Supporting Information

Direct Access to Functional Phenazines via Oxidative Annulation of Anilines and *o*-Phenylenediamines with a Reusable Cobalt Catalyst

Qingqing Liu,^a Chenggang Ci,^b He Zhao,^a Rong Xie,^a HuanFeng Jiang^a and Min Zhang^{*a}

^a Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China

^b Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China.

Table of Contents

1.	General information	2
2.	Procedure for the preparation of Co-Nx/NC-800	2
3.	XRD measurements and data of Co-Nx/NC-800	3
4.	Experimental Section	3
	4.1 Typical procedure for the synthesis of product C1	4
	4.2 Poisoning experiment	4
	4.3 Acid Leaching Experiment	4
	4.4 Details of catalyst and HFIP-recycling experiments	5
	4.5 Control experiments	5
5.	Synthetic utility	6-7
6.	Single Crystal X-ray Diffraction of C44	7-8
7.	Analytical data of the obtained compounds	8-19
8.	NMR spectra of the obtained compounds	20-79
9.	HR-MS spectra of the obtained compounds	80-139
10.	DFT calculation	140-141

1. General information

All the obtained products were characterized by melting points (m.p.), ¹H-NMR, ¹³C-NMR, and mass spectra (MS). the NMR spectra of the known compounds were found to be identical with the ones reported in the literatures. Additionally, all the new compounds were further characterized by high resolution mass spectra (HRMS). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected. Mass spectra were recorded on Trace ISQ GC/MS, High-resolution mass spectra (HRMS) were recorded on a thermo scientific Q Exactive Ultimate 3000 UPLC spectrometer. ¹H-NMR and ¹³C-NMR spectra were obtained on Bruker-400 or Bruker-500 and referenced to 7.26 ppm for chloroform solvent or 2.54 ppm for dimethyl sulfoxide solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m). Column chromatography was performed on silica gel (200-300 mesh). Reactions were monitored by using thin layer chromatography (TLC) (Qingdao Jiyida silica gel reagent factory GF254). All the reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical. All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. All reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).

XRD was conducted on a TD-3500 powder diffractometer (Tongda, China) operated at 30 kV and 20 mA, using Cu K α radiation sources in a Bragg angle range of 10–80°. EPR spectra were recorded on a Bruker X-band A-200 spectrometer. The EPR parameters were set as the following: sweep width 200 G, center field 3511.70 G, sweep time 39.997 s, microwave power 0.20 mW, modulation amplitude 1.000 G, modulation frequency 100 kHz, resolution 1024. The related systems were reacted under the standard conditions for 30 min. Then, the reaction solution was taken out by capillary and analyzed by EPR at room temperature. The samples were taken out by a capillary (borosilicate glass, 0.8-1.1×100 mm), and then recorded by EPR spectrometer at room temperature and parameters.

2. Procedure for the preparation of Co-Nx/NC-800¹

Cobalt(II) acetate tetrahydrate (126.8 mg, 0.5 mmol) and 1,10-phenanthroline (275.3 mg, 1.5 mmol) (Co:phenanthroline = 1:3 molar ratio) were stirred in ethanol (20 mL) for approximately 20 minutes at room temperature. Then, carbon powder (696 mg) (VULCAN® XC72R, Cabot Corporation Prod. Code XVC72R; CAS No. 1333-86-4) was added and the whole reaction mixture was refluxed for 4 hours. The reaction mixture was cooled to room temperature and the ethanol was removed in vacuo. The solid sample obtained was dried at 60 °C for 12 hours, after which it was grinded to a fine powder. Then, the grinded powder was transferred into a ceramic crucible and placed in the oven. The oven was heated to 800 °C at the rate of 25 °C per minute, and held at 800 °C for 2 hours under argon atmosphere. After heating the oven was switched off and cooled to room temperature. During the whole process argon was constantly passed through the oven.

3. XRD measurements and data of Co-Nx/NC-800

4. Experimental Section

Scheme S1. Substrates employed for the reaction

4.1 Typical procedure for the synthesis of product C1

Under air atmosphere, the mixture of Co-Nx/NC-800 (30 mg), *N*,*N*-diethylaniline A1 (22.4mg, 0.15 mmol), *o*-phenylenediamine B1 (16.2mg, 0.15 mmol) and HFIP (1.5 mL) was introduced in a Schlenk tube (50 mL), which was then stirred at 30 °C for 4 h. Next, the mixture was extracted with EtOAc (15 mL x 3), and concentrated under vacuum. The residue was purified by column chromatography on silica gel to give the desired product C1 (ethyl acetate : petroleum ether = 1 : 5, v/v).

4.2 Poisoning experiment

Under air atmosphere, a mixture of Co-Nx/NC-800 (30 mg), arylamines A1 (0.15 mmol), *o*-Phenylenediamine derivatives B1 (0.15 mmol), HFIP (1.5 mL) and KSCN (25 mol%) were introduced in a Schlenk tube (50 mL), and then was stirred at 30 °C for 4 h. Next, the mixture was extracted with EtOAc for three times, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the product C1 (EtOAc : petroleum ether = 1:5, v/v).

Scheme S2. KSCN poisoning experiment

4.3 Acid Leaching Experiment

150 mg of the catalyst prepared by the standard procedure were treated with 50 mL of $0.5M H_2SO_4$ solution at 90 °C for 4 h. Then, the slurry was filtrated with suction filtration on a paper filter with deionized water, dissolved in EtOH and dried under rotary evaporator and vacuum. The activity was estimated via model reaction under the standard condition.

Scheme S3. Acid Leaching Experiment.

4.4 Catalyst and solvent-recycling experiment

Under air atmosphere, a mixture of Co-Nx/NC-800 (30 mg), arylamines A1 (0.15 mmol), *o*-Phenylenediamine derivatives B1 (0.15 mmol) and HFIP (1.5 mL) were introduced in a Schlenk tube (50 mL), and then was stirred at 30 °C for 4 h. Next, the mixture was extracted with EtOAc for three times, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the product C1 (ethylacetate : petroleum ether = 1:5, v/v). The catalyst was separated by centrifugation, washed with EtOAc and ethanol for three times, then dried under vacuum at 60 °C for 4 h. After that, the separated catalyst was reused for the next cycle experiment. As for solvent-recycling, HFIP solvent was directly recovered through a rotary evaporator with somewhat loss, which was then reused for the next run of the model reaction and did not affect the product yield.

4.5 Control experiments

(1) Preparation of compound C13-1²

The mixture of 1-bromo-2-nitrobenzene (404 mg, 2 mmol), N,N-dimethyl-1,4-phenylenediamine (2 mmol) and DBU (2 mmol) in DMF (1.5 mL) was stirred at 140 °C for 10 hours. After cooling to room temperature, the reaction mixture was extracted with EtOAc for three times and the organic layer was dried over anhydrous sodium sulfate and then concentrated by removing the solvent under vacuum. Finally, the residue was purified via silica gel column chromatography with ethylacetate : petroleum ether (1:40, v/v) as an eluent to afford N^1,N^1 -dimethyl- N^4 -(2-nitrophenyl)benzene-1,4-diamine.

Next, under N₂ atmosphere, Pd/C (50 mg), EtOH (2 mL) and N^1,N^1 -dimethyl- N^4 -(2-nitrophenyl)benzene-1,4-diamine were added successively to a Schlenk tube (50 mL) and then equipped with an H₂ balloon at 30 °C for 10 h. The resulting mixture was extracting with EtOAc, dried with anhydrous sodium sulfate, and then concentrated by removing the solvent under vacuum. The residue was purified by column chromatography on silica gel, and eluting with ethylacetate : petroleum ether (1:5, v/v) to give the target product **C13-1**. ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.84 (d, J = 7.8 Hz, 1H), 6.77 (d, J = 8.8 Hz, 2H), 6.67 (t, J = 6.0 Hz, 4H), 6.52 (s, 1H), 6.47 (dt, J = 8.4, 4.8 Hz, 1H), 4.64 (s, 2H), 2.78 (s, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 145.42, 140.14, 136.07, 131.32, 121.90, 119.13, 118.90, 117.15, 115.42, 114.81, 41.69.

(2) Detection of aniline radical species

5. Synthetic utility

Gram-scale synthesis of compound C1: Under air atmosphere, Co-Nx/NC-800 (983 mg), *N*,*N*-diethylaniline A1 (5 mmol), *o*-Phenylenediamine B1 (5 mmol) and HFIP (33 mL) were introduced in a reaction bulb (100 mL), and then was stirred at 30 °C for 4 h. Next, the mixture was extracted with EtOAc for three times, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the desired product C1 (ethylacetate : petroleum ether = 1:5, v/v).

Debenzylation of C15 to compound C52: under N₂ atmosphere, Pd/C (10 mol%), **C15** (0.1 mmol, 64.8 g), HCOONH₄ (1 mmol, 63 mg), MeOH (0.5 mL) were introduced in a Schlenk tube (50 mL), successively. Then it was stirred at 75 °C for 12 h. After cooling down to room temperature, the resulting mixture was extracting with ethyl acetate, dried with anhydrous sodium sulfate, and then concentrated by removing the solvent under vacuum. Finally, the residue was purified by column chromatography on silica gel to give **C51** (71% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.05 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 9.4 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.45 (dd, J = 9.4, 2.2 Hz, 1H), 6.92 (s, 1H), 6.48 (s, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.49, 146.27, 143.68, 140.22, 139.77, 130.61, 130.50, 129.70, 128.49, 127.57, 127.19, 101.67; HRMS (ESI): Calcd. for C₁₂H₁₀N₃ [M+H]⁺: 196.08692; found: 196.08678.

Derivation of amine C51 to amide C52: 1-aminophenazine **C51** (0.1 mmol, 19.5 mg,) was dissolved in the solution of dry CH₂Cl₂ (2 mL) and anhydrous pyridine (0.1 mL). 2-chlorobenzoyl chloride (1.4 mmol, 245 mg) diluted in CH₂Cl₂ (3 mL), then added dropwise to the above solution. The mixture was stirred at 30 °C for 0.5 h, as monitored by TLC until reaction completed, and then the solvent was removed by distillation. The residue was purified by flash chromatography on silica gel using petroleum ether/ethyl acetate (1/1, v/v), and then recrystallized with anhydrous ethanol to give the **C52**. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.17 (s, 1H), 8.83 (s, 1H), 8.23 (t, J = 10.0 Hz, 3H), 8.10 (d, J = 10.0 Hz, 1H), 7.95 - 7.89 (m, 2H), 7.72 (d, J = 10.0 Hz, 1H), 7.63 (d, J = 5.0 Hz, 1H), 7.57 (t, J = 10.0 Hz, 1H), 7.52 (t, J = 10.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 166.32, 144.21, 143.72, 142.50, 141.10, 140.92, 136.91, 132.02, 131.47, 130.60, 130.53, 130.48, 130.28, 129.81, 129.60, 129.49, 127.88, 126.82, 115.06; HRMS (ESI): Calcd. for C₁₉H₁₃CIN₃O [M+H]⁺: 334.07417; found: 334.07336.

Synthesis of **C53** via Suzuki cross-coupling of **C40** with pyridin-3-ylboronic acid: under nitrogen atmosphere, **C40** (0.1 mmol, 41 mg), boronic acid (0.4 mmol, 49 mg), Pd(OAc)₂ (5 mol %), PPh₃ (10 mol %), K₂CO₃ (2 equiv) and 1,4-dioxane/H₂O (4/1) were introduced in a Schlenk tube (50mL), successively. The mixture was stirred at 120 °C for 24 hours and cooled to room temperature. The resulting mixture concentrated under vacuum. The residue was purified by column chromatography on silica gel to give the desired product **C53** as a red soild. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.50 (dd, J = 8.8, 4.6 Hz, 2H), 8.45 (d, J = 5.0 Hz, 2H), 8.11 (s, 1H), 8.01 (s, 1H), 7.99 (d, J = 5.0 Hz, 1H), 7.75 (d, J = 9.6 Hz, 1H), 7.62 (t, J = 6.8 Hz, 2H), 7.34 (q, J = 7.0 Hz, 2H), 6.93 (s, 1H), 3.59 (q, J = 7.0 Hz, 4H), 1.23 (t, J = 7.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.42, 150.35, 149.35, 148.83, 148.62, 146.59, 143.27, 140.02, 139.73, 139.63, 137.57, 137.56, 136.52, 135.87, 135.80, 131.13, 130.71, 129.86, 124.45, 123.61, 123.58, 100.66, 44.81, 13.09; HRMS (ESI): Calcd. for C₂₆H₂₄N₅ [M+H]⁺: 406.20262; found: 406.20166.

6. Single Crystal X-ray Diffraction of C44

Single crystals of $C_{17}H_{16}CIN_3$ C44 were red block. X-Ray diffraction data of one these crystals were collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 179.99(10) K during data collection. The measurements were performed with Cu-K α radiation ($\lambda = 1.54184$ Å).

Figure S3. Molecular structure of C44 (CCDC 2142278)

Table S1. Crystal data and structure refinement for C44.

Identification code	C44	
Empirical formula	$C_{17}H_{16}ClN_3$	
Formula weight	297.78	
Temperature/K	179.99(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	6.7166(12)	
b/Å	9.3699(17)	
c/Å	12.656(2)	
$\alpha/^{\circ}$	68.667(17)	
β/°	79.026(15)	
$\gamma^{/\circ}$	72.896(16)	

Volume/Å ³	706.0(2)
Ζ	2
$ ho_{calc}g/cm^3$	1.401
µ/mm ⁻¹	2.351
F(000)	312.0
Crystal size/mm ³	$0.13\times0.12\times0.11$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	7.532 to 147.762
Index ranges	$-8 \le h \le 8, -11 \le k \le 10, -15 \le l \le 15$
Reflections collected	4355
Independent reflections	2737 [$R_{int} = 0.0427$, $R_{sigma} = 0.0652$]
Data/restraints/parameters	2737/3/194
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0670, wR_2 = 0.1771$
Final R indexes [all data]	$R_1 = 0.0893, wR_2 = 0.1991$
Largest diff. peak/hole / e Å-3	0.38/-0.41

7. Analytical data of the obtained compounds

N,N-diethylphenazin-2-amine (C1)

Red solid, m.p.: 100.1 - 101.1 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.06 (d, J = 10.0 Hz, 1H), 7.97 (d, J = 10.0 Hz, 2H), 7.77 (t, J = 5.0 Hz, 1H), 7.71 (dd, J = 9.6 Hz, 2.6 Hz, 1H), 7.65 (t, J = 10.0 Hz, 1H), 6.93 (d, J = 5.0 Hz, 1H), 3.58 - 3.54 (m, 4H), 1.20 (t, J = 10.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO- d_6) δ 148.98, 146.01, 143.91, 140.46, 139.24, 130.60, 130.55, 129.71, 128.45, 127.62, 123.97, 100.81, 44.72, 13.05; HRMS (ESI): Calcd. for C₁₆H₁₈N₃ [M+H]⁺: 252.14952; found: 252.14914.

N-methylphenazin-2-amine (C2)

Red solid, m.p.: $165 - 166 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.06 (d, J = 10.0 Hz, 1H), 7.98 (d, J = 10.0 Hz, 1H), 7.88 (d, J = 10.0 Hz, 1H), 7.78 - 7.75 (m, 1H), 7.67 - 7.64 (m, 1H), 7.45 (dd, J = 9.6 Hz, 2.6 Hz, 1H), 7.10 (d, J = 5.0 Hz, 1H), 6.69 (d, J = 2.0 Hz, 1H), 2.89 (d, J = 5.0 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.54, 146.64, 143.57, 140.30, 140.13, 130.45, 130.14, 129.63, 128.39, 127.51, 127.38, 97.69, 29.93; HRMS (ESI): Calcd. for C₁₃H₁₂N₃ [M+H]⁺: 210.10257; found: 210.10239.

N-benzylphenazin-2-amine (C3)

Red solid, m.p.: $98.5 - 99.5 \circ$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.05 (d, J = 10.0 Hz, 1H), 7.96 (d, J = 5.0 Hz, 1H), 7.91 (d, J = 10.0 Hz, 1H), 7.75 (t, J = 10.0 Hz, 1H), 7.65 (t, J = 5.0 Hz, 2H), 7.59 (dd, J = 10.0 Hz, 5.0 Hz, 1H), 7.46 (d, J = 10.0 Hz, 2H), 7.37 (t, J = 5.0 Hz, 2H), 7.26 (t, J = 10.0 Hz, 1H), 6.72 (d, J = 5.0 Hz, 1H), 4.50 (d, J = 10.0 Hz, 2H); ¹³C NMR

(126 MHz, DMSO-*d₆*) δ 150.39, 146.34, 143.53, 140.24, 140.21, 139.12, 130.50, 130.27, 129.63, 128.98, 128.40, 127.88, 127.68, 127.50, 99.05, 46.88; HRMS (ESI): Calcd. for C₁₉H₁₆N₃ [M+H]⁺: 286.13387; found: 286.13330. *N*-phenylphenazin-2-amine (**C4**)

Red solid, m.p.: $193 - 194 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO- d_6) δ 9.19 (s, 1H), 8.10 (d, J = 8.6 Hz, 1H), 8.06 - 8.01 (m, 2H), 7.80 (t, J = 6.8 Hz, 1H), 7.73 - 7.69 (m, 2H), 7.49 (s, 1H), 7.44 - 7.39 (m, 4H), 7.09 (t, J = 6.8 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 146.46, 145.80, 143.69, 141.40, 141.03, 140.53, 130.85, 130.76, 129.93, 129.72, 128.73, 128.57, 127.67, 123.24, 120.52, 102.93; HRMS (ESI): Calcd. for C₁₈H₁₄N₃ [M+H]⁺: 272.11822; found: 272.11786.

N-isopropylphenazin-2-amine (C5)

Yellow oil; ¹H NMR (500 MHz, DMSO- d_6) δ 8.04 (d, J = 5.0 Hz, 1H), 7.97 (d, J = 5.0 Hz, 1H), 7.87 (d, J = 10.0 Hz, 1H), 7.75 (t, J = 5.0 Hz, 1H), 7.63 (t, J = 10.0 Hz, 1H), 7.46 (d, J = 5.0 Hz, 1H), 6.91 (d, J = 5.0 Hz, 1H), 6.73 (s, 1H), 3.79 – 3.73 (m, 1H), 1.25 (d, J = 5.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO- d_6) δ 149.66, 146.66, 143.62, 140.14, 130.42, 130.24, 129.63, 128.33, 127.85, 127.41, 98.15, 43.89, 22.27; HRMS (ESI): Calcd. for C₁₅H₁₆N₃ [M+H]⁺: 238.13387; found: 238.13354.

N-butylphenazin-2-amine (C6)

Orange solid, m.p.: $135.4 - 136.4 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 10.0 Hz, 1H), 7.97 (d, *J* = 10.0 Hz, 1H), 7.87 (d, *J* = 10.0 Hz, 1H), 7.75 (t, *J* = 10.0 Hz, 1H), 7.64 (t, *J* = 10.0 Hz, 1H), 7.48 (dd, *J* = 10.0, 2.0 Hz, 1H), 7.03 (t, *J* = 5.0 Hz, 1H), 6.71 (s, 1H), 3.21 (q, *J* = 5.0 Hz, 2H), 1.67 - 1.62 (m, 2H), 1.48 - 1.40 (m, 2H), 0.94 (t, *J* = 5.0 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.71, 146.66, 143.60, 140.26, 140.12, 130.41, 130.16, 129.63, 128.35, 127.57, 127.42, 97.76, 42.84, 30.55, 20.37, 14.22; HRMS (ESI): Calcd. for C₁₆H₁₈N₃ [M+H]⁺:252.14952; found: 252.14937.

3-fluoro-N-methylphenazin-2-amine (C7)

Orange solid, m.p.: 169 - 170 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.16 (s, 1H), 8.07 (d, J = 5.0 Hz, 1H), 8.01 (d, J = 5.0 Hz, 1H), 7.81 (t, J = 7.4 Hz, 1H), 7.71 (t, J = 7.4 Hz, 1H), 6.89 (s, 1H), 6.79 (q, J = 5.0 Hz, 1H), 2.95 (d, J = 4.8 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 146.93, 144.95, 143.71, 140.65, 138.79, 130.94, 130.05, 129.60, 128.77, 128.63, 128.47, 100.20, 30.55; HRMS (ESI): Calcd. for C₁₃H₁₁ClN₃ [M+H]⁺: 244.06360; found: 244.06325.

3-chloro-N-methylphenazin-2-amine (C8)

Red solid, m.p.: 193 – 194 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.05 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.77 (s, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 6.74 (s, 1H), 6.48 – 6.45 (m, 1H), 2.93 (d, J = 4.6 Hz, 3H), 2.40 (s, 1H), 6.74 (s, 1H), 6.74 (s, 1H), 6.74 (s, 1H), 7.77 (s, 1H), 7.74 (s,

3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.88, 145.73, 143.23, 140.30, 140.07, 135.31, 129.87, 129.52, 128.64, 128.42, 127.37, 98.07, 30.50, 18.77; HRMS (ESI): Calcd. for C₁₄H₁₄N₃ [M+H]⁺: 224.11822; found: 224.11769.

N,3-dimethylphenazin-2-amine (**C9**)

Orange solid, m.p.: 196 – 197 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.02 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 10.0 Hz, 1H), 7.71 (t, J = 5.0 Hz, 1H)), 7.64 (t, J = 10.0 Hz, 1H), 7.28 (s, 1H), 6.73 – 6.71 (m, 1H), 6.70 (s, 1H), 4.07 (s, 3H), 2.92 (d, J = 5.0 Hz, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 154.00, 145.17, 143.67, 142.05, 141.31, 140.18, 128.89, 128.86, 128.32, 127.31, 103.92, 97.83, 56.83, 29.91; HRMS (ESI): Calcd. for C₁₄H₁₄N₃O [M+H]⁺: 240.11314; found: 240.11266.

1-fluoro-N-methylphenazin-2-amine (C10)

Orange solid, m.p.: $163 - 164 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.07 (d, J = 8.6 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.81 - 7.76 (m, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.13 - 7.09 (m, 1H), 6.89 (d, J = 9.4 Hz, 1H), 2.93 (d, J = 4.8 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 156.66 (d, J = 258.6 Hz), 144.15, 143.00, 142.86, 140.44, 139.38 (d, J = 13.4 Hz), 130.37, 129.24, 128.62, 128.26, 110.78 (d, J = 18.4 Hz), 100.40 (d, J = 5.2 Hz), 29.86; ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -121.02 (t, J = 11.0 Hz); HRMS (ESI): Calcd. for C₁₃H₁₁FN₃ [M+H]⁺: 228.09315; found: 228.09271.

N-ethyl-4-methylphenazin-2-amine (C11)

 $\begin{array}{l} \text{Orange solid, m.p.: } 140.4-141.4\ ^\circ\text{C; }^1\text{H NMR (400 MHz, CDCl_3) } \delta 8.15 (d, J = 8.6 \text{ Hz}, 1\text{H}), 8.04 (d, J = 8.6 \text{ Hz}, 1\text{H}), 7.74 \\ -7.68 (m, 1\text{H}), 7.64-7.58 (m, 1\text{H}), 7.00 (s, 1\text{H}), 6.80 (s, 1\text{H}), 4.27 (s, 1\text{H}), 3.33 (p, J = 7.0, 6.4 \text{ Hz}, 2\text{H}), 2.78 (s, 3\text{H}), 1.34 \\ (t, J = 8.0 \text{ Hz}, 3\text{H}); {}^{13}\text{C NMR (101 MHz, CDCl_3) } \delta 148.97, 146.48, 143.37, 140.45, 140.14, 138.57, 129.90, 128.11, 127.02, 124.76, 98.30, 38.10, 17.67, 14.32; \text{HRMS (ESI): Calcd. for } C_{15}\text{H}_{16}\text{N}_{3} \text{ [M+H]}^{+}: 238.13387; \text{ found: } 238.13358. \end{array}$

N,N,4-trimethylphenazin-2-amine (C12)

Orange solid, m.p.: 120 - 121 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 8.6 Hz, 1H), 8.01 (d, J = 8.6 Hz, 1H), 7.70 - 7.66 (m, 1H), 7.59 - 7.55 (m, 1H), 7.29 (s, 1H), 6.81 (d, J = 2.4 Hz, 1H), 3.09 (s, 6H), 2.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.86, 145.54, 143.26, 140.22, 139.63, 138.25, 130.02, 129.90, 127.71, 126.89, 121.60, 100.35, 40.25, 18.15; HRMS (ESI): Calcd. for C₁₅H₁₆N₃ [M+H]⁺: 238.13387; found: 238.13348.

N,*N*-dimethylphenazin-2-amine (C13)

Orange solid, m.p.: 160 – 161 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (d, *J* = 10.0 Hz, 1H), 8.00 (d, *J* = 5.0 Hz, 1H), 7.99 (d, *J* = 5.0 Hz, 1H), 7.80 – 7.77 (m, 2H), 7.68 (t, *J* = 10.0 Hz, 1H), 6.94 (d, *J* = 5.0 Hz, 1H), 3.17 (s, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.44, 145.66, 143.87, 140.61, 139.36, 130.67, 130.20, 129.70, 128.56, 127.93, 124.15, 101.96, 40.45; HRMS (ESI): Calcd. for C₁₄H₁₄N₃ [M+H]⁺: 224.11822; found: 224.11794.

N-benzyl-N-ethylphenazin-2-amine (C14)

Red solid, m.p.: $100 - 101 \,^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.6 Hz, 1H), 8.05 (d, J = 8.6 Hz, 1H), 8.00 (d, J = 9.8 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.64 - 7.60 (m, 1H), 7.53 (dd, J = 9.8, 2.8 Hz, 1H), 7.36 - 7.31 (m, 2H), 7.27 (d, J = 6.8 Hz, 3H), 7.16 (s, 1H), 4.76 (s, 2H), 3.69 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.61, 145.68, 143.86, 140.96, 139.58, 137.55, 130.54, 130.17, 129.55, 128.86, 128.29, 127.48, 127.31, 126.41, 122.95, 102.37, 53.80, 45.81, 12.26; HRMS (ESI): Calcd. for C₂₁H₂₀N₃ [M+H]⁺: 314.16517; found: 314.16470.

N,N-dibenzylphenazin-2-amine (C15)

Red solid, m.p.: $172.7 - 173.7^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.06 (d, J = 5.0 Hz, 1H), 7.97 (t, J = 10.0 Hz, 2H), 7.76 (t, J = 10.0 Hz, 2H), 7.67 (t, J = 10.0 Hz, 1H), 7.36 (d, J = 5.0 Hz, 8H), 7.28 – 7.25 (m, 2H), 6.97 (s, 1H), 4.99 (s, 4H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 149.94, 145.38, 143.81, 140.80, 139.32, 138.39, 130.77, 130.44, 129.69, 129.18, 128.58, 128.19, 127.51, 127.03, 124.21, 103.23, 55.01; HRMS (ESI): Calcd. for C₂₆H₂₂N₃ [M+H]⁺: 376.18082; found: 376.18005.

3-methylphenazin-2-amine (C16)

Red oil; ¹H NMR (500 MHz, DMSO- d_6) δ 8.04 (d, J = 10.0 Hz, 1H), 7.98 (d, J = 10.0 Hz, 1H), 7.80 (s, 1H), 7.73 (t, J = 10.0 Hz, 1H), 7.64 (t, J = 10.0 Hz, 1H), 7.03 (s, 1H), 6.29 (s, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 151.22, 145.41, 143.31, 140.35, 139.90, 135.17, 129.94, 129.59, 128.96, 128.53, 127.43, 102.17, 18.83; HRMS (ESI): Calcd. for C₁₃H₁₂N₃ [M+H]⁺: 210.10257; found: 210.10236.

1,4-dimethylphenazin-2-amine (C17)

Orange solid, m.p.: $162.6 - 163.6 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 10.0 Hz, 1H), 7.76 (t, *J* = 5.0 Hz, 1H), 7.65 (t, *J* = 5.0 Hz, 1H), 7.36 (s, 1H), 6.09 (s, 2H), 2.69 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 147.72, 144.97, 142.69, 139.65, 138.78, 135.11, 130.16, 129.79, 128.72, 127.31, 125.95, 105.84, 17.75, 10.45; HRMS (ESI): Calcd. for C₁₄H₁₄N₃ [M+H]⁺: 224.11822; found: 224.11798.

3-(tert-butyl)phenazin-2-amine (C18)

 NH_2

Orange solid, m.p.: $185 - 186^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 10.0 Hz, 1H), 7.98 (d, *J* = 10.0 Hz, 1H), 7.86 (s, 1H), 7.74 (t, *J* = 7.2 Hz, 1H), 7.64 (t, *J* = 5.0 Hz, 1H), 7.12 (s, 1H), 6.20 (s, 2H), 1.51 (s, 9H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.71, 145.01, 144.77, 143.80, 140.64, 139.73, 130.17, 129.64, 128.59, 127.46, 126.46, 104.68, 35.56, 29.77; HRMS (ESI): Calcd. for C₁₆H₁₈N₃ [M+H]⁺: 252.14952; found: 252.14922.

3-benzylphenazin-2-amine (C19)

Orange solid, m.p.: 90 - 91 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 7.99 (t, J = 8.6 Hz, 2H), 7.74 (t, J = 5.0 Hz, 1H), 7.63 (t, J = 5.0 Hz, 1H), 7.50 (s, 1H), 7.37 (d, J = 5.0 Hz, 4H), 7.30 – 7.27 (m, 1H), 7.08 (s, 1H), 6.34 (s, 2H), 4.12 (s, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 150.59, 145.25, 143.50, 140.44, 139.65, 138.91, 138.19, 130.17, 129.81, 129.59, 129.11, 129.07, 128.55, 127.60, 126.95, 102.89, 37.12; HRMS (ESI): Calcd. for C₁₉H₁₆N₃ [M+H]⁺: 286.13387; found: 286.13339.

1-benzylphenazin-2-amine (C19')

Orange solid, m.p.: 124 - 125 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (d, J = 10.0 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.88 (d, J = 10.0 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 5.0 Hz, 1H), 7.55 (d, J = 5.0 Hz, 1H), 7.31 (d, J = 7.6 Hz, 2H), 7.17 (t, J = 10.0 Hz, 2H), 7.08 (t, J = 7.2 Hz, 1H), 6.27 (s, 2H), 4.53 (s, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 148.00, 144.52, 143.06, 141.45, 139.91, 130.42, 129.51, 128.99, 128.96, 128.86, 128.45, 127.80, 127.69, 125.89, 111.09, 29.40; HRMS (ESI): Calcd. for C₁₉H₁₆N₃ [M+H]⁺: 286.13387; found: 286.13367.

2-(phenazin-2-ylamino)ethan-1-ol (C20)

Red solid, m.p.: 176.6 – 177.6 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 10.0 Hz, 1H), 7.96 (d, *J* = 5.0 Hz, 1H), 7.86 (d, *J* = 10.0 Hz, 1H), 7.75 (t, *J* = 10.0 Hz, 1H), 7.64 (t, *J* = 10.0 Hz, 1H), 7.54 (dd, *J* = 10.0, 5.0 Hz, 1H), 7.18 (t, *J* = 5.0 Hz, 1H), 6.75 (d, *J* = 2.0 Hz, 1H), 3.70 (d, *J* = 5.0 Hz, 2H), 3.31 (q, *J* = 5.0 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.85, 146.59, 143.55, 140.25, 140.09, 130.47, 130.10, 129.60, 128.31, 127.71, 127.50, 97.84, 59.39, 45.99; HRMS (ESI): Calcd. for C₁₄H₁₄N₃O [M+H]⁺: 240.11314; found: 240.11290.

N-allylphenazin-2-amine (C21)

Orange solid, m.p.: $158 - 159 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 10.0 Hz, 1H), 7.98 (d, *J* = 10.0 Hz, 1H), 7.90 (d, *J* = 10.0 Hz, 1H), 7.77 (t, *J* = 5.0 Hz, 1H), 7.66 (t, *J* = 5.0 Hz, 1H), 7.52 (d, *J* = 10.0 Hz, 1H), 7.25 (s, 1H), 6.75 (s, 1H), 6.01 - 5.95 (m, 1H), 5.35 (d, *J* = 16.0 Hz, 1H), 5.21 (d, *J* = 10.0 Hz, 1H), 3.92 (s, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 150.43, 146.44, 143.58, 140.23, 140.20, 135.04, 130.50, 130.21, 129.64, 128.43, 127.64, 127.42, 116.73, 98.82, 45.58; HRMS (ESI): Calcd. for C₁₅H₁₄N₃ [M+H]⁺: 236.11822; found: 236.11777.

3-(phenazin-2-ylamino)propanenitrile (C22)

Orange solid, m.p.: $107.6 - 108.6 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (d, *J* = 10.0 Hz, 1H), 8.00 (d, *J* = 5.0 Hz, 1H), 7.93 (d, *J* = 10.0 Hz, 1H), 7.79 (t, *J* = 10.0 Hz, 1H), 7.69 (t, *J* = 10.0 Hz, 1H), 7.51 (dd, *J* = 10.0, 5.0 Hz, 1H), 7.33 (t, *J* = 5.0 Hz, 1H), 6.89 (d, *J* = 5.0 Hz, 1H), 3.59 (q, *J* = 5.0 Hz, 2H), 2.90 (t, *J* = 5.0 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 149.76, 146.34, 143.56, 140.41, 140.20, 130.64, 130.48, 129.68, 128.49, 127.95, 127.19, 120.03, 98.99, 39.12, 17.28; HRMS (ESI): Calcd. for C₁₅H₁₃N₄ [M+H]⁺: 249.11347; found: 249.11304.

2-(piperidin-1-yl)phenazine (C23)

Orange solid, m.p.: $139.5 - 140.5 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.10 (d, *J* = 10.0 Hz, 1H), 8.04 (d, *J* = 5.0 Hz, 1H), 7.98 (d, *J* = 10.0 Hz, 1H), 7.91 (dd, *J* = 9.6, 2.6 Hz, 1H), 7.81 (t, *J* = 10.0 Hz, 1H), 7.72 (t, *J* = 5.0 Hz, 1H), 7.17 (s, 1H), 3.49 (t, *J* = 5.0 Hz, 4H), 1.68 - 1.65 (m, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 152.21, 145.72, 143.72, 141.07, 139.96, 130.74, 130.07, 129.69, 128.73, 128.45, 126.20, 105.19, 48.96, 25.50, 24.40; HRMS (ESI): Calcd. for C₁₇H₁₈N₃ [M+H]⁺: 264.14952; found: 264.14929.

2-(pyrrolidin-1-yl)phenazine (C24)

Orange solid, m.p.: 158 - 159 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 10.0 Hz, 1H), 7.98 (d, *J* = 10.0 Hz, 2H), 7.77 (t, *J* = 10.0 Hz, 1H), 7.66 (t, *J* = 5.0 Hz, 1H), 7.60 (dd, *J* = 10.0, 5.0 Hz, 1H), 6.77 (d, *J* = 5.0 Hz, 1H), 3.48 (t, *J* = 5.0 Hz, 4H), 2.03 (t, *J* = 5.0 Hz, 4H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 148.73, 145.83, 143.92, 140.29, 139.45, 130.61, 130.46, 129.69, 128.42, 127.56, 124.72, 100.82, 48.13, 25.52; HRMS (ESI): Calcd. for C₁₆H₁₆N₃ [M+H]⁺: 250.13387; found: 250.13347.

4-(phenazin-2-yl)morpholine (C25)

Orange solid, m.p.: $176.7 - 177.7 \,^{\circ}C$; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.14 (d, *J* = 5.0 Hz, 1H), 8.08 (d, *J* = 5.0 Hz, 1H), 8.05 (d, *J* = 10.0 Hz, 1H), 7.95 (d, *J* = 10.0 Hz, 1H), 7.84 (t, *J* = 10.0 Hz, 1H), 7.77 (t, *J* = 5.0 Hz, 1H), 7.25 (d, *J* = 5.0 Hz, 1H), 3.81 (t, *J* = 5.0 Hz, 4H), 3.46 (t, *J* = 5.0 Hz, 4H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 152.30, 145.37, 143.69, 141.32, 140.13, 130.92, 130.17, 129.73, 128.90, 128.87, 125.51, 105.89, 66.37, 48.01; HRMS (ESI): Calcd. for C₁₆H₁₆N₃O [M+H]⁺: 266.12879; found: 266.12842.

3-(piperidin-1-yl)phenazin-2-amine (C26)

Yellow oil; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 10.0 Hz, 1H), 7.97 (d, *J* = 10.0 Hz, 1H), 7.70 (t, *J* = 5.0 Hz, 1H), 7.63 (t, *J* = 5.0 Hz, 1H), 7.38 (s, 1H), 7.07 (s, 1H), 6.07 (s, 2H), 3.01 (s, 4H), 1.79 - 1.74 (m, 4H), 1.60 (d, *J* = 5.0 Hz, 1H),

1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 149.68, 148.24, 144.00, 142.54, 141.01, 140.46, 129.21, 129.15, 128.49, 127.44, 115.35, 103.08, 52.53, 26.05, 24.27; HRMS (ESI): Calcd. for C₁₇H₁₉N₄ [M+H]⁺: 279.16042; found: 279.16019.

N,*N*-dimethylbenzo[*a*]phenazin-5-amine (C27)

Orange solid, m.p.: 219.6 – 220.6 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 9.28 (d, J = 7.6 Hz, 1H), 8.27 (d, J = 8.2 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.91 – 7.83 (m, 4H), 7.29 (s, 1H), 3.01 (s, 6H); ¹³C NMR (126 MHz, DMSO- d_6) δ 154.51, 144.89, 143.14, 140.63, 140.45, 131.71, 130.68, 130.24, 129.69, 129.38, 128.74, 128.50, 125.82, 125.72, 110.91, 44.43; HRMS (ESI): Calcd. for C₁₈H₁₆N₃ [M+H]⁺: 274.13387; found: 274.13348.

6-methylbenzo[a]phenazin-5-amine (C28)

Orange solid, m.p.: 189.8 – 190.8 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 9.28 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 10.0 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.86 (t, J = 7.6 Hz, 1H), 7.80 (t, J = 5.0 Hz, 2H), 7.70 (t, J = 7.6 Hz, 1H), 6.51 (s, 2H), 2.62 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 145.30, 144.79, 142.91, 139.32, 138.60, 130.26, 130.12, 129.48, 128.46, 128.06, 127.78, 127.42, 125.52, 122.87, 105.80, 11.23; HRMS (ESI): Calcd. for C₁₇H₁₄N₃ [M+H]⁺: 260.11822; found: 260.11798.

N-phenylbenzo[*a*]phenazin-5-amine (C29)

Orange solid, m.p.: 241.8 – 242.8 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 9.35 (d, J = 5.0 Hz, 1H), 8.90 (s, 1H), 8.57 (d, J = 7.8 Hz, 1H), 8.23 (d, J = 5.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.98 - 7.92 (m, 2H), 7.83 (t, J = 5.0 Hz, 1H), 7.77 (t, J = 5.0 Hz, 1H), 7.48 (d, J = 5.0 Hz, 4H), 7.26 (s, 1H), 7.20 - 7.16 (m, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 145.64, 145.16, 143.39, 141.87, 139.99, 139.89, 131.48, 130.55, 130.49, 129.88, 129.67, 129.05, 128.85, 128.45, 128.37, 125.75, 123.96, 123.28, 123.17, 102.51; HRMS (ESI): Calcd. for C₂₂H₁₆N₃ [M+H]⁺: 322.13387; found: 322.13351.

N,N-diphenylphenazin-2-amine (C30)

White solid, m.p.: 156.7-157.7 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.13 (d, J = 10.0 Hz, 1H), 8.05 (d, J = 10.0 Hz, 1H), 8.00 (d, J = 5.0 Hz, 1H), 7.83 (t, J = 10.0 Hz, 1H), 7.78 (t, J = 5.0 Hz, 1H), 7.56 (dd, J = 9.6, 2.6 Hz, 1H), 7.46 (t, J = 5.0 Hz, 4H), 7.28 (d, J = 10.0 Hz, 6H), 7.14 (d, J = 2.6 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 149.72, 146.16, 144.88, 143.69, 141.78, 140.80, 131.23, 130.55, 130.44, 129.77, 129.49, 128.99, 128.04, 126.68, 126.03, 112.35; HRMS (ESI): Calcd. for C₂₄H₁₈N₃ [M+H]⁺: 348.14952; found: 348.14871.

N-(4-methoxyphenyl)phenazin-2-amine (C31)

Orange solid, m.p.: 150 – 151 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.96 (s, 1H), 8.09 (d, J = 10.0 Hz, 1H), 8.02 (d, J = 10.0 Hz, 1H), 7.99 (d, J = 10.0 Hz, 1H), 7.79 (t, J = 10.0 Hz, 1H), 7.70 (t, J = 10.0 Hz 1H), 7.64 (dd, J = 9.6, 2.6 Hz, 1H), 7.33 (d, J = 10.0 Hz, 2H), 7.23 (d, J = 2.6 Hz, 1H), 7.03 (d, J = 10.0 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 156.15, 147.89, 146.06, 143.71, 140.76, 140.47, 133.96, 130.77, 130.73, 129.71, 128.63, 128.25, 127.45, 123.60, 115.24, 101.10, 55.78; HRMS (ESI): Calcd. for C₁₉H₁₆N₃O [M+H]⁺: 302.12879; found: 302.12842.

5-methyl-1,2,3,4-tetrahydropyrido[3,2-*a*]phenazine (C32)

Orange solid, m.p.: $164.7 - 165.7 \,^{\circ}$ C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 10.0 Hz, 1H), 7.99 (d, *J* = 5.0 Hz, 1H), 7.72 (t, *J* = 5.0 Hz, 1H), 7.65 (s, 1H), 7.62 (t, *J* = 5.0 Hz, 1H), 6.42 (s, 1H), 3.41 (s, 2H), 3.19 (t, *J* = 5.0 Hz, 2H), 2.35 (s, 3H), 1.95 - 1.92(m, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 145.89, 143.23, 142.67, 139.83, 139.79, 134.77, 129.68, 129.41, 128.74, 127.12, 126.85, 106.93, 41.43, 21.72, 20.59, 18.85; HRMS (ESI): Calcd. for C₁₆H₁₆N₃ [M+H]⁺: 250.13387; found: 250.13367.

1,2,3,4-tetrahydropyrido[2,3-b]phenazine (C33)

Orange solid, m.p.: $168 - 159 \,^{\circ}$ C; 1 H NMR (500 MHz, DMSO-*d*₆) δ 7.99 (d, *J* = 8.6 Hz, 1H), 7.91 (d, *J* = 8.6 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.67 (s, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.40 (s, 1H), 6.80 (s, 1H), 3.01 (t, *J* = 5.0 Hz, 2H), 1.91 - 1.87 (m, 2H), 1.26 - 1.17 (m, 2H); 13 C NMR (126 MHz, DMSO-*d*₆) δ 148.98, 145.42, 143.45, 140.09, 139.81, 134.30, 129.95, 129.56, 128.27, 127.80, 126.96, 100.35, 41.08, 28.48, 21.11; HRMS (ESI): Calcd. for C₁₅H₁₄N₃ [M+H]⁺: 236.11822; found: 236.11787.

1,2,3,4-tetrahydropyrido[3,2-*a*]phenazine (C33')

Orange solid, m.p.: $149.9 - 150.9 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 - 8.09 (m, 2H), 7.82 (d, J = 9.4 Hz, 1H), 7.72 - 7.69 (m, 1H), 7.64 - 7.59 (m, 1H), 7.11 (dd, J = 9.4, 2.0 Hz, 1H), 4.51 (s, 1H), 3.48 - 3.45 (m, 2H), 3.32 (t, J = 6.4 Hz, 2H), 2.12 - 2.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 144.82, 144.14, 143.32, 140.29, 140.22, 129.72, 129.31, 128.83, 128.32, 127.38, 125.64, 109.40, 41.74, 21.10, 21.00; HRMS (ESI): Calcd. for C₁₅H₁₄N₃ [M+H]⁺: 236.11822; found: 236.11787.

2-methyl-1,2,3,4-tetrahydropyrido[2,3-b]phenazine (C34)

Orange solid, m.p.: 175.6 – 176.6 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.00 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.6 Hz, 1H), 7.72 – 7.69 (m, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.28 (s, 1H), 6.84 (s, 1H), 3.58 - 3.54 (m, 1H), 3.10 – 2.97 (m, 2H), 2.02 - 1.99 (m, 1H), 1.55 - 1.48 (m, 1H), 1.25 (d, J = 6.4 Hz, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 148.95, 145.44, 143.54, 140.17, 139.80, 134.03, 129.94, 129.57, 128.35, 127.61, 127.03, 100.47, 47.09, 29.14, 27.67, 22.46; HRMS (ESI): Calcd.

3-methyl-1,2,3,4-tetrahydropyrido[3,2-*a*]phenazine (C34')

Orange solid, m.p.: $169.8 - 170.8 \,^{\circ}C$; ¹H NMR (500 MHz, DMSO- d_6) δ 8.05 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.6 Hz, 1H), 7.79 - 7.75 (m, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.39 (d, J = 9.4 Hz, 1H), 6.97 (s, 1H), 3.55 - 3.51 (m, 1H), 3.40 - 3.38 (m, 1H), 2.99 - 2.93 (m, 1H), 2.06 (d, J = 9.2 Hz, 1H), 1.60 - 1.54 (m, 1H), 1.28 (d, J = 6.2 Hz, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 146.36, 144.08, 143.06, 140.25, 139.68, 130.28, 129.56, 128.70, 128.36, 127.27, 126.76, 106.63, 46.59, 28.79, 21.88, 20.74; HRMS (ESI): Calcd. for C₁₆H₁₆N₃ [M+H]⁺: 250.13387; found: 250.13341.

2,3,4,5-tetrahydro-1*H*-azepino[2,3-*b*]phenazine (C35)

Orange solid, m.p.: $180 - 181 \,^{\circ}$ C; 1 H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.6 Hz, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.89 (s, 1H), 7.73 - 7.70 (m, 1H), 7.68 - 7.65 (m, 1H), 7.31 (s, 1H), 4.56 (s, 1H), 3.28 (d, J = 5.4 Hz, 2H), 3.07 (t, J = 5.0 Hz, 2H), 1.89 - 1.88 (m, 4H); 13 C NMR (126 MHz, CDCl₃) δ 153.71, 144.16, 143.46, 142.00, 141.84, 140.98, 129.73, 129.57, 129.50, 128.82, 128.30, 111.22, 48.25, 35.70, 30.34, 26.94; HRMS (ESI): Calcd. for C₁₆H₁₆N₃ [M+H]⁺: 250.13387; found: 250.13368.

2,3,4,5-tetrahydro-1*H*-azepino[3,2-*a*]phenazine (C35')

Orange solid, m.p.: 159 - 160 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (dd, J = 15.0, 8.6 Hz, 2H), 7.89 (d, J = 9.2 Hz, 1H), 7.78 - 7.75 (m, 1H), 7.72 - 7.68 (m, 1H), 7.28 (d, J = 3.8 Hz, 1H), 4.37 (s, 1H), 3.71 - 3.69 (m, 2H), 3.43 (t, J = 5.2 Hz, 2H), 2.00 - 1.99 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 150.13, 144.50, 143.07, 140.73, 140.53, 129.62, 129.35, 129.21, 128.37, 128.18, 127.51, 120.48, 47.34, 30.92, 25.59, 25.06; HRMS (ESI): Calcd. for C₁₆H₁₆N₃ [M+H]⁺: 250.13387; found: 250.13345.

N,N-diethyl-7,8-dimethylphenazin-2-amine (C36)

Orange solid, m.p.: 270.4 - 271.4 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, J = 9.6 Hz, 1H), 7.81 (s, 1H), 7.74 (s, 1H), 7.65 (dd, J = 9.6, 2.6 Hz, 1H), 6.90 (d, J = 2.6 Hz, 1H), 3.56 (q, J = 7.0 Hz, 4H), 2.46 (d, J = 6.6 Hz, 6H), 1.21 (t, J = 7.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 148.54, 145.54, 143.15, 141.35, 139.84, 138.54, 138.24, 130.37, 128.08, 126.98, 122.99, 101.33, 44.66, 20.62, 20.31, 13.08; HRMS (ESI): Calcd. for C₁₈H₂₂N₃ [M+H]⁺: 280.18082; found: 280.18024.

7,8-dimethyl-N-phenylphenazin-2-amine (C37)

Orange solid, m.p.: 235 – 236 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.06 (s, 1H), 7.99 (d, J = 9.4 Hz, 1H), 7.83 (s, 1H), 7.76 (s, 1H), 7.63 (d, J = 11.2 Hz, 1H), 7.47 (s, 1H), 7.42 - 7.36 (m, 4H), 7.06 (t, J = 7.0 Hz, 1H), 2.45 (s, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 145.76, 145.21, 142.95, 141.68, 140.42, 139.86, 139.30, 130.58, 129.91, 128.03, 127.19, 126.62, 122.88, 120.18, 103.64, 20.60, 20.36; HRMS (ESI): Calcd. for C₂₀H₁₈N₃ [M+H]⁺: 300.14952; found: 300.14926.

2,3-dichloro-7-(piperidin-1-yl)phenazine (C38)

Orange solid, m.p.: 209 - 210 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 8.05 (s, 1H), 7.83 (d, J = 9.6 Hz, 1H), 7.59 (dd, J = 9.8, 2.8 Hz, 1H), 7.03 (s, 1H), 3.46 (t, J = 5.0 Hz, 4H), 1.72 - 1.70 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 152.35, 145.91, 142.13, 140.48, 139.45, 134.38, 131.73, 129.91, 129.65, 128.69, 125.76, 105.12, 49.13, 25.44, 24.33; HRMS (ESI): Calcd. for C₁₇H₁₆Cl₂N₃ [M+H]⁺: 332.07158; found: 332.07089.

7,8-dichloro-*N*,*N*-diethylphenazin-2-amine (C39)

Orange solid, m.p.: $152.1 - 153.1 \,^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 8.10 (s, 1H), 7.92 (d, J = 9.7 Hz, 1H), 7.52 (dd, J = 9.8, 2.8 Hz, 1H), 6.92 (d, J = 2.8 Hz, 1H), 3.56 (d, J = 7.2 Hz, 4H), 1.30 (t, J = 7.1 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 149.31, 146.28, 142.54, 139.97, 139.07, 134.46, 131.06, 130.55, 129.76, 128.52, 123.51, 100.95, 45.06, 12.79; HRMS (ESI): Calcd. for C₁₆H₁₆Cl₂N₃ [M+H]⁺: 320.07158; found: 320.07101.

7,8-dibromo-*N*,*N*-diethylphenazin-2-amine (C40)

NEt₂ Br Br

Orange solid, m.p.: 158 – 159 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.43 (s, 1H), 8.34 (s, 1H), 7.93 (d, *J* = 10.0 Hz, 1H), 7.78 (dd, *J* = 10.0, 5.0 Hz, 1H), 6.85 (d, *J* = 5.0 Hz, 1H), 3.59 (q, *J* = 5.0 Hz, 4H), 1.22 (t, *J* = 10.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 149.80, 146.45, 143.08, 140.03, 139.41, 133.45, 132.16, 130.73, 126.01, 125.24, 122.01, 100.30, 44.89, 13.06; HRMS (ESI): Calcd. for C₁₆H₁₆Br₂N₃ [M+H]⁺: 407.97055; found: 407.96982. 7,8-dichloro-*N*,3-dimethylphenazin-2-amine (**C41**)

Orange solid, m.p.: 282.3 – 283.3 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.28 (s, 1H), 8.19 (s, 1H), 7.74 (s, 1H), 6.72 (q, J = 4.8 Hz, 1H), 6.67 (s, 1H), 2.94 (d, J = 5.0 Hz, 3H), 2.40 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.71, 146.18, 141.92, 140.78, 138.70, 136.80, 132.47, 130.02, 129.44, 128.82, 128.64, 97.55, 30.49, 18.81; HRMS (ESI): Calcd. for C₁₄H₁₂Cl₂N₃ [M+H]⁺: 292.04028; found: 292.03967.

1-chloro-N,7,8-trimethylphenazin-2-amine (C42)

Orange solid, m.p.: 228 – 229 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.76 (d, J = 10.4 Hz, 2H), 6.95 (s, 1H), 5.00 (d, J = 5.0 Hz, 1H), 3.02 (d, J = 5.0 Hz, 3H), 2.46 (d, J = 4.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.51, 144.15,

142.95, 141.48, 140.47, 139.11, 138.37, 128.53, 127.88, 127.08, 101.29, 30.46, 20.69, 20.42; HRMS (ESI): Calcd. for $C_{15}H_{15}ClN_3$ [M+H]⁺: 272.09490; found: 272.09464.

N,N-diethyl-8-methylphenazin-2-amine (C43)

Red oil; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 9.0 Hz, 2H), 7.75 (s, 1H), 7.44 - 7.38 (m, 2H), 6.96 (s, 1H), 3.50 (q, J = 7.0 Hz, 4H), 2.53 (s, 3H), 1.24 (t, J = 7.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 148.79, 145.67, 143.75, 140.81, 139.31, 138.81, 130.28, 130.09, 128.86, 126.27, 122.13, 101.04, 44.89, 22.17, 12.74; HRMS (ESI): Calcd. for C₁₇H₂₀N₃ [M+H]⁺: 266.16517; found: 266.16489.

2-chloro-8-(piperidin-1-yl)phenazine (C44)

Orange solid, m.p.: 151-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.94 (d, J = 9.8 Hz, 1H), 7.64 (dd, J = 9.8, 2.8 Hz, 1H), 7.54 (dd, J = 9.2, 2.2 Hz, 1H), 7.16 (d, J = 2.8 Hz, 1H), 3.49 – 3.46 (m, 4H), 1.75 - 1.69 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 152.50, 145.99, 143.75, 140.16, 139.63, 135.92, 130.75, 130.03, 129.00, 127.02, 125.45, 105.55, 49.29, 25.46, 24.36; HRMS (ESI): Calcd. for C₁₇H₁₇ClN₃ [M+H]⁺: 298.11055; found: 298.11014.

N,N-diethyl-8-fluorophenazin-2-amine (C45)

Orange solid, m.p.: 126 - 127 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.12 (dd, J = 5.0, 10.0 Hz, 1H), 7.96 (d, J = 10.0 Hz, 1H), 7.71 (d, J = 10.0 Hz, 1H), 7.66 (d, J = 10.0 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 6.88 (s, 1H), 3.58 (q, J = 6.8 Hz, 4H), 1.22 (t, J = 7.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO- d_6) δ 162.94 (d, J = 250.8 Hz) , 149.53, 146.20, 144.37 (d, J = 12.6

Hz), 138.87, 137.82, 132.39 (d, J = 10.2 Hz), 130.78, 123.82, 118.60 (d, J = 27.8 Hz), 110.61 (d, J = 20.2 Hz), 100.34, 44.79, 13.04; ¹⁹F NMR (471 MHz, CDCl₃) δ -107.63.HRMS (ESI): Calcd. for C₁₆H₁₇FN₃ [M+H]⁺: 270.14010; found: 270.13977.

8-chloro-N,N-diethylphenazin-2-amine (C46)

Orange solid, m.p.: 127-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 5.8, 3.4 Hz, 2H), 7.86 (d, J = 9.8 Hz, 1H), 7.43 (t, J = 2.6 Hz, 1H), 7.40 (t, J = 4.0 Hz, 1H), 6.86 (d, J = 2.8 Hz, 1H), 3.47 (q, J = 7.2 Hz, 4H), 1.22 (t, J = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 149.19, 146.03, 143.73, 139.37, 138.84, 135.84, 130.65, 130.46, 128.11, 126.53, 122.87, 100.77, 44.95, 12.74; HRMS (ESI): Calcd. for C₁₆H₁₇ClN₃ [M+H]⁺: 286.11055; found: 286.11002.

8-bromo-N,N-diethylphenazin-2-amine (C47)

Orange solid, m.p.: 113.8-114.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.93 (t, J = 9.0 Hz, 2H), 7.61 (d, J = 10.8 Hz, 1H), 7.50 (d, J = 12.2 Hz, 1H), 6.95 (s, 1H), 3.55 (q, J = 7.2 Hz, 4H), 1.29 (t, J = 7.2 Hz, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 149.23, 146.10, 144.19, 139.50, 139.09, 130.72, 130.58, 130.52, 130.16, 124.33, 123.03, 100.91, 45.00, 12.78; HRMS (ESI): Calcd. for C₁₆H₁₇BrN₃ [M+H]⁺: 330.06003; found: 330.05939.

N,N-diethyl-8-methoxyphenazin-2-amine (C48)

Orange solid, m.p.: $89.9 - 90.9 \circ C$; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (dd, J = 9.4, 4.6 Hz, 2H), 7.61 (dd, J = 9.6, 3.0 Hz, 1H), 7.33 (dd, J = 9.4, 2.8 Hz, 1H), 7.27 (d, J = 2.8 Hz, 1H), 6.88 (s, 1H), 3.96 (s, 3H), 3.57 (q, J = 7.0 Hz, 4H), 1.22 (t, J = 7.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.02, 149.10, 145.89, 145.48, 137.34, 137.23, 130.88, 130.59, 122.36, 122.09, 104.71, 100.94, 56.19, 44.71, 13.06; HRMS (ESI): Calcd. for C₁₇H₂₀N₃O [M+H]⁺: 282.16009; found: 282.15991.

N,N-diethyl-7-(trifluoromethyl)phenazin-2-amine (C49)

Orange solid, m.p.: 120.7 -121.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.40 (s, 1H), 8.09 (d, J = 9.0 Hz, 1H), 7.99 (d, J = 9.8 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 9.6 Hz, 1H), 6.99 (s, 1H), 3.57 (q, J = 7.0 Hz, 4H), 1.31 (t, J = 7.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 149.61, 146.93, 144.60, 140.42, 138.97, 130.79, 129.43, 128.20 (d, J = 32.8 Hz), 127.82 (d, J = 4.6 Hz), 125.19 (d, J = 3.2 Hz), 124.06 (d, J = 272.2 Hz), 123.54, 100.82, 45.08, 12.75; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.61; HRMS (ESI): Calcd. for C₁₇H₁₇F₃N₃ [M+H]⁺: 320.13691; found: 320.13669.

N,N-diethyl-8-(trifluoromethyl)phenazin-2-amine (C49')

Orange solid, m.p.: 111.1 - 112.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 8.21 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 9.8 Hz, 1H), 7.73 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 10.6 Hz, 1H), 7.03 (s, 1H), 3.60 (q, J = 7.0 Hz, 4H), 1.33 (t, J = 7.0 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 149.30, 146.71, 142.66, 141.10, 140.69, 130.86, 130.62, 126.47 (d, J = 5.0 Hz), 124.10, 122.84 – 121.77 (m), 100.93, 45.08, 12.77; ¹⁹F NMR (471 MHz, CDCl₃) δ -63.04; HRMS (ESI): Calcd. for C₁₇H₁₇F₃N₃ [M+H]⁺: 320.13691; found: 320.13638.

7-(diethylamino)phenazine-2-carbonitrile (C50)

Red solid, m.p.: 183 - 184 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.96 (dd, J = 17.0, 9.4 Hz, 2H), 7.71 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 9.8 Hz, 1H), 6.93 (s, 1H), 3.56 (q, J = 7.2 Hz, 4H), 1.29 (t, J = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 150.12, 147.05, 144.89, 140.87, 138.90, 136.16, 131.08, 129.71, 129.59, 124.00, 118.90, 109.37, 100.61, 45.21, 12.77; HRMS (ESI): Calcd. for C₁₇H₁₇N₄ [M+H]⁺: 277.14477; found: 277.14462.

8-(diethylamino)phenazine-2-carbonitrile (C50')

Red solid, m.p.: 125 - 126 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.56 (d, J = 1.8 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 8.02 (d, J = 9.8 Hz, 1H), 7.89 - 7.88 (m, 1H), 7.87 (d, J = 2.2 Hz, 1H), 6.94 (d, J = 2.8 Hz, 1H), 3.62 (q, J = 7.0 Hz, 4H), 1.24 (t, J = 10.0 Hz, 6H); ¹³C NMR (126 MHz, DMSO- d_6) δ 149.82, 146.87, 142.64, 141.13, 140.83, 135.11, 131.46, 130.76, 127.05, 126.16, 119.10, 112.70, 100.13, 44.91, 13.04; HRMS (ESI): Calcd. for C₁₇H₁₇N₄ [M+H]⁺: 277.14477; found: 277.14456.

Reference

- Westerhaus FA, Jagadeesh RV, Wienhoefer G, Pohl MM, Radnik J, Surkus AE, Rabeah J, Junge K, Junge H, Nielsen M, Brueckner A, Beller M. *Nat Chem*, 2013, 5: 537–543; (b) Tang C, Surkus AE, Chen F, Pohl MM, Agostini G, Schneider M, Junge H, Beller M. *Angew Chem Int Ed*, 2017, 56: 16616–16620
- (2) Murakami M, Ohkubo K, Fukuzumi S. Chem Eur J, 2010, 16: 7820–7832

NMR spectra of the obtained compounds

¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of C1

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C1

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of **C2**

fl (ppm)

¹H-NMR (500 MHz, DMSO- d_6) spectrum of C3

23

¹H-NMR (500 MHz, DMSO- d_6) spectrum of C4

¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of C5

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C5

¹H-NMR (500 MHz, DMSO- d_6) spectrum of C6

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C6

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C7

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of **C9**

¹⁹F-NMR (471 MHz, DMSO- d_6) spectrum of C10

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 fl (ppm)

¹³C-NMR (101 MHz, CDCl₃) spectrum of C11

¹³C-NMR (126 MHz, CDCl₃) spectrum of C12

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C13

¹H-NMR (500 MHz, CDCl₃) spectrum of C14

¹³C-NMR (126 MHz, CDCl₃) spectrum of C14

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C15

¹H-NMR (500 MHz, DMSO- d_6) spectrum of C15

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C16

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C17

40

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C20

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C21

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C23

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C24

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C28

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C29

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C30 131.23 130.55 130.55 130.44 129.77 129.49 128.99 128.04 126.68 126.03 149.72 146.16 144.88 144.88 141.78 -112.35 90 80 fl (ppm) ó

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C32

¹³C-NMR (126 MHz, CDCl₃) spectrum of C35

¹³C-NMR (126 MHz, DMSO-*d*₆) spectrum of C37

¹³C-NMR (126 MHz, CDCl₃) spectrum of C39

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C41

¹³C-NMR (101 MHz, CDCl₃) spectrum of C43

¹H-NMR (400 MHz, CDCl₃) spectrum of C44

¹³C-NMR (101 MHz, CDCl₃) spectrum of C44 25.46 49.29 152.50 145.99 145.99 140.16 139.63 135.92 130.75 130.75 130.03 127.02 127.02 125.45 105.55 pelletistikike (http://doingletic.com/ ala se a la se 90 80 fl (ppm)

¹H-NMR (400 MHz, CDCl₃) spectrum of C46

¹³C-NMR (101 MHz, CDCl₃) spectrum of C47

¹³C-NMR (101 MHz, CDCl₃) spectrum of C50

¹H-NMR (500 MHz, DMSO- d_6) spectrum of C13-1

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C13-1

¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of C52

¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of C53

¹³C-NMR (126 MHz, DMSO- d_6) spectrum of C53

8. HR-MS spectra of the obtained compounds

11#15 RT: 0.17 AV: 1 NL: 1.78E8 T: FTMS + c APCI corona Full ms [50.0000-750.0000]

N

and the second second

9. DFT calculation

All calculations were carried out using the Gaussian 16 C.01 program package1. The geometry optimizations were performed using hybrid B3LYP exchange correlation2-4, together with the Grimme D3BJ correction term to the electronic energy5,6. The 6-311G** basis set7-9 was used for all atoms. Vibrational frequency calculations were performed to characterize the nature of each stationary point and to make the zero-point energy (ZPE) corrections. A tight convergence (10-12 au) criterion was employed, and the solvent hexafluoropropanol (HFIP) (ε = 5.10) was considered using the SMD10 continuum solvent model (UFF radii).

References

1. Frisch, M. J., et al. Gaussian 16; Gaussian, Inc., Wallingford, CT, 2016.

- 2. A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.
- 3. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789.
- 4. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 5. S. Grimme, J. Anthony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 6. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.

7. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654–3665.

8. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.

9. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 1973, 28, 213–222.

10. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.

	C1-2'	C1-2
w%b	3.99%	14.50%
Δ E/kcal/mol	0.00	-34.74

Table S2. Calculated energies, Mulliken analysis, and WFRT analysis ^a

a. ref [Y. Wang, J. Comput. Chem. 2021, 42, 412-417; Y. Wang, Phys. Chem. Chem. Phys., 2021, 23, 2331-2348]

b. projection-weighted symmetric orthogonalization (PWSO)%

The calculation for the weights of resonance forms was performed by wave-functionbased resonance theory (WFRT) with PWSO approach, the results show that C1-2 is more stable than C1-2' ($\Delta E = -34.74$ kcal/mol), and C1-2 has a significantly higher distribution ratio (14.50%) than that of C1-2' (3.99%).

Table S3. Cartesian coordination and absolute energy for C1-2 and C1-2'.

E +ZPE = -786.7293113 a.u

С	-3.99999900	-0.99375400	0.84595200
С	-2.99681300	-0.55093700	-0.02165000
С	-3.17258300	0.62047100	-0.79098600
С	-4.35758900	1.35033500	-0.60083000
С	-5.33504300	0.91494100	0.27837100
С	-5.16919500	-0.26855600	1.00242200
Н	-3.83637500	-1.90540200	1.40955600
Н	-4.50687100	2.25912900	-1.17361300
Н	-6.24255600	1.49573400	0.39254200
Н	-5.93670300	-0.61159500	1.68397300
Ν	-1.82880000	-1.34866200	-0.17030200
Н	-1.98546800	-2.33582800	-0.33593500
С	-0.53877200	-0.98049800	0.03583600
С	0.49897000	-1.91393100	-0.22736200
С	-0.18048200	0.31004300	0.50260000
С	1.81217400	-1.57797600	-0.05742300
Н	0.24109900	-2.90846400	-0.57457400
С	1.13331500	0.64450800	0.68195900
Н	-0.95422900	1.03065000	0.72189800
С	2.18894100	-0.27816200	0.40376100
Н	2.56694400	-2.31750800	-0.27569300
Н	1.36324400	1.63840100	1.03474600
Ν	-2.19646900	1.06484900	-1.66747600
Н	-1.61424600	0.35449200	-2.08785100
Н	-2.50445600	1.75199100	-2.34036400
Ν	3.48858400	0.06217600	0.57349200
С	4.58116600	-0.82807300	0.14254100
Н	5.48113400	-0.48511900	0.65015700
Н	4.38326400	-1.83623100	0.51084900
С	4.79956700	-0.82803200	-1.37025900
Н	3.91510000	-1.16838700	-1.91167600
Н	5.05536400	0.16918400	-1.73154100
Н	5.62564500	-1.49981600	-1.61638700
С	3.87706100	1.38044300	1.10287200
Н	4.84078000	1.24976500	1.59472200
Н	3.16867900	1.66243700	1.88132400
С	3.97381700	2.46206700	0.02743500
Н	4.75992000	2.23505000	-0.69484800
Н	3.03298600	2.57644100	-0.51455100
Н	4.21633800	3.41919500	0.49584400