoer Xiaoji Zhike oral liquid, including the electronic tongue, electronic eye, pH, and chemical composition, were established by AHP.

$$\Lambda_{\max} = \frac{1}{n} \sum_{i=1}^{n} \frac{(E\omega)_i}{\omega_i} \tag{16}$$

$$W = \sum_{i=1}^{n} \bar{a}_{ii} \ (i = 1, 2, \dots, n) \tag{17}$$

$$W_i = W_i / \sum_{i=1}^n \bar{a}_{ii} \ (i = 1, 2, \dots, n) \tag{18}$$

$$CI = (\lambda_{max} - n) / (n - 1)$$
⁽¹⁹⁾

$$CR = CI/RI$$
 (20)

where CI is the consistency index, λ max is the maximum characteristic root of the pairwise comparison matrix, and RI is the random consistency index, which is only related to the nth order of the matrix.

Based on this, the CRITIC method objectively assigns multiple evaluation indicators under the aforementioned four categories as the weight of the control layer. According to formula (21-24), the correlation coefficient matrix between various parameters was constructed by correlation analysis. Then the contrast strength and conflict were used to calculate the weight coefficient of the quality parameter weight coefficient, in which the contrast strength was displayed in the form of standard deviation.

$$X_{ij}' = (x - x_{\text{mean}})/(x_{\text{max}} - x_{\text{min}})$$
 (21)

$$C_j = \sigma_j \sum_{i=1}^n (1 - r_{ij}) \quad (j=1, 2, 3...n)$$
 (22)

$$\delta_j = \sum_{i=1}^n (1 - r_{ij})$$
(23)

$$\omega_j = C_j / \sum_{j=1}^n C_j \quad (j=1, 2, 3...n)$$
(24)

where x_{ij} is the value of the *j*th quality parameter of the *i*th sample, x is the measured value, and $x_{\text{mean}}, x_{\text{max}}, x_{\text{min}}$ are the mean, maximum, and minimum values of each quality parameter, respectively. C_j is the influence degree of the *j*th quality parameter on the system, σ_j is the standard deviation of the *j*th quality parameter, indicating the contrast strength s_j of the quality parameter. R_{ij} is the correlation coefficient between the *i*th and *j*th quality parameters. Δ_j represents the conflict between quality parameters. Ω_j is the objective weight of the *j*th quality parameter.

Moreover, the comprehensive weight of each quality attribute of the three production units of Xiaoer Xiaoji Zhike oral liquid is calculated according to formula (25), that is, the index weight obtained by the AHP method is multiplied by the index weight value obtained by the CRITIC method to calculate the comprehensive weight of each index.

$$w_c = \sqrt{w_{AHPij} w_{CRITICij}} \sum \sqrt{w_{AHPij} w_{CRITICij}}$$
(25)

Based on the results of fuzzy specification and comprehensive weight assignment, the fuzzy point estimation of the comprehensive quality digitization ability of intelligent manufacturing of three units in the production process of Xiaoer Xiaoji Zhike oral liquid was constructed. The fuzzy point estimation of the comprehensive quality digitization ability of intelligent manufacturing of three units was calculated by the sum of the products of the fuzzy process capability index of each quality attribute and its comprehensive weight. In the formula, n is taken as 1; $l_0 = \bar{x} - 2.58\sigma$, l_1 and u_1 are the minimum and maximum values of the data represented by each quality attribute, $l_0~l_1$ constitute the fuzzy lower limit interval and $u_1~u_0$ constitute the fuzzy upper limit interval. Finally, the fuzzy point estimation of the comprehensive quality digitization capability of intelligent manufacturing of three units is calculated by the sum of the product of the fuzzy upper limit interval. Finally, the fuzzy point estimation of the comprehensive quality digitization capability of intelligent manufacturing of three units is calculated by the sum of the product of the fuzzy process capability index of each quality attribute and its comprehensive weight.

Scale	Meaning
1	Indicate that the index i is as important as the index j
3	Indicate that index i is slightly more important than index j
5	Indicate that the index i is significantly more important than the index j
7	Indicate that index <i>i</i> is strongly more important than index <i>j</i>
9	Indicate that the index i is extremely important than the index j
2	The comparison of the importance of the two indicators is between the median of
2, 4, 0, 8	the above degrees
Reciprocal	The comparison of index j and index $A_{ii}=1/A_{ii}$

Table S3 AHP scale coefficients and their meanings for level 1-9

The fuzzy point estimation of the comprehensive quality digitization ability of intelligent manufacturing of three units was calculated by the sum of the products of the fuzzy C_p of each quality attribute and its comprehensive weight. In the formula, n is taken as 1; $l_0 = \bar{x} - 2.58\sigma$, l_1 , and u_1 are the minima and maximum values of the data represented by each quality attribute, $l_0 \sim l_1$ constitute the fuzzy lower limit interval and $u_1 \sim u_0$ constitute the fuzzy upper limit interval. Finally, the fuzzy point estimation of the comprehensive quality digitization capability of intelligent manufacturing of three units is calculated by the sum of the product of the fuzzy C_p of each quality attribute and its comprehensive weight.

2. Results and discussion

2.1 Biological CQAs digitization and smart diagnosis for 30 batches of Xiao'er Xiaoji Zhike oral liquid in end-to-end real world by MIF-HEMT biosensor integrated UPLC-MS/MS

The lack of medication in children is a worldwide problem, and cough is a frequent and frequent disease in children. Authoritative data show that pediatric antitussive and expectorant drugs dominate the market of hospital proprietary Chinese medicine for children with a share of 41.71%. Xiao'er Xiaoji Zhike oral liquid, as a kind of Chinese patent medicine, fills the gap in the treatment of infantile food accumulation cough in China. According to the 2016 China Medical Statistics Annual Report of the Ministry of industry and information technology, Xiaoer Xiaoji Zhike oral liquid ranks first in the sales of Chinese patent medicine oral liquid preparations for relieving cough and resolving phlegm for children in China. Its total sales exceeded 970 million yuan for three consecutive years, covering 29 provinces and cities and nearly 1000 tertiary hospitals. The components of Xiaoer Xiaoji Zhike oral liquid are significant for screening high-quality candidates for productive cough due to indigestion. The components of Xiaoer Xiaoji Zhike oral liquid were identified by UPLC-MS/MS. 92 components were identified from Xiaoer Xiaoji Zhike oral liquid and the results were shown in **Table S4**.

No.	Rt (min)	Molecular formula	Ion form	Theoretical molecular weight	Measured molecular weight	A (ppm)	MS2/MS3	Identificatio n conclusion
1	0.95	C ₆ H ₁₄ O ₆	[M-H] ⁻	181.07066	181.07135	3.79	162.919(100),1 00.77(99.49),8 8.69(80.82),11 8.86(58.80),13 0.88(31.32)	L-Rhamnose monohydrate/ Mannitol
2	1.07	C19H34O17	[M-H] ⁻	533.17122	533.17065	-1.08	190.89(100)	Glucopyranos yl fructofuranosi de quinic acid
3	1.07	C ₇ H ₁₃ NO ₂	[M+H] +	144.10190	144.10144	-3.23	143.81(100),83 .74(28.27),57.7 6(15.31),101.8 7(12.11)	Methyl piperidine-3- carboxylate3- piperidine formate
4	1.15	$C_{12}H_{22}O_{11}$	[M-H] ⁻	341.10784	341.10739	-1.31	178.98(100),16	Sucrose

Table S4. Ninety-two components identified from Xiaoer Xiaoji Zhike oral liquid by UPLC-MS/MS

							0.88(21.46),11 2.84(21.00),14 2.94(19.66),11 8.89(19.05)	
5	1.16	$C_6H_6O_3$	[M+H] +	127.03897	127.03867	-2.36	108.75(100),68 .72(44.24),98.8 3(40.29),96.73(12.76)	4-hydroxy-6- methyl-2- pyrone isomers
6	1.24	C4H6O5	[M-H] ⁻	133.01315	133.01421	7.97	114.77(100),13 2.88(3.40)	malic acid
7	1.27	C ₆ H ₁₄ O ₆	[M-H] ⁻	181.07066	181.07129	3.46		L-rhamnose monohydrate /D-Mannose
8	1.34	$C_5H_{11}NO_2$	[M+H] +	118.08625	118.08585	-3.43	71.79(100)	Valine L- valine
9	1.5	C4H5N3O	[M+H] +	112.05054	112.05029	-2.22	111.83(100),69. 74(79.12),83.8 9(11.86)	cytosine
10	1.5	C5H5N5	[M+H] +	136.06177	136.06148	-2.14		adenine
11	2.03	C ₅ H ₇ NO ₃	[M-H] ⁻	128.03422	128.03548	9.85	127.88(100),83 .80(15.46)	Pyroglutamic acid
			[M+H] +	130.04987	130.0495	-2.84	83.70(100),101 .83(2.34)	
12	2.47	C ₆ H ₆ O ₃	[M-H] ⁻	125.02332	125.02449	9.36	82.89(100),124 .83(17.77),56.8 1(17.09) 108.77(100),12	4-hydroxy-6- methyl-2- pyrone
			[M+H] +	127.03897	127.0386	-3.23	6.80(35.24),98. 74(25.35),68.7 5(12.71)	
13	2.54	C ₆ H ₁₃ NO ₂	[M+H] +	132.10190	132.10158	-2.46	85.82(100)	leucine
14	2.6	C14H20O8	[M-H] ⁻	315.10744	315.10764	0.62		4-[2-(β-D- glucopyranos yloxy) ethyl]– - 4-hydroxy- 2 5-
								cyclohexadie ne
15	2.75	C ₆ H ₁₃ NO ₂	[M+H] +	132.10190	132.10149	-3.14	85.85(100)	isoleucine

16	2.75	C9H11NO3	[M+H] +	182.08117	182.08066	-2.80	164.90(100),13 5.87(21.71)	Tyrosine L- tyrosine
17	2.98	$C_{14}H_{20}O_8$	[M-H] ⁻	315.10744	315.10764	0.62	178.92(100),11 8.81(70.43),14 2.98(64.95),11 2.84(59.37),15 2.88(47.00),16 1.01(40.99)	4-[2-(β-D- glucopyranos yloxy) ethyl]– - 4-hydroxy- 2,5- cyclohexadie ne-1
18	3.93	C ₉ H ₁₃ NO	[M+H] +	152.10699	152.10658	-2.70	120.81(100)	N- methyltyrosyl
19	4.45	$C_{10}H_{13}N_5O_4$	[M+H] +	268.10403	268.10364	-1.45	135.89(100)	Adenosine
20	4.84	C5H4N4O	[M+H] +	137.04579	137.04564	-1.07	108.85(100),80 .71(67.21),118. 80(12.03),136. 90(10.19)	Hypoxanthine
21	4.85	$C_{14}H_{20}O_8$	[M-H] ⁻	315.10744	315.10748	0.12	178.94(100),11 8.88(71.38),14 2.96(59.03),11 2.95(52.33),15 2.90(37.45),10 0.78(37.45),16 0.81(34.67) 79.73(100),10	Cornoside
22	5.04	C6H9NOS	[M+H] +	144.04776	144.04738	-2.64	3.80(98.06),1 43.85(68.12), 52.73(34.79), 86.67(33.78), 125.77(19.49) $-\varepsilon$) – 5 - (methylsulfon yl) pent-4- enenitrile5- methylsulfoxi de pent-4-	
23	5.36	C ₉ H ₁₁ NO ₂	[M+H] +	166.08625	166.08604	-1.29	enenitrile 119.88(100),14 8.80(3.96) 178.82(100),11	Phenylalanine
24	6.2	$C_{14}H_{20}O_8$	[M-H] ⁻	315.10744	315.10773	0.91	8.72(66.49),11 2.89(64.49),14	Kumamoside

							2 83(57 43) 16	
							2.83(37.43),10 0.83(45.15).15	
							0.83(43.13),13 2 88(30 10) 10	
							2.88(39.19),10 0.83(33.07)	
							0.83(33.97)	4
25	6.5	C U O	[M+H]	165.05462	165 05414	2 01	120.71(100),13	4-
25	6.5	C9H8O3	+	165.05462	165.05414	-2.91	6.92(11.49)	Hydroxycinn
								amic acid
26	7.14	$C_{14}H_{20}O_8$	[M-H] ⁻	315.10744	315.10751	0.21	134.81(100),15	arbutin
							2.89(16.80)	
							213.00(100),12	
27	7.57	C ₁₆ H ₂₄ O ₁₀	[M-H] ⁻	375.12857	375.12881	0.63	4.85(33.75),16	Loganic acid
		10 21 10	LJ				8.90(7.69),150.	8
							94(7.08)	
							190.99(100),17	Neochlorogen
28	7.82	$C_{16}H_{18}O_9$	[M-H] ⁻	353.08671	353.0867	-0.02	8.87(44.24),13	ic acid
							4.87(9.01)	ie dela
							315.07(100),13	
29	8.21	$C_{19}H_{28}O_{12}$	[M-H] ⁻	447.14970	447.14975	0.11	4.91(24.21),14	Daphnetin B
							8.89(5.98)	
							315(100),134.7	
							7(49.27),205.0	Escarthogida
30	8.58	$C_{20}H_{30}O_{12}$	[M-H] ⁻	461.16535	461.16513	-0.48	6(33.94),162.8	Forsythoside
							4(20.42)142.89	E
							(9.44)	
21	0.7			252 00(71	252 00(72	0.00	191.04(100),17	Chlorogenic
31	9.7	$C_{16}H_{18}O_{9}$	[M-H] ⁻	353.08671	353.08673	0.06	8.98(2.32)	acid
			[M+H]	255 1022 (162.89(100),14	
			+	355.10236	355.1015	-2.33	4.77(3.87)	
							205.08(100),22	
							2.97(83.84),36	
32	9.89	C ₂₃ H ₃₂ O ₁₅	[M-H] ⁻	547.16575	547.16547	-0.50	7.19(45.60),18	Z-sinapic acid
							9.83(30.81),34	Gentiobioside
							1.23(15.27)	
								6-Methoxy-7-
								(6-O-β-D-
								xylopyranosy
			[M+H]				340.92(100).17	l- β-D-
33	10.19	$C_{21}H_{26}O_{13}$	+	487.14462	487.14276	-3.81	8.85(52.95)	glucopyranos
							()	vloxy)-2H-1-
								benzopvran-
								2-one
34	10.2	$C_{16}H_{18}O_{9}$	[M-H] ⁻	353,08671	353.08679	0.23	172.88(100).17	Cryptochloro
		1010-9	r 1					J F

							8.92(50.24),19 0.89(14.81),13 4.93(7.80) 204.87(100),22	genic acid
							2.99(48.14),36	Isomers of z-
35	10.68	$C_{23}H_{32}O_{15}$	[M-H] ⁻	547.16575	547.16547	-0.50	7.11(44.27),18	sinapic acid
							9.90(23.51),34	Gentiobioside
							1.11(9.63)	6 Methovy 7
								(6-Ω-β-D-
								xvlopvranosv
26	11.01	a u o	0.011	405 10005	405 10055	1.00	176.85(100),36	l- β-D-
36	11.01	$C_{21}H_{26}O_{13}$	[M-H] ⁻	485.12897	485.12955	1.20	5.06(14.66),21	glucopyranos
							8.87(7.80)	yloxy)-2H-1-
								benzopyran-
								2-one
			[M+H]	407 14460	407 1 400	2 (0	178.90(100),34	
			+	487.14462	487.1428	-3.69	1.01(84.69),44	
		CirHayNOs	[M+H]				1.09(7.94)	
37	11.23	+	+	310.16490	310.16412	-2.51	251.05(100)	Sinapine
			[] (. 11]					Kaempferol-
38	11.33	$C_{27}H_{30}O_{16}$	[M+H] +	611.16066	611.15936	-2.13		3,7-
								diglucoside
							126.83(100),84	
							.84(87.21),172.	
39	11.92	$C_7H_{12}O_6$	[M-H] ⁻	191.05501	191.05566	3.38	96(67.16),92.8	Quinic acid
							9(65.09),110.9	
							0(41.58),170.9	
							204 93(100) 36	
							7.13(69.59).22	
40	12.49	C ₂₃ H ₃₂ O ₁₅	[M-H] ⁻	547.16575	547.16565	-0.17	2.99(65.62),18	E-sinapic acid
							9.84(28.21),34	Gentiobioside
							1.07(9.49)	
41	12.6	Cullin	[M U]-	502 15010	502 1400	0.22	371.19(100),53	Noringin
41	12.0	$C_{27}\Pi_{30}O_{15}$		595.15010	393.1499	-0.55	2.99(4.46)	Ivaringin
							577.07(100),45	
			[M+H]				7.15(56.09),55	
			+	595.16575	595.1639	-3.03	9.14(32.30),52	
							9.10(24.93),51	
							1.20(17.14),47	

							5.19(14.49),54	
							1.05(13.44)	
							223.01(100),20	
							5.01(66.35),26	
							4.99(49.67),36	
40	10.00	a 11 a	FN 6 777				7.10(39.80),29	Isomers of e-
42	12.83	$C_{23}H_{32}O_{15}$	[M-H] ⁻	547.16575	547.16559	-0.28	5.09(38.84),32	sinapic acid
							5.05(31.05),18	Gentiobioside
							9.86(17.43),38	
							4.99(13.61)	
							447.13(100),42	Fourthorido
43	15.41	$C_{28}H_{34}O_{15}$	[M-H] ⁻	609.18140	609.1803	-1.80	9.15(12.25),31	Forsythoside
							5.13(5.28)	J
							152.84(100),14	
44	16.09	$C_{15}H_{12}O_5$	[M+H] +	273.07575	273.07513	-2.27	6.84(63.45),17	Naringenin
							8.85(6.43)	
							461.22(100),44	Isomore of
45	16.2	$C_{29}H_{36}O_{15}$	[M-H] ⁻	623.19705	623.19598	-1.71	3.26(17.22),47	
							7.18(3.61)	carycosin
16	16.25	CarHarOur	[M H]-	505 16575	505 16/08	1 20	287.06(100),45	Friedictussin
40	10.23	$C_2/11_{32}O_{15}$		595.10575	JJJ.10 4 98	-1.29	9.20(1.57)	EnodictyOSIII
			[M+H]	597 18140	597 1796	-2.96		
			+	577.10110	577.1790	2.90		
							300.94(100),29	
							994(55.48),447	
47	16.47	$C_{27}H_{30}O_{16}$	[M-H] ⁻	609.14501	609.14478	-0.38	.10(26.77),343.	Rutin
							10(11.53),270.	
							96(11.05)	
							447.08(100),42	Isomers of
48	16.7	$C_{28}H_{34}O_{15}$	[M-H] ⁻	609.18140	609.18079	-0.99	9.20(7.62),315.	Forsythoside
							21(4.81)	J
							256.97(100),22	
							8.92(87.70),16	
49	16.8	C15H10O7	[M+H]	303.04993	303.04935	-1.91	4.81(58.66),28	Ouercetin
.,		- 1310 - 7	+				5.05(51.37),24	(
							6.94(26.84),13	
							6.79(21.45)	
							300.97(100),30	Kaempferol-
50	16.83	$C_{27}H_{30}O_{16}$	[M-H] ⁻	609.14501	609.14581		0.20(50.61),27	3-0-
							0.94(8.44)	sophoroside
				611.16066	611.159	-2.72	303.01(100),46	

							162.79(100),15	
51	17.01		[M+H]	200.070((200 0/005	2.47	2.88(49.66),17	
51	17.21	$C_{15}H_{12}O_6$	+	289.07066	289.06995	-2.47	8.93(35.52),27	Eriodiciyoi
							1.02(21.81)	
							399.07(100),41	
			FN (- TT)				7.08(74.07),35	
52	17.21	$C_{21}H_{22}O_{10}$	[M+H]	435.12857	435.12711	-3.36	5.05(28.16),33	Cherryoside
			Ŧ				1.06(17.35),26	
							3.02(16.98)	
							459.10(100),23	
53	17.21	C ₂₇ H ₃₂ O ₁₅	[M-H] ⁻	595.16575	595.16498	-1.29	4.92(11.31),28	Neoeriocitrin
							7.03(7.30)	
							451.05(100),43	
							2.99(79.65),43	
			[M+H]				5.14(57.62),33	
			+	597.18140	597.1793	-3.48	1.03(38.46),57	
							9.08(34.87),56	
							1.04(31.04)	
							461.08(100),44	
54	17.36	$C_{29}H_{36}O_{15}$	[M-H] ⁻	623.19705	623.19574	-2.10	3.25(8.70)	Calycosin
							461.20(100),44	
							3.14(15.28),47	
55	17.58	$C_{29}H_{36}O_{15}$	[M-H] ⁻	623.19705	623.19586	-1.90	7.22(6.41),487.	Isofraxidin
							12(2.69)	
							176.87(100),17	
			[M+H]				8.90(47.98),15	
56	17.72	$C_{16}H_{14}O_{6}$	+	303.08631	303.08551	-2.65	2.85(28.17).28	Hesperetin
							5.00(15.70)	
							285.02(100).44	
							7.12(45.41).28	Kaempferol-
57	18	$C_{27}H_{30}O_{15}$	[M-H] ⁻	593.15010	593.14984	-0.43	4.00(18.95).32	3-o-rutinoside
							7.00(9.22)	
			[M+H]				286.92(100).44	
			+	595.16575	595.1637	-3.44	9.05(6.79)	
							160 86(100) 31	
58	18 18	C22H26O11	[M-H]-	477 13914	477 13943	0.61	5 16(20 60) 28	Xylopentose
20	10.10	0231120011		1,,110,111	177110510	0101	1 09(2 65)	В
							270 95(100) 17	
59	18 78	C27H22O14	[M-H]-	579 17083	579 16956	-2.19	6.94(1 57) 459	Narirutin
.,	10.70	02/1132014	[279117000	277.10700	2.17	07(1.26)	1 var 11 attill
			[M+H]				419.05(100) 41	
			+	581.18648	581.1845	-3.49	7.14(69.03) 43	
							,,0,.05,,75	

	4.95(65.02),54							
	5.07(44.14),27							
	3.07(33.47)401							
	.09(31.17),383.							
	16(29.03),527.							
	13(26.44)							
Kaempferitr	269.02(100)	0.15	577.15527	577.15518	[M-H] ⁻	$C_{27}H_{30}O_{14}$	19.3	60
	433.04(100),27	2.42	570 1 (0 4	570 17002	[M+H]			
	0.94(24.54)	-2.42	5/9.1694	5/9.1/083	+			
	459.07(100),27							
	0.92(44.39),23							
Naringin	4.99(14.85),31	-2.19	579.16956	579.17083	[M-H] ⁻	C ₂₇ H ₃₂ O ₁₄	19.65	61
	3.12(14.54),35							
	7.02(6.27)							
	417.05(100),43							
	5.04(94.65),41							
	9.04(71.46),54				51 C . 117			
	5.19(41.04),27	-2.24	581.1852	581.18648	[M+H]			
	3.03(34.76),31				т			
	5.07(29.73),56							
	2.94(27.10)							
Diguanylate	200.01(100) 20							
Gentiobiosic	298.91(100),28	1 22	752 222((752 222 (5	[] (]]]-		10.70	(\mathbf{a})
and its	4.02(52.66),60	-1.32	/53.22266	/53.22365	[M-H]	C34H42O19	19.79	62
isomers	7.24(22.55)							
Forsythosid	301.05(100),48	1 20	755 22024	755 22020	[N (11]-		10.70	(2)
В	9.09(14.62)	-1.28	/55.23834	/55.23930	[M-H]	C ₃₄ H ₄₄ O ₁₉	19.79	63
T 7'4	268.96(100),41							
vitexin	3.08(4.59),431.	0.05	577.15521	577.15518	[M-H] ⁻	$C_{27}H_{30}O_{14}$	20.01	64
rnamnoside	07(2.62)							
	270.99(100),43	2 50	570 1 (9 9	570 17092	[M+H]			
	3.06(8.97)	-3.38	5/9.1688	5/9.1/083	+			
	300.99(100),28							
Hesperidin	6.00(2.22),242.	-1.21	609.18066	609.18140	[M-H] ⁻	$C_{28}H_{34}O_{15}$	20.32	65
	03(1.49)							
	465.07(100),44							
	7.08(50.10),44							
	9.07(48.78),57	2 5 2	611 1040	611 10705	[M+H]			
	4.99(33.95),59	-3.33	011.1949	011.19/03	+			
	3.20(23.60),30							
	3.06(22.78)							
Geranylgera	299.08(100),28	-1.36	607.16492	607.16575	[M-H] ⁻	$C_{28}H_{32}O_{15}$	20.38	66

							3.95(36.49)	yl isomers
			[M+H] +	609.18140	609.1797	-2.80	609.18140	
67	20.44	C34H42O19	[M-H] ⁻	753.22365	753.22278	-1.16	547.12(100),52 9.10(43.40),36 7.10(11.03)	Diguanylate Gentiobioside and its isomers
68	20.68	$C_{28}H_{32}O_{15}$	[M-H] ⁻	607.16575	607.1651	-1.06	299.02(100),28 3.96(38.42)	Geranylgeran yl isomers
			[M+H] +	609.18140	609.1798	-2.70	301.03(100),46 3.05(8.40),285. 98(6.83)	
69	21.03	C ₂₈ H ₃₂ O ₁₅	[M-H] ⁻	607.16575	607.16693	1.95		Geranylgeran yl
			[M+H] +	609.18140	609.1796	-2.90	301.01(100),46 3.06(8.21),285. 99(7.19)	
70	21.09	C ₂₈ H ₃₄ O ₁₅	[M-H] ⁻	609.18140	609.17981	-2.60	301.02(100),34 3.15(15.70),48 9.12(13.43),32 5.11(10.58)	Neohesperidi n
			[M+H] +	611.19705	611.1951	-3.13	302.98(100),30 1.06(81.61),46 4.95(77.05),30 2.06(68.50),44 7.16(64.42),44 9.05(37.82),57	
71	21.32	C ₄₈ H ₆₈ O ₂₈	[M-H] ⁻	1091.38134	1091.3797 6	-1.44	5.13(35.11) 733.23(100),44 5.23(24.77),37 5.11(20.92),57 1.26(14.00)	Forsydoitrisid e A
72	22.26	$C_{15}H_{16}O_4$	[M+H] +	261.11214	261.11166	-1.82	242.94(100),18 8.95(73.39),17	Hespereolides
73	22.75	C ₂₈ H ₃₆ O ₁₃	[M-H] ⁻	579.20722	579.20709	-0.22	6.99(7.79) 371.08(100),45 9.28(19.15),53 3.03(11.52)	Acanthoside B
74	22.8	C ₂₁ H ₂₂ O ₅	[M+H] +	355.15400	355.15326	-2.08	285.10(100),30 5.17(51.32),15 0.89(24.28),13 6.92(18.78)	Imipramine

							547.29(100),60		
							9.35(63.09),52	Diguanylate	
7.5	22.06	a u o			752 22225	1 72	9(13(49.16),36	Gentiobioside	
/5	22.86	$C_{34}H_{42}O_{19}$	[M-H] ⁻	/53.22365	/53.22235	-1./3	7.11(20.79),60	and its	
							8.74(18.61),71	isomers	
							7.27(12.07)		
							315.09(100),35		
							9.06(12.66),29		
76	23.33	C25H30O12	[M-H]-	521.16535	521.16559		7.10(11.99),16	Suspenoidsid	
		20 00 12					2.83(10.24).47	e B	
							7.22(7.86)		
							302.96(100).46		
77	23 72	C28H24O15	[M+H]	611 19705	611 19623	-1 33	5 12(49 21) 59	Isomers of	
, ,	23.72	0281134013	+	011119700	011119020	1.55	3 00(19 34)	hesperidin	
							371 16(100) 53		
78	23 77	$C_{20}H_{22}O_{12}$	[M-H]-	579 20722	579 20679	-0 74	2 81(27 42) 20	Acanthoside	
70	23.11	0281130013		519.20122	519.20019	0.71	6 94(2 02)	В	
							285.04(100).30		
							5 07(43 54) 13		
			[M+H]				5.07(4 5.5 4),15	Isomers of	
79	23.8	$C_{21}H_{22}O_5$	+	355.15400	355.15314	-2.42	0.80(27.73)130	Imineramina	
							12(20, 41) 221	mipramile	
							12(20.41),231.		
							00(14.42)	Contiana	
							609.17(100),65	dialwaasida	
80	23.91	$C_{34}H_{42}O_{19}$	[M-H] ⁻	753.22365	753.22296	-0.92	1.22(32.24),69	and its	
							1.32(9.44)		
							201 01(100) 46	isomers	
81	24.24	$C_{28}H_{32}O_{15}$	[M-H] ⁻	607.16575	607.16486	-1.46	2 22(12 74)	Isomers of	
							3.22(12.74)	geranitin	
00	25.05		FN (111	502 10(40	502 10(1	0.64	285.04(100),30	Isosakuraneti	
82	25.05	$C_{28}H_{34}O_{14}$	[M-H] ⁻	593.18648	593.1861	-0.64	8.98(4.87)	n-/-rutinoside	
							205.04(100) 22	(didymin)	
							285.04(100),32		
83	25.77	C ₂₈ H ₃₄ O ₁₄	[M-H] ⁻	593.18648	593.18622	-0.44	/.11(19.23),4/	Poncirin	
							3.13(16.14),30		
							9.12(5.41)		
84	26.05	C52H82O25	[M-H] ⁻	1105.50614	1105.5037	-2.14	695.40(100),51		
					8		9.38(9.27)		
85	26.5	C52H84O24	[M-H] ⁻	1091.52688	1091.5244	-2.26	681.31(100),66	Deapi-	
					1	-	3.25(8.07)	platycodin D	
86	27.11	C52H82O25	[M-H] ⁻	1105.50614	1105.5041		1075.34(100),8	Unknown	
	, .	5202 - 25	r1		5		95.42(87.76),4	components 1	

							85.30(26.47)	from
								Platycodon
								grandiflorus
87	27.35	C54H84O26	[M-H] ⁻	1147.51671	1147.5141 6	-2.22	1117.57(100),9 37.47(71.58),4 85.39(22.68),8 95.41(13.20	Unknown components 2 from Platycodon grandiflorus
88	27.91	C54H84O26	[M-H] ⁻	1147.51671	1147.5144	-2.01	1117.43(100),9 37.32(73.43),4 85.32(25.28),8 95.26(12.59)	Unknown components 3 from Platycodon grandiflorus
89	28.14	C ₅₄ H ₈₄ O ₂₆	[M-H] ⁻	1147.51671	1147.5145 3	-1.90	1117.61(100),9 37.54(53.75,48 5.37(27.33),89 5.40(13.59)	Unknown components 4 from Platycodon grandiflorus
90	30.2	C ₂₆ H ₃₀ O ₈	[M+H] +	471.20134	471.19992	-3.02	425.19(100),36 7.20(37.60),42 7.20(35.83),40 9.20(22.97),38 3.34(17.82)	Limonin
91	30.7	C ₂₁ H ₂₂ O ₈	[M+H] +	403.13874	403.1377	-2.59	388.13(100),37 3.01(59.03),34 2.11(9.05),355. 08(5.34)	Nobiletin
92	31.85	C9H10O3	[M+H] +	167.07027	167.06996	-1.86	94.84(100),122 .84(37.35),148. 93(35.99)	Paeonol

Furthermore, biological CQAs digitization of Xiaoer Xiaoji Zhike oral liquid was identified by MIF-HEMT biosensor integrated with UPLC-MS/MS. According to the high-resolution mass spectrometry data, in the negative ion mode, the excimer ion peak of compound M-5 was 595.16589 [M–H] - and the retention time was 16.52min. It was speculated that the molecular formula was C₂₇H₃₂O₁₅, which was the same as that of Neoeriocitrin, and the deviation from the theoretical molecular weight was 0.241ppm. The ionic fragment of the compound includes m/z 459.05 [M-H-C₈H₈O₂]- and m/z 287.07 [M-H-C₁₂H₂₀O₉]-. The fragment information was consistent with that reported in the literature, so it was speculated that compound M-5 was Neoeriocitrin. The specific

cracking principle of other biological CQAs was summarized in Supplementary Material.

According to the high-resolution mass spectrometry data, the excimer ion peak of compounds M-3 was 609.14563 [M-H]⁻. It was speculated that the molecular formula of this compound was $C_{27}H_{30}O_{16}$, which was the same as that of Rutin, and the deviation from the theoretical value was 1.016 ppm. Besides, its ionic fragments include m/z 447 21 [M-H-C₆H₁₀O₅]⁻, m/z 300. 96 [M-H-C₁₂H₂₀O₉]⁻, m/z 270. 93 [M-H-C₁₂H₂₀O₉-CH₂O]⁻, which was consistent with Rutin reported in the literature, so it was speculated that compounds A-5 are Rutin. In the negative ion mode, the excimer ion peak of compound M-1 was 461.16595 [M-H]-. It was speculated that the molecular formula was $C_{20}H_{30}O_{12}$, which was the same as that of Forsythin E, and the deviation from the theoretical molecular weight was 1.295 ppm. The ionic fragment of the compound included M / z315 10 [M-H-C₆H₁₀O₄]⁻, m/z205. 01 [M-H-C₈H₁₀O₃-C₄H₆O₃]⁻, m/z162. 79 [M-H-C₆H₁₀O₄-C₈H₁₀O₃]⁻, m/z134. 95 [M-H-C₆H₁₀O₄-C₉H₈O₄]⁻, which was consistent with forsythin e reported in the literature, so it was speculated that compound M-1 was Forsythin E.

In the negative ion mode, the excimer ion peak of compound M-1 was 461.16595 [M-H]-. It was speculated that the molecular formula was $C_{20}H_{30}O_{12}$, which was the same as that of Forsythin E, and the deviation from the theoretical molecular weight was 1.295 ppm. The ionic fragment of the compound includes M / z315 10 [M-H-C₆H₁₀O₄]-, m/z205. 01 [M-H-C₈H₁₀O₃-C₄H₆O₃]-, m/z162. 79 [M-H-C₆H₁₀O₄-C₈H₁₀O₃]-, and m/z134. 95 [M-H-C₆H₁₀O₄-C₉H₈O₄]⁻, which was consistent with forsythin e reported in the literature, so it was speculated that compound M-1 was Forsythin E.

In the negative ion mode, the excimer ion peak of compound m-5 was 595.16589 [M–H] - and the retention time was 16.52 min. It was speculated that the molecular formula is $C_{27}H_{32}O_{15}$, which was the same as that of Neoeriocitrin, and the deviation from the theoretical molecular weight was 0.241 ppm. The ionic fragment of the compound includes M/z459 05 [M-H-C₈H₈O₂]⁻ and m/z 287.07 [M-H-C₁₂H₂₀O₉]⁻. The fragment information was consistent with that reported in the literature, so it was speculated that compound m-5 was Neoeriocitrin.

In the negative ion mode, the excimer ion peak of compound M-6 was 595.16620 [M–H] - and the retention time was 15.41 min. It was speculated that the molecular formula was $C_{27}H_{32}O_{15}$, which was the same as that of compound m-5, and the deviation between the measured molecular weight and

the theoretical molecular weight was 0.762 ppm. The ionic fragments of the compound include M/Z 287.06 [m-h-C₁₂H₂₀O₉] -. The fragment information was consistent with that reported in the literature. Therefore, it was speculated that compound M-6 was shengcaoside and was isomeric with compound m-5.

In the negative ion mode, the excimer ion peaks of compounds M-7 and M-8 were 609.18237 [M-H] - and 609.18195 [M-H]-, respectively, and the retention time was 21.14 min and 22.57 min. It was speculated that the molecular formula of both compounds was $C_{28}H_{34}O_{15}$, which belong to the isomer, and the deviation from the theoretical molecular weight was 1.598ppm and 0.908ppm respectively. The ion fragment of compound M-7 includes M / Z 300.99 [m-h-c12h20-9] - and the ion fragment of compound M-8 includes M / z489 22 $[M-H-C_7H_4O_2]$ -, m/z325. 08 $[M-H-C_{16}H_{12}O_5]$ -, and m/z301. 01 $[M-H-C_{12}H_{20}O_9]$ -. The fragment information was consistent with hesperidin and neohesperidin reported in the literature, so it was speculated that compound M-7 was hesperidin and compound M-8 was Neohesperidin .

In the negative ion mode, the excimer ion peak of compound M-9 was 593.18774 [M–H] - and the retention time was 28.33 min. It is speculated that the molecular formula is $C_{28}H_{34}O_{14}$, which was the same as that of citrinin, and the deviation from the theoretical molecular weight was 2.121ppm. The ionic fragment of the compound includes M/z473 13 [M-H-C₈H₈O]- and m/z285.04 [M-H-C₁₂H₂₀O₉]-. The fragment information was consistent with that reported in the literature, so it was speculated that compound M-9 was Lycium.

To sum up, ten biological CQAs were identified and adopted to the quality control.

2.2 Chemical CQAs digitization by UPLC and smart diagnosis for batch-to-batch quantitative chemical CQAs

Samples Project		Forsythiaside E	Neoeriocitrin	Hesperidin	Neohesperidin	
		$y = 2 \times 10^{6} x$ -	$y = 7 \times 10^6 x$ -	$y = 7 \times 10^{6} x$ -	$y = 8 \times 10^{6} x$ -	
	Linear equation	28152	97300	163730	208502	
	Linear range					
	$(\mu g \cdot mL^{-1})$	47.66-1525.00	23.52-752.50	77.81-2490.00	77.81-2490.00	
Alcohol-	\mathbb{R}^2	0.9998	0.9991	0.9999	0.9998	
precipitation	$LOD (\mu g \cdot mL^{-1})$	0.019	0.101	0.208	0.282	
intermediates	$LOQ (\mu g \cdot mL^{-1})$	0.063	0.337	0.693	0.940	

Table S5 UPLC-DAD method validation

	Precision	1.20%	1.67%	0.95%	1.34%
	Repeatability	0.65%	0.88%	1.75%	1.91%
	Stability	0.37%	0.38%	0.37%	0.11%
	recovery	1.24%	1.38%	1.02%	0.88%
	Timese secolies	$y = 1 \times 10^{6} x$ -	$y = 6 \times 10^{6} x$ -	$y = 6 \times 10^{6} x$ -	$y = 7 \times 10^{6} x$ -
	Linear equation	7086	50707	103226	219571
	\mathbb{R}^2	0.9995	0.9991	0.9993	0.9998
	Linear range(µg∙mL ⁻¹)	12.20-390.00	156.30-500.00	31.30-1000.00	78.10-1500.00
	$LOD(\mu g \cdot mL^{-1})$	0.042	0.187	0.343	0.421
	$LOQ(\mu g \cdot mL^{-1})$	0.140	0.623	1.143	1.403
	Precision	0.56%	1.75%	0.34%	0.31%
Water-	Repeatability	0.98%	0.68%	0.75%	0.82%
precipitation	Stability	0.62%	0.88%	0.28%	0.38%
intermediates	Recovery	1.08%	1.55%	0.97%	1.06%
	Lincor equation	$y = 2 \times 10^6 x -$	$y = 7 \times 10^{6} x$ -	$y = 7 \times 10^{6} x$ -	$y = 8 \times 10^{6} x$ -
	Linear equation	28152	97300	163730	208502
	\mathbb{R}^2	0.9998	0.9991	0.9999	0.9998
	Linear range(µg·mL ⁻¹)	47.70-1525.00	23.50-752.50	77.80-2.4900	77.80-2490.00
	$LOD(\mu g \cdot mL^{-1})$	0.021	0.106	0.202	0.263
	$LOQ(\mu g \cdot mL^{-1})$	0.069	0.354	0.674	0.875
	Precision	1.20%	1.67%	0.95%	1.34%
	Repeatability	0.65%	0.88%	1.75%	1.91%
	Stability	0.37%	0.38%	0.37%	0.11%
Products	Recovery	1.24%	1.38%	1.02%	0.88%

Table S6 Analytical method validation results for the fingerprint analysis

	Samples	Precision	Repeatability	Stability	
Alco	phol-precipitated intermediates	0.991-0.997	0.986-0.999	0.995–0.998	
Wa	ter-precipitated intermediates	0.995-0.998	0.985–0.994	0.987–0.991	
	Products	0.997–0.999	0.992-0.998	0.994–0.997	

Table S7 Similarities of chromatograms of 30 batches of Xiaoer Xiaoji Zhike oral liquid

Batches	Numbers	Similarity	Batches	Numbers	Similarity
130121164	S 1	0.999	130121179	S16	0.999
130121165	S2	0.966	130121180	S17	0.998
130121166	S 3	0.998	130121181	S18	0.999
130121167	S 4	0.999	130121184	S19	0.999
130121168	S5	0.993	130121185	S20	0.999
130121169	S 6	0.998	130121187	S21	0.999
130121170	S 7	0.999	130121188	S22	0.995

130121171	S 8	0.999	130121189	S23	0.999
130121172	S 9	0.999	130121190	S24	0.998
130121173	S 10	0.999	130121192	S25	0.999
130121173	S11	0.999	130121224	S26	0.998
130121174	S12	0.999	130121225	S27	0.998
130121175	S13	0.998	130121226	S28	0.999
130121177	S 14	0.999	130121227	S29	0.998
130121178	S15	0.995	130121228	S 30	0.999

2.3 Smart diagnosis of systematic CQAs covering biological, chemical, and physical CQAs for 30 batches of end-to-end real-world Xiaoer Xiaoji Zhike oral liquid by information fusion

Firstly, a feature-level fusion strategy was implemented and obtained a 30×20 matrix via feature extraction of biosensors and other five sensor data. Next, a smart diagnosis by MSPC was performed. It was obvious that there were five abnormal batches in the finished product, and there were six abnormal batches in the alcohol-precipitation intermediate and four abnormal batches in the water-precipitation intermediate respectively (**Table S8**).

Samples	Multi-sensors	Abnormal batches	Voting score
	Biosensor	130121181, 130121182	16.71%
	UPLC	130121165, 130121224	15.56%
	NIR	No	16.83%
Products	Electronic eye	130121165, 130121179, 130121185, 130121192	16.53%
	Electronic tongue	130121174	16.70%
	Faatura laval fusion	130121166, 130121228, 130121225, 130121170,	16 720/
	reature-level fusion	130121184	10.72%
	UPLC	130121165, 130121185, 130121227	15.30%
Alashal	NIR	130121174, 130121188, 130121189, 130121227	25.29%
Alcohol-	Electronic eye	130121180, 130121188, 130121189, 130121228	20.79%
intermediate	Electronic tongue	130121178, 130121192	14.54%
Intermediate	Fasture level fusion	130121192, 130121228, 130121185, 130121188,	24 08%
	reature-level fusion	130121174, 130121189	24.08%
	UPLC	130121175	26.89%
XX 7 4	NIR	130121179, 130121181, 130121187, 130121227	15.92%
water-	Electronic eye	130121180, 130121224, 130121228	36%
intermediate	Electronic tongue	130121174	3.25%
	Feature-level fusion	130121171, 130121180, 130121187, 130121225	18.31%

Table S8. Smart diagnosis for 30 batches of end-to-end real-world Xiaoer Xiaoji Zhike oral liquid

Figure S1 Smart diagnosis for 30 verified batches of real-world Xiaoer Xiaoji Zhike oral liquid. (A) Smart diagnosis by UPLC. (a1) Cumulative principal component contribution diagram. (a2) Hotelling T2 control diagram.

(a3) SPE control diagram. (B) Smart diagnosis by near-infrared (NIR). (C) Smart diagnosis by the electronic tongue.(D) Smart diagnosis by electronic eye. (D) Smart diagnosis by feature-level information fusion.

UPLC	UPLC NIR E-eye		E-tongue	Feature-level fusion	
				304200423, 304200437,	
				304200132, 304200523,	
304200473	204200112	304200553		204200152, 304200563,	
304200413	304200373	304200513	304200353	304200493	

Table S9 Smart diagnosis for 30 verified batches of real-world Xiaoer Xiaoji Zhike oral liquid

2.4 A novel end-to-end systematic CQAs traceability for 30 batches of end-to-end real-world Xiaoer Xiaoji Zhike oral liquid by multivariate process capability integrated with fuzzy mathematics

The problems were organized and hierarchical by analyzing the influencing factors and correlations contained in the three units of Xiaoer Xiaoji Zhike oral liquid. An analytic hierarchy process model was constructed, and the elements of each level were compared in pairs. The electronic tongue, electronic eye, pH, and chemical composition were divided into four categories by adopting the scale method of level 1 - 9, and the importance was compared with each other to assign score values to establish a judgment matrix (**Table S10**). Besides, the results of consistency test were λ max as 4.072, CI as 0.02401, and CR as 0.02668<0.10, indicating that random factors did not cause unreasonable weight vectors and meet the consistency requirements.

	Electronic tongue	Electronic eye	pН	Composition	\mathbf{W}_i
Electronic tongue	1	1/2	1/4	1/5	0.07689
Electronic eye	2	1	1/2	1/4	0.1332
pH	4	2	1	1/4	0.2322
Composition	5	3	4	1	0.5576

Table S10. The quality attribute judgment matrix of Xiaoer Xiaoji Zhike oral liquid

Furthermore, for the quality attributes of the alcohol precipitation unit, water precipitation unit and finished product unit in the production process of Xiaoer Xiaoji Zhike oral liquid, the objective assignment results of the CRITIC method are shown in the CRITIC in **Table S11**.

Table S11 Comprehensive weight assignment of multiple quality attributes based on AHP-CRITIC method

		Alcohol-precipitated intermediates		Water-precipitated		Finished products	
Weight	Indexs			interi	mediates	Finished products	
		WCRITIC	W _{Comprehensive}	WCRITIC	W _{Comprehensive}	WCRITIC	W _{Comprehensive}
	P1	0.2071	0.0159	0.1338	0.0103	0.0990	0.0076
	P2	0.2561	0.0197	0.1407	0.0108	0.1288	0.0099
Electronic	P3	0.1159	0.0089	0.3180	0.0245	0.2086	0.0160
tongue	P4	0.1342	0.0103	0.1576	0.0121	0.1812	0.0139
	P5	0.1410	0.0108	0.1207	0.0093	0.2347	0.0180
	P6	0.1459	0.0112	0.1293	0.0099	0.1479	0.0114
	L	0.2457	0.0327	0.3933	0.0524	0.3141	0.0419
Electronic	а	0.5088	0.0678	0.2532	0.0337	0.3014	0.0402
eye	b	0.2455	0.0327	0.3535	0.0471	0.3845	0.0512
pН	pН	1.0000	0.2322	1.0000	0.2322	1.0000	0.2322
	Forsythoside E	0.2026	0.1130	0.1799	0.1003	0.2769	0.1544
Composition	Neoeriocitrin	0.1817	0.1013	0.2005	0.1118	0.1984	0.1107
Composition	Hesperidin	0.4270	0.2381	0.2757	0.1537	0.3208	0.1789
	Neohesperidin	0.1887	0.1053	0.3440	0.1918	0.2039	0.1137