Electronic Supplementary Information

Catalytic aerobic oxidation of lignin-based vanillyl alcohol in

base-free condition over efficient and reusable LaFeO3

perovskite for vanillin production

Yaohong Zhou, ^a Wanming Xiong, ^{a, *} Yujing Jin, ^b Peng Wang, ^b Weiqi Wei, ^c Jiliang

Ma, ^d Xiaohua Zhang ^{a, *}

^a College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China

^b College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China

^c Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

^dLiaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, People's Republic of China

^{*}Corresponding author.

E-mail address: xiongwm10@163.com, xiaohuazhang0417@163.com

S1 Bio-oil characterization

Gas chromatograph (GC) using flame ionization detector (FID) equipped with a DB-5 capillary column, which determines the yield of vanillin *via* an external standard method through injecting the corresponding authentic compound. The GC detection conditions: Helium (99.99%) was used as the carrier gas at a flow rate was 1.20 mL min^{-1} . The injector, detector and interface temperature were all set to 260°C. All the samples were filtered through a 0.45 µm syringe-driven filter before injection, and the injection volume was 1 µL. The sample injection was performed at a split ratio of 1:1, and the oven temperature was programmed from 60°C (kept for 2 min) to 260°C (kept for 2 min) with a 20°C min⁻¹ heating rate.

S2 Catalysts characterization method

The XRD patterns were recorded in the 2 θ range of 10–80° with a scanning size of 4°/min and counting time on a PuXi XRD-3X using Cu Ka (λ =1.54056 Å) radiation under the operation of 40 kV and 30 mA. Crystal phases were identified by comparison with reference patterns from the JCPDS database. FTIR analysis by using a Spectrum Two transform infrared spectrometer (PerkinElmer). The sample and KBr was ground at a mass ratio of 1:100. Spectra was recorded in the wavenumber range of 500 to 4000 cm⁻¹ with a resolution of 4 cm⁻¹, and each sample was performed for 16 scans. The appearance and internal structure of all samples was obtained using a scanning electron microscope (SEM). X-ray photoelectron spectrometer (XPS) spectra was obtained using a PerkinElmer PHI 1600 ESCA system with Mg K α 1253.6 eV radiation as the excitation source. The spectra was collected at ambient temperature with an ultra-high vacuum. The binding energy of C1s (284.6 eV) was used as internal reference. The core levels of La 3d, O 1s, and Fe 2p species were recorded and their relative intensities were determined from the integration

of the Gaussian deconvolution signals by curve fitting. Raman scattering spectra was observed by using a microprobed Raman system with a back scattering configuration. The laser beam exited at 532 nm was focused to 2 μ m in spot size on a sample surface. The scattered light was analyzed by a triple grating monochromator with a charge coupled detector. The temperature was controlled within 0.1 K. Thermogravimetric analysis under air atmosphere (air-TG) was performed using Perkin Elmer TGA-4000. In each experiment, the thermal stability and the amount of carbon deposited on surface of catalysts were determined by testing 3~5 mg sample in platinum crucible under air atmosphere (99.999%, flow rate of 19.8 mL min⁻¹) at a constant heating rate of 10°C min⁻¹, and first heated from room temperature to 105°C and remained for 15 min to remove absorbed moisture during operation. Afterwards, the sample was heated again from 105°C to 700°C at the same heating rate. The weight loss curves and differential curves were drawn automatically by the system software through the computer.

Fig. S1. Thermal stability of LaFeO₃ under air atmosphere.

Catalyst dosage (g)	Retention time (min)	Area (%)	Main compounds	Matching index
	13.491	42.76	Vanillin	96
0	11 946	48.19	Benzeneacetic acid, 4-hydroxy-3-methoxy-,	
	14.840		methyl ester	76
	16.127	3.73	Vanillic acid	43
	13.491	44.66	Vanillin	96
0.1	14.843	42.73	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	70
	16.128	7.68	Vanillic acid	43
0.2	13.491	36.19	Vanillin	96
	14.845	46.47	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	64
	16.127	11.45	Vanillic acid	43
	12.108	12.65	Vanillin	96
0.3	13.555	84.43	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	58
	14.943	2.31	Vanillic acid	46
	12.109	10.69	Vanillin	96
0.4	13.556	86.24	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	52
	14.943	2.31	Vanillic acid	43
0.5	13.491	28.77	Vanillin	96
	14.847	59.05	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	76
	16.127	8.64	Vanillic acid	43

Table S1 Main compounds (relative peak area-%) identified in bio-oil by GC–MS $\,$

Oxygen pressure (MPa)	Retention time (min)	Area (%)	Main compounds	Matching index
	14.144	31.66	4-Hydroxy-3-methoxybenzyl alcohol	98
0	14.848	56.9	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	64
	13.505	8.47	Vanillin	96
0.4	14.854	86.57	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	49
	16.13	2.25	Vanillic acid	43
	13.491	26.82	Vanillin	96
0.8	14.849	64.19	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	52
	16.128	7.57	Vanillic acid	43
	13.491	44.66	Vanillin	96
1.0	14.843	42.73	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	70
	16.128	7.68	Vanillic acid	43
1.2	13.49	35.71	Vanillin	96
	14.848	52.54	Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester	64
	16.127	7.74	Vanillic acid	43
	13.49	45.97	Vanillin	96
1.6	14.843	6.53	4-Hydroxy-3-methoxybenzyl alcohol, di(propyl) ether	46
	16.127	13.14	Vanillic acid	43

Table S2 Main compounds (relative peak area-%) identified in bio-oil by GC–MS $\,$

Conv. Yield Solvents Conditions Refs. Catalysts Year (%) (%)Oxygen, 27°C, 30 TiO₂ P25 Degussa (ca. min, three external 80% anatase and 20% 40 4 15W/10 Philips rutile) fluorescent lamps 2012 H_2O 1 Air, 27°C, 1 h, three TiO₂ Merck (100% external 15W/10 19 3 Philips fluorescent anatase) lamps Manganese-doped 2013 2 Acetonitrile Air, 140°C, 2 h 51 62 cobalt mixed oxide NaOH, 80 78 Isopropanol 2013 Co₃O₄ nanoparticles Air, 80°C, 6 h. 3 Isopropanol 25 22 nCo-MO 7 Acetonitrile Air, 120°C, 2 h 0.4 4 2014 Mixed metal cobalt NaOH H₂O₂, 85°C, 5 h 99 5 2015 67 titanium oxide 94 CrCl₃ 57 H₂O₂, microwave H_2O MnCl₂ irradiation, 80°C, 10 90 44 6 2015 min $CoCl_2$ 48.1 16 Pt/CuClP tert-Butanol Air, 170, 10 h 32 25 7 2015 Mesoporous CuZrO3 Acetonitrile Air, 120°C, 2 h 91 69 8 2017 nanoparticles Cobalt-supported 2017 50 9 Acetonitrile 85°C, H₂O₂, 1 h cobalt nanocomposite 10 W UV-LED 2017 5.0%N-CNT/ZnO H_2O irradiation, Ar, 11 10 46 20°C, 20 min Air, 120°C, H₂O₂, 15 Co_3O_4 H₂O 38 19 11 2017 min Nitrogen-doped DMSO 31 48 2017 reduced graphene Air, 120°C, 12 h 12 DMF 38 oxide/Mn₃O₄ 41 Fe₂O₃/Al-SBA-15 99 87 2018 Acetonitrile 50°C, H₂O₂, 2 h 13 9 Al-SBA-15 10 Cobalt nanoparticleembedded carbon Isopropanol Air, 140°C, 94 46 14 2018 nanocomposite ZrO_2 30 29 O₂, 140°C, 5 h 15 Acetonitrile 2019 39 CeO_2 40

 Table S3 Comparison of our work and previous studies (mostly) in recent 10 years for the

 preparation of vanillin from vanillyl alcohol

CeO ₂ +ZrO ₂			55	53		
CuO/MgFe ₂ O ₄	Acetonitrile	H ₂ O ₂ , 90°C, 5 h	53	25	16	2019
Fe ₃ [Fe(CN) ₆] ₂	Isopropanol	O ₂ , 100°C, 2.5 h	70	31	17	2019
Au–Pd@HT-PO4 ³⁻	1,4-dioxane	Air, 30°C, 24 h, visible-light irradiation, 300 W Xe arc lamp	53	26	18	2019
Eugenol oxidase- agarose	Glycine- NaOH, acetone	H ₂ O ₂ , 30°C, 30 h	86	30	19	2019
TEMPO@SiO ₂ /CuBr	Isopropanol	O ₂ , 30°C, 30 min	96	93	20	2020
Pd/C	p-Xylene	O ₂ , 120°C, 24 h	72	72	21	2020
Nanopetal copper hydroxide nitrate	Isopropanol	Air, 120°C, 2,2,6,6- tetramethylpiperidin- oxyl (TEMPO), 2 h	99	99	22	2021
Pd/ZrO ₂	Isopropanol	O ₂ , 120°C, 4 h	69	60	23	2021
Nanostructured Bi ₂ WO ₆	1,4-dioxane	O ₂ , room temperature, 16 h, 300 W xenon light source (λ >420 nm)	43	39	24	2021
Au/ZnO-MZ			85	85		
Au/ZnO-NH ₃	. Valana	0 120°C 24 h	34	34	25	2022
Au/ZnO-NaOH	p-Xylene	O ₂ , 120°C, 24 h	22	22	23	2022
ZnO			0	0		
	Water		40	38		
	Acetonitrile		35	32		
NNS amine ligand	MeOH	Air, TEMPO, 40°C, 6 h	32	31		
(Schiff base ligand) with	EtOH		32	30	26	2022
copper(II) chloride mononuclear complex	THF		32	30		
	EtOAc		20	17		
	Acetone		16	14		
LaFeO ₃	EtOAc	O ₂ , 180°C, 2 h	100	33	This work	2022

Catalyst	<i>BE</i> /eV	<i>BE</i> /eV	<i>BE</i> /eV	<i>BE</i> /eV
Fresh	834.3 (31.9%)	837.9 (25.1%)	851.0 (27.7%)	854.9 (15.3%)
First run	834.8 (32.6%)	838.5 (25.2%)	851.2 (25.9%)	855.1 (16.3%)
Fourth run	834.6 (32.4%)	838.6 (26.6%)	852.5 (22.5%)	856.4 (18.5%)
Regenerated	833.9 (33.7%)	837.6 (25.3%)	850.5 (23.4%)	854.4 (17.6%)

Table S4 The proportion (%) of La valence states of fresh, spent and regenerated $LaFeO_3$ determined by La 3d spectra

Catalyst	BE/eV	<i>BE</i> /eV	BE/eV	<i>BE</i> /eV
Fresh	710.0 (33.7%)	711.4 (32.2%)	723.4 (17.4%)	725.2 (16.7%)
First run	710.4 (34.5%)	712.1 (30.6%)	724.1 (19.1%)	724.9 (15.8%)
Fourth run	-	-	-	-
Regenerated	710.0 (25.2%)	711.0 (36.5%)	723.4 (17.7%)	724.4 (20.6%)

Table S5 The proportion (%) of Fe valence states of fresh, spent and regenerated $LaFeO_3$ determined

by Fe 2p spectra

 Table S6 The proportion (%) of oxygen species of fresh, spent and regenerated LaFeO3 determined

by O 1s spectra

Catalyst -	$O_{\rm H}$	O _{ads}	Olatt
Catalyst -	<i>BE</i> /eV	<i>BE</i> /eV	<i>BE</i> /eV
Fresh	-	531.1 (54.2%)	529.1 (45.8%)
First run	533.0 (74.8%)	531.5 (14.8%)	529.7 (10.4%)
Fourth run	533.1 (82.6%)	531.4 (13.2%)	530.0 (4.2%)
Regenerated	-	531.1 (48.1%)	528.9 (51.9)

Supplementary references

- V. Augugliaro, G. Camera-Roda, V. Loddo, G. Palmisano, L. Palmisano, F. Parrino and M.
 A. Puma, *Applied Catalysis B: Environmental*, 2012, **111-112**, 555-561.
- 2. A. Jha, K. R. Patil and C. V. Rode, *ChemPlusChem*, 2013, **78**, 1384-1392.
- 3. A. Jha and C. V. Rode, *New Journal of Chemistry*, 2013, **37**, 2669-2674.
- A. Jha, D. Mhamane, A. Suryawanshi, S. M. Joshi, P. Shaikh, N. Biradar, S. Ogale and C.
 V. Rode, *Catalysis Science & Technology*, 2014, 4, 1771-1778.
- M. Shilpy, M. A. Ehsan, T. H. Ali, S. B. Abd Hamid and M. E. Ali, *RSC Advances*, 2015,
 5, 79644-79653.
- 6. J. Pan, J. Fu and X. Lu, *Energy and Fuels*, 2015, **29**, 4503-4509.
- C. S. Hinde, D. Ansovini, P. P. Wells, G. Collins, S. V. Aswegen, J. D. Holmes, T. S. A. Hor and R. Raja, ACS Catalysis, 2015, 5, 3807-3816.
- 8. S. Saha and S. B. A. Hamid, *RSC Advances*, 2017, 7, 9914-9925.
- 9. K.-Y. A. Lin, H.-K. Lai and Z.-Y. Chen, *Journal of the Taiwan Institute of Chemical Engineers*, 2017, **78**, 337-343.

S10/S12

- M. J. Sampaio, A. Benyounes, P. Serp, J. L. Faria and C. G. Silva, *Applied Catalysis A: General*, 2018, **551**, 71-78.
- 11. R. Behling, G. Chatel and S. Valange, *Ultrasonics Sonochemistry*, 2017, **36**, 27-35.
- 12. Z. Yuan, S. Chen and B. Liu, *Journal of Materials Science*, 2017, **52**, 164-172.
- F. Saberi, D. Rodríguez-Padrón, E. Doustkhah, S. Ostovar, A. Franco, H. R. Shaterian and R. Luque, *Catalysis Communications*, 2019, **118**, 65-69.
- H.-K. Lai, Y.-Z. Chou, M.-H. Lee and K.-Y. A. Lin, *Chemical Engineering Journal*, 2018, 332, 717-726.
- P. R. G. N. Reddy, B. G. Rao, T. V. Rao and B. M. Reddy, *Catalysis Letters*, 2019, 149, 533-543.
- B. Rahmanivahid, M. Pinilla-de Dios, M. Haghighi and R. Luque, *Molecules*, 2019, 24, 2597.
- M.-W. Zheng, H.-K. Lai and K.-Y. A. Lin, *Waste and Biomass Valorization*, 2019, **10**, 2933-2942.
- M. Wu, J.-H. Pang, P.-P. Song, J.-J. Peng, F. Xu, Q. Li and X.-M. Zhang, *New Journal of Chemistry*, 2019, 43, 1964-1971.
- M. García-Bofill, P. W. Sutton, M. Guillén and G. Álvaro, *Applied Catalysis A: General*, 2019, **582**, 117117.
- M.-W. Zheng, K.-Y. A. Lin and C.-H. Lin, *Waste and Biomass Valorization*, 2020, **11**, 6917-6928.
- 21. W. Sun, S. Wu, Y. Lu, Y. Wang, Q. Cao and W. Fang, ACS Catalysis, 2020, 10, 7699-7709.
- 22. B.-C. Li, N. N. Huy, J.-Y. Lin, S. Phattarapattamawong, G. Lisak, H. Wang and K.-Y. A.

S11/S12

Lin, Journal of Environmental Chemical Engineering, 2021, 9, 106092.

- 23. W. Sun, P. Lin, Q. Tang, F. Jing, Q. Cao and W. Fang, *Catalysis Science & Technology*, 2021, **11**, 7268-7277.
- 24. A. Kumar and R. Srivastava, ACS Applied Nano Materials, 2021, 4, 9080-9093.
- P. Lin, R. Shang, Q. Zhang, B. Gu, Q. Tang, F. Jing, Q. Cao and W. Fang, *Catalysis Science* & *Technology*, 2022, **12**, 4613-4623.
- 26. N. C. Jana, S. Sethi, R. Saha and B. Bagh, *Green Chemistry*, 2022, 24, 2542-2556.