Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Activation of biomass with volatilized KOH

Chao Li^{a,} Yuannian Li^a, Yuewen Shao^a, Lijun Zhang^a, Shu Zhang^b, Shuang Wang^c, Bin

Li^c, Zhenhua Cui^d, Yonggui Tang^d, Xun Hu^{a,*}

^aSchool of Material Science and Engineering, University of Jinan, Jinan, 250022, P. R.

China

^bJoint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P.

R. China

^cSchool of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, P.

R. China

^dShandong Basan Graphite New Material, Zibo, 255000, P. R. China

Corresponding authors: Xun.Hu@outlook.com (X. Hu);

Entry	Samples		Peak	height	FWHM	
			C (0 0 2)	C (1 0 0)	C (0 0 2)	C (1 0 0)
1	Biochar	Sawdust	1.3×10 ⁴	1.2×10 ³	0.5	0.3
2	Biochar	Cellulose	1.3×10 ⁴	1.6×10 ³	0.7	0.7
3	Biochar	Lignin	1.6×10 ⁴	4.1×10 ³	0.6	0.7
4	AC	DA-Sawdust	9.7×10 ⁴	7.7×10 ³	0.4	0.2
5	AC	DA-Cellulose	1.6×10 ⁵	1.4×10 ⁴	0.3	0.2
6	AC	DA-Lignin	1.1×10 ⁵	7.8×10 ³	0.3	0.1
7	AC	AVK-Sawdust	1.1×10 ⁵	4.5×10 ³	0.5	0.2
8	AC	AVK -Cellulose	8.7×10 ⁴	8.6×10 ³	0.6	0.2
9	AC	AVK -Lignin	3.8×10 ⁴	7.6×10 ³	0.3	0.2

Table S1 Peak height and particle size of the biochar or activated carbon from the activation with KOH as activators with different activation methods

DA: Direct activation of the mixture of biomass and KOH with a mass ratio of 1:1; AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the

lower bed with a mass ratio of 1:1.

Entry	Correction of the second se	Abundance (a.u.)						
	Samples	-OH	=С-Н	С-Н	-CH3	С-О-С		
1	DA-Sawdust	0.04	0.01	0.02	0.01	0.05		
2	DA-Cellulose	0.05	0.01	0.04	0.01	0.10		
3	DA-Lignin	0.05	0.01	0.02	0.01	0.09		
4	AVK-Sawdust	0.07	0.02	0.04	0.02	0.11		
5	AVK-Cellulose	0.06	0.01	0.03	0.02	0.07		
6	AVK-Lignin	0.05	0.01	0.03	0.01	0.11		

Table S2 Abundance of the functional groups of the AC from the activation with KOH

 as activators with different activation methods

DA: Direct activation of the mixture of biomass and KOH with a mass ratio of 1:1;

AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1.

Feedstock	DA-	DA-	DA-	AVK-	AVK-	AVK-
	Sawdust	Cellulose	Lignin	Sawdust	Cellulose	Lignin
Acidification	3.22E+05	2.46E+05	2.57E+05	2.22E+05	2.48E+05	1.91E+05
(kg SO ₂ eq)						
Carcinogenics	2.15E+02	1.64E+02	1.71E+02	1.48E+02	1.66E+02	1.28E+02
(CTUh)						
Ecotoxicity	3.14E+09	2.40E+09	2.50E+09	2.17E+09	2.42E+09	1.87E+09
(CTUe)						
Eutrophicatio	2.45E+05	1.87E+05	1.95E+05	1.69E+05	1.89E+05	1.46E+05
(kg N eq)						
Fossil fuel depletion	5.63E+07	4.31E+07	4.49E+07	3.89E+07	4.35E+07	3.35E+07
(MJ surplus)						
Global warming	7.74E+07	5.93E+07	6.17E+07	5.35E+07	5.97E+07	4.60E+07
(kg CO ₂ eq)						
Non carcinogenics	7.77E+01	5.95E+01	6.20E+01	5.37E+01	5.99E+01	4.62E+01
(CTUh)						
Ozone depletion	4.69E+00	3.59E+00	3.74E+00	3.24E+00	3.62E+00	2.79E+00
(kg CFC-11 eq)						
Respiratory effects	1.12E+05	8.57E+04	8.93E+04	7.74E+04	8.64E+04	6.66E+04
(kg PM2.5 eq)						
Smog (kg O3 eq)	4.56E+06	3.49E+06	3.63E+06	3.15E+06	3.52E+06	2.71E+06

 Table S3 Environmental impacts, energy consumption, and resource depletion for

 production of the AC

DA: Direct activation of the mixture of biomass and KOH with a mass ratio of 1:1;

AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the

lower bed with a mass ratio of 1:1.

Feedstock	DA- Sawdust	DA-Cellulose	DA-Lignin					
Input/Output		Unit						
Step 1: Transportation								
Input								
Feedstock	11570.9	8306.1	8925.9	kg				
transportation	11.5	8.3	8.9	tkm				
Output								
Feedstock,	10992 3	7890.8	8479.0	ka				
after transportation	10772.5	1090.0	0179.0	ng				
Step 2: Pretreatment								
Input								
Feedstock,	10992.3	-	8479.0	ko				
after transportation	10772.0		011710					
Electricity	27700.8	-	21367.0	MJ				
Deionized water	32977.1	-	25436.9	kg				
Hydrochloric acid	3790.2	-	-	kg				
Sulfuric acid	-	-	423.9	kg				
Output								
Feedstock,	9893.1	-	7631.1	ko				
after pretreatment	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,00111					
Wastewater	32977.1	-	25436.9	kg				
	Step 3: Grinding							
Input								
Feedstock,	32977.1	-	25436.9	kg				

Table S4 Input and output on the basis of production of 1 ton of AC

after pretreatment									
Electricity	783.5	625.0	604.4	MJ					
Output									
Feedstock,	0308 /	7/96 3	7249 5	ka					
after grinding	JJJ0. 1	770.5	7277.5	ĸġ					
Step 4: Activation									
Input									
Feedstock,	9398.4	7496 3	7249 5	ka					
after grinding	7570.1	7790.5	7279.5	ĸg					
Natural gas	6286.7	5014.3	4849.3	m ³					
Electricity	84.5	67.5	65.2	MJ					
КОН	9398.5	7496.3	7249.5	kg					
Output									
Mixture	1785.7	1724.1	1754.4	kg					
Waste gas	7612.8	5772.1	5495.1	kg					
	Step 5	: Post-treatme	nt						
Input									
Mixture	1785.7	1724.1	1754.4	kg					
Hydrochloric acid	615.7	594.5	587.4	kg					
Deionized water	5357.1	5172.4	5263.2	kg					
Outputs									
AC	1000	1000	1000	kg					
wastewater	5357.1	5172.4	5263.2	kg					

DA: Direct activation of the mixture of biomass and KOH with a mass ratio of 1:1.

Feedstock	AVK-	AVK-	AVK-				
I COUSTOCK	Sawdust	Cellulose	Lignin				
Input/Output		Quantity					
	Step 1: 7	Fransportation					
Input							
Feedstock	8414.3	6835.3	6534.0	kg			
transportation	8.4	6.8	6.5	tkm			
Output							
Feedstock,	7003 6	6493 5	6207 3	ka			
after transportation	1775.0	0-175.5	0207.5	кg			
	Step 2:	Pretreatment					
Input							
Feedstock,	7002.6		6207.2	lza			
after transportation	7995.0	-	0207.5	кg			
Electricity	20143.9	-	15642.5	MJ			
Deionized water	23980.8	-	18621.9	kg			
Hydrochloric acid	2756.2	-	-	kg			
Sulfuric acid	-	- 310		kg			
Output							
Feedstock,	7194.2	_	5586.6	ka			
after pretreatment	/1/1.2		2200.0	кg			
Wastewater	23980.8	-	18621.9	kg			
	Step 3	: Activation					
Input							
Feedstock,	7194.2	6493.5	5586.6	kg			

Table S5 Input and output on the basis of production of 1 ton of AC $\,$

after pretreatment				
Natural gas	4812.3	4343.6	3736.9	m ³
Electricity	64.7	58.4	50.3	MJ
КОН	7194.2	6493.5	5586.6	kg
Output				
AC	1000	1000	1000	kg
Waste gas	6194.2	5493.5	4586.6	kg
Waste KOH	2474.8	2194.8	1877.1	kg

AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1.

Entry	Samples ^b	E-factor	Material efficiency			
1	DA-Sawdust	45.9	2.1×10 ⁻²			
2	DA-Cellulose	10.9	8.3×10 ⁻²			
3	DA-Lignin	36.2	2.7×10 ⁻²			
4	AVK-Sawdust	30.1	3.2×10 ⁻²			
5	AVK -Cellulose	2.2	3.1×10 ⁻¹			
6	AVK -Lignin	20.5	4.7×10 ⁻²			
$E(environmental) - factor = \frac{Mass of wastes}{2};$						

Table S6 E-factor and material efficiency data for production of the AC^a

^aE (environmental) – factor = $\frac{Mass of wastes}{Mass of products}$; Material efficiency = $\frac{Mass of products}{Mass of products + Mass of wastes}$;

calculated considering output of wastewater and waste gas as waste, and activated carbon as product; The data could refer to the Table S4 and S5;

^bDA: Direct activation of the mixture of biomass and KOH with a mass ratio of 1:1;

AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1.

Entw	Garran Ian A		Sbet	$V_b{}^a$	D _a ^c	Smicro ^b	Vmicro ^d
Entry		Sampes		(cm ³ /g)	(nm)	(m ² /g)	(cm ³ /g)
1	AC	AVA- Sawdust (ZnCl ₂)	704.1	0.32	0.92	103.3 (14.7)	0.08
2	Biochar	Ceiba	110.4	0.06	1.1	34.7 (31.4)	0.02
3	AC	AVK- Ceiba (KOH)	118.6	0.09	1.6	92.1 (77.7)	0.04
4	Biochar	Walnut shell	107.1	0.06	1.2	0 (0)	0
5	AC	AVK- Walnut shell (KOH)	152.0	0.08	1.1	62.3 (41.0)	0. 03
6	Biochar	Pine needle	88.4	0.05	1.2	46.9 (53.1)	0.02
7	AC	AVK- Pine needle (KOH)	119.6	0.1	1.7	92.2 (77.1)	0.04

 Table S7 Pore characteristics of the biochar and activated carbon (AC) from the activation of various feedstocks in the absence/presence of activator

^aTotal pore volume at P/P0 = 0.99; ^bMicropore surface area, the percentage of S_{micro}/S_{BET} is given in parentheses; ^cAverage pore diameter; ^dMicropore volume; * DA: Direct activation of the mixture of biomass and KOH with a mass ratio of 1:1;

AVA: Activation with volatilized activator of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1;

AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1.

Fig. S1 Abundance of various functional groups derived from the in-situ DRIFTS spectra of different feedstocks; (a): Sawdust feedstock; (b): Cellulose feedstock; (c): Lignin feedstock.

Fig. S2 Abundance of various functional groups derived from the in-situ DRIFTS spectra of different feedstocks; (a): Mixture of sawdust feedstock and KOH; (b): Mixture of cellulose feedstock and KOH; (c): Mixture of lignin feedstock and KOH.

Fig. S3 Pore structure analysis of the biochar or AC from the activation of various feedstocks in the absence/presence of activator; (a and b): AC from activation with volatilized ZnCl₂ as activator; (c and d): Activation of ceiba; (e and f): Activation of walnut shell; (g and h): Activation of pine needle; (i): Specific surface area of the biochar or AC; AVA: Activation with volatilized activator of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1; AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the upper bed while KOH in the lower bed with a mass ratio of 1:1.

Fig. S4 SEM analysis of the biochar or AC from the activation of various feedstocks in the absence/presence of activator; (a): AC from activation with volatilized ZnCl₂ as activator; (b): Biochar from direct heating of ceiba; (c): AC from activation with volatilized KOH of ceiba; (d): Biochar from direct heating of walnut shell; (e): AC from activation with volatilized KOH of walnut shell; walnut shell; (f): Biochar from direct heating of pine needle; (g): AC from activation with volatilized KOH of pine needle; AVK: Activation with volatilized KOH of biomass in the upper bed while KOH in the lower bed with a mass ratio of 1:1.