Supporting Information

Highly Selective Catalyst- and Additive-Free Iodosulfonylation of Cyclopropenes in Water

Chuxiong Peng,^{*a*}[†] Fengyan Gu,^{*a*}[†] Xiaofeng Lin,^{*a*} Ning Ding,^{*a*} Qichen Zhan,^{*a*} Peng Cao*^{*a*,*b,c,d*} and Tao Cao*^{*a*}

^a School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.

^b Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P. R. China.

^c Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212002, P. R. China.

^d Gaoyou Hospital of Traditional Chinese Medicine, Yangzhou 225600, P. R. China

E-mail: caot@njucm.edu.cn, cao_peng@njucm.edu.cn

[†] These authors contributed equally to this work.

Index

1. General Information	S2
2. Experimental Details and Analytical Data for Compounds	S 3
3. References	S40
4. ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and NOE Spectra	S41

General Information: All the temperatures are referred to the preheated oil baths used. The reaction under microwave conditions was performed on a microwave reactor (Discover 2.0, CEM Corporation, USA). Commercially available reagents and solvents were purchased from Adamas, Sinopharm, and Sigma-Aldrich. ¹H NMR spectra were recorded on a Bruker AVANCE III 500 spectrometer in CDCl₃ (δ 7.26 ppm) or DMSO-*d*₆ (δ 2.50 ppm). The data are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets), coupling constant (Hz), and integration. ¹³C NMR spectra were recorded on a Bruker AVANCE III 500 spectrometer and data are reported in terms of chemical shift relative to CDCl₃ (77.10 ppm) or DMSO-*d*₆ (δ 39.60 ppm).

1. Iodosulfonylation of cyclopropenes.

General Procedure I: To a 10 mL reaction tube equipped with a stirring bar was added **1** (1.0 equiv), **2** (1.2 equiv), and H₂O (c = 0.1 mol/L for **1**) successively, and the tube was sealed with a septum. The mixture was heated at 120 °C for indicated time. After the reaction was complete, the mixture was filtered and triturated with a mixture of ethyl acetate and petroleum ether to afford corresponding product.

(1) Dimethyl (2*R**,3*S**)-2-iodo-2-phenyl-3-tosylcyclopropane-1,1-dicarboxylate (3a) (pcx-2-41, pcx-7-38, pcx-9-11).

Following General Procedure I, after being stirred for 2 h, **3a** was afforded as a white solid (0.2 mmol scale, 85.6 mg, 83%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 172.0 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.2 Hz, 2 H), 7.43 (d, *J* = 8.1 Hz, 2 H), 7.22 (t, *J* = 7.5 Hz, 2 H), 7.14 (t, *J* = 7.4 Hz, 1 H), 7.07 (d, *J* = 7.6 Hz, 2 H), 3.97 (s, 3 H), 3.73 (s, 1 H), 3.51 (s, 3 H), 2.50 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.19, 162.20, 145.59, 143.06, 136.87, 130.08, 128.81, 128.71, 128.63, 126.85, 53.86, 53.52, 51.31, 44.87, 21.84, 6.94; HRMS calcd for C₂₀H₁₉INaO₆S ([M+Na]⁺): 536.9839; found: 536.9840.

Crystal data and structure refinement of 3a:

Bond precision:	C-C = 0.0474 A	Wavelength=1.54184	
Cell:	a=6.8727(9)	b=7.4757(10)	c=10.7012(13)
	alpha=75.161(12)	beta=88.164(11)	gamma=77.878(12)
Temperature:	293 K		
	Calculated	Repor	ted
Volume	519.48(12)	519.4	8(12)
Space group	P 1	P 1	
Hall group	P 1	P 1	
Moiety formula	C20 H19 I O6	C20 H	119 I O6
Sum formula	C20 H19 I O6	C20 H	119 I O6
Mr	514.31	514.3	1
Dx,g cm-3	1.644	1.644	
Ζ	1	1	
Mu (mm-1)	13.341	13.34	1
F000	256.0	256.0	
F000'	256.76		
h,k,lmax	7,8,12	7,8,12	2
Nref	3416[1708]	1979	
Tmin,Tmax	0.472,0.586	0.338	,1.000
Tmin'	0.428		
Correction method=	# Reported T Limits	: Tmin=0.338 Tm	ax=1.000
AbsCorr = MULTI-	SCAN		
Data completeness= 1.16/0.58		Theta(max) = 63.656	
R(reflections)= 0.0875(1636)		wR2(reflections)= 0.2652(1979)	
S = 1.056		Npar= 257	

- (2) Dimethyl (2*R**,3*S**)-2-iodo-2-(*p*-tolyl)-3-tosylcyclopropane-1,1-dicarboxylate
- (3b) (pcx-2-45, pcx-11-3).

Following General Procedure I, after being stirred for 10 h, **3b** was afforded as a white solid (0.2 mmol scale, 81.5 mg, 77%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 193.7-194.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2 H), 7.43 (d, *J* = 8.0 Hz, 2 H), 7.02 (d, *J* = 7.9 Hz, 2 H), 6.96 (d, *J* = 7.9 Hz, 2 H), 3.96 (s, 3 H), 3.70 (s, 1 H), 3.53 (s, 3 H), 2.49 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.01, 161.75, 145.39, 140.28, 137.72, 136.62, 130.01, 129.23, 128.51, 126.71, 53.93, 53.16, 50.08, 44.32, 21.27, 20.67, 5.99; HRMS calcd for C₂₁H₂₁INaO₆S ([M+Na]⁺): 550.9996; found: 550.9996.

(3) Dimethyl $(2R^*, 3S^*)$ -2-(4-ethylphenyl)-2-iodo-3-tosylcyclopropane-1,1dicarboxylate (3c) (pcx-4-49, pcx-11-37).

Following General Procedure I, after being stirred for 2.5 h, **3c** was afforded as a white solid (0.1 mmol scale, 37.9 mg, 70%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 161.8 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2 H), 7.43 (d, *J* = 8.0 Hz, 2 H), 7.04 (d, *J* = 8.0 Hz, 2 H), 6.97 (d, *J* = 7.8 Hz, 2 H), 3.96 (s, 3 H), 3.71 (s, 1 H), 3.52 (s, 3 H), 2.57 (q, *J* = 7.6 Hz, 2 H), 2.49 (s, 3 H), 1.16 (t, *J* = 7.6 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.27, 162.30, 145.55, 144.85, 140.38, 137.00, 130.07, 128.76, 128.28, 126.81, 53.84, 53.51,

51.41, 45.00, 28.47, 21.85, 15.18, 7.04; HRMS calcd for $C_{22}H_{23}INaO_6S$ ([M+Na]⁺): 565.0152; found: 565.0158.

(4) Dimethyl (2*R**,3*S**)-2-(4-(*tert*-butyl)phenyl)-2-iodo-3-tosylcyclopropane-1,1dicarboxylate (3d) (pcx-4-48, pcx-11-4).

Following General Procedure I, after being stirred for 2 h, **3d** was afforded as a white solid (0.2 mmol scale, 65.4 mg, 57%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 179.4-181.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2 H), 7.43 (d, *J* = 8.0 Hz, 2 H), 7.21 (d, *J* = 8.2 Hz, 2 H), 6.97 (d, *J* = 8.0 Hz, 2 H), 3.97 (s, 3 H), 3.71 (s, 1 H), 3.50 (s, 3 H), 2.50 (s, 3 H), 1.23 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.23, 162.30, 151.77, 145.55, 140.02, 136.96, 130.07, 128.78, 126.54, 125.72, 53.77, 53.52, 51.31, 44.90, 34.65, 31.25, 21.86, 7.05; HRMS calcd for C₂₄H₂₇INaO₆S ([M+Na]⁺): 593.0465; found: 593.0464.

(5) Dimethyl (2*R**,3*S**)-2-(4-fluorophenyl)-2-iodo-3-tosylcyclopropane-1,1dicarboxylate (3e) (pcx-3-48).

Following General Procedure I, after being stirred for 2 h, **3e** was afforded as a white solid (0.2 mmol scale, 76.1 mg, 71% yield) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 166.4-168.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 6.7 Hz, 2 H), 7.43 (d, *J* = 8.2 Hz, 2 H), 7.10-7.04 (m, 2 H), 6.92 (t, *J* = 8.7 Hz, 2 H), 3.97 (s, 3 H), 3.68 (s, 1 H), 3.54 (s, 3 H), 2.50 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.19 (d, *J* = 6.8 Hz), 162.08, 161.23, 145.71, 139.18 (d, *J* = 3.4 Hz), 136.84, 130.14, 128.84 (d, *J* = 8.5 Hz), 128.69, 115.93 (d, *J* = 22.2 Hz), 53.99, 53.58, 51.45,

44.99, 21.86, 5.66; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.78; HRMS calcd for C₂₀H₁₈FINaO₆S ([M+Na]⁺): 554.9745; found: 554.9747.

(6) Dimethyl (2*R**,3*S**)-2-(4-chlorophenyl)-2-iodo-3-tosylcyclopropane-1,1dicarboxylate (3f) (pcx-2-47).

Following General Procedure I, after being stirred for 3.5 h, **3f** was afforded as a white solid (0.2 mmol scale, 76.8 mg, 70%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 181.7 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 2 H), 7.43 (d, *J* = 8.1 Hz, 2 H), 7.20 (d, *J* = 8.8 Hz, 2 H), 7.01 (d, *J* = 8.2 Hz, 2 H), 3.97 (s, 3 H), 3.66 (s, 1 H), 3.55 (s, 3 H), 2.50 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.14, 162.02, 145.74, 141.66, 136.81, 134.51, 130.14, 129.10, 128.69, 128.29, 54.05, 53.59, 51.33, 44.90, 21.86, 5.70; HRMS calcd for C₂₀H₁₈³⁵CIINaO₆S ([M+Na]⁺): 570.9450; found: 570.9451.

(7) Dimethyl (2*R**,3*S**)-2-iodo-2-(4-(methoxycarbonyl)phenyl)-3tosylcyclopropane-1,1-dicarboxylate (3g) (pcx-2-48).

Following General Procedure I, after being stirred for 2 h, **3g** was afforded as a white solid (0.2 mmol scale, 91.8 mg, 80%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 190.7-191.9 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.07 (d, *J* = 7.9 Hz, 2 H), 7.88 (d, *J* = 8.0 Hz, 2 H), 7.54 (d, *J* = 7.9 Hz, 2 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 4.14 (s, 1 H), 3.83 (s, 6 H), 3.43 (s, 3 H), 2.45 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.50, 163.03, 161.62, 147.85, 145.49, 136.53, 130.03, 129.66,

129.23, 128.52, 127.35, 54.07, 53.25, 52.34, 49.84, 44.14, 21.28, 5.43; HRMS calcd for C₂₂H₂₁INaO₈S ([M+Na]⁺): 594.9894; found: 594.9896.

(8) Dimethyl(2*R**,3*S**)-2-iodo-2-(3-(methoxycarbonyl)phenyl)-3-tosylcyclopropane-1,1-dicarboxylate (3h) (pcx-6-25, pcx-11-7).

Following General Procedure I, after being stirred for 2 h, **3h** was afforded as a white solid (0.2 mmol scale, 97.8 mg, 85%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 173.2-175.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2 H), 7.83 (d, *J* = 7.6 Hz, 1 H), 7.70 (s, 1 H), 7.45 (d, *J* = 8.0 Hz, 2 H), 7.32 (t, *J* = 7.7 Hz, 1 H), 7.28 (s, 1 H), 3.98 (s, 3 H), 3.89 (s, 3 H), 3.71 (s, 1 H), 3.55 (s, 3 H), 2.50 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.02, 163.25, 162.08, 145.74, 143.66, 136.83, 131.46, 130.89, 130.14, 129.74, 129.11, 128.75, 127.79, 54.02, 53.61, 52.35, 51.31, 44.84, 21.87, 6.07; HRMS calcd for C₂₂H₂₁INaO₈S ([M+Na]⁺): 594.9894; found: 594.9899.

(9) Dimethyl (2*R**,3*S**)-2-iodo-2-phenyl-3-(phenylsulfonyl)cyclopropane-1,1dicarboxylate (3j) (pcx-2-42, pcx-11-17).

Following General Procedure I, after being stirred for 3 h, **3j** was afforded as a white solid (0.2 mmol scale, 81.1 mg, 81%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 166.5 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 7.1 Hz, 2 H), 7.75 (t, *J* = 7.5 Hz, 1 H), 7.65 (t, *J* = 7.8 Hz, 2 H), 7.22 (t, *J* = 7.8 Hz, 2 H), 7.15 (t, *J* = 7.4 Hz, 1 H), 7.06 (d, *J* = 6.6 Hz, 2 H), 3.98 (s, 3 H), 3.74 (s, 1 H), 3.52 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.13, 162.15, 142.99,

139.81, 134.48, 129.48, 128.83, 128.67, 128.66, 126.82, 53.90, 53.56, 51.30, 45.00, 6.81; HRMS calcd for C₁₉H₁₇INaO₆S ([M+Na]⁺): 522.9683; found: 522.9684.

(10) Dimethyl (2*R**,3*S**)-2-iodo-3-(phenylsulfonyl)-2-(*p*-tolyl)cyclopropane-1,1dicarboxylate (3k) (pcx-2-49, pcx-11-16).

Following General Procedure I, after being stirred for 2 h, **3k** was afforded as a white solid (0.2 mmol scale, 80.4 mg, 78%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 180.1 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 7.7 Hz, 2 H), 7.74 (t, J = 7.5 Hz, 1 H), 7.65 (t, J = 7.7 Hz, 2 H), 7.02 (d, J = 7.8 Hz, 2 H), 6.95 (d, J = 7.8 Hz, 2 H), 3.97 (s, 3 H), 3.71 (s, 1 H), 3.54 (s, 3 H), 2.27 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.19, 162.22, 140.14, 139.86, 138.68, 134.43, 129.53, 129.45, 128.66, 126.68, 53.91, 53.53, 51.37, 45.07, 21.20, 6.79; HRMS calcd for C₂₀H₁₉INaO₆S ([M+Na]⁺): 536.9839; found: 536.9839.

(11) Dimethyl (2*R**,3*S**)-2-iodo-2-(4-(methoxycarbonyl)phenyl)-3-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate (3l) (pcx-3-9).

Following General Procedure I, after being stirred for 4.5 h, **3l** was afforded as a white solid (0.2 mmol scale, 100.8 mg, 90%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 179.0-180.8 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.21 (d, *J* = 7.1 Hz, 2 H), 7.87 (d, *J* = 8.5 Hz, 2 H), 7.84 (d, *J* = 7.4 Hz, 1 H), 7.75 (t, *J* = 7.9 Hz, 2 H), 7.22 (d, *J* = 8.4 Hz, 2 H), 4.21 (s, 1 H), 3.83 (d, *J* = 5.6 Hz, 6 H), 3.43 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.51, 163.00, 161.62, 147.80, 139.35,

134.79, 129.66, 129.60, 129.26, 128.49, 127.36, 54.11, 53.30, 52.35, 49.74, 44.22, 5.36; HRMS calcd for C₂₁H₁₉INaO₈S ([M+Na]⁺): 580.9738; found: 580.9740.

(12)Dimethyl(2*R**,3*S**)-2-iodo-2-(2-(methoxycarbonyl)phenyl)-3-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate (3m) (pcx-5-33).

Following General Procedure I, after being stirred for 2 h, **3m** was afforded as a white solid (0.2 mmol scale, 70.7 mg, 63%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 162.5-164.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 7.8 Hz, 2 H), 7.89 (d, *J* = 7.8 Hz, 1 H), 7.77 (t, *J* = 7.5 Hz, 1 H), 7.67 (t, *J* = 7.6 Hz, 2 H), 7.39 (t, *J* = 7.6 Hz, 1 H), 7.27 (t, *J* = 7.4 Hz, 1 H), 7.00 (d, *J* = 7.8 Hz, 1 H), 3.98 (d, *J* = 4.5 Hz, 6 H), 3.71 (s, 1 H), 3.56 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.65, 164.06, 162.07, 142.95, 139.85, 134.54, 132.90, 131.79, 129.52, 129.33, 128.84, 128.68, 128.22, 54.05, 53.97, 53.28, 52.63, 44.79, 7.36; HRMS calcd for C₂₁H₁₉INaO₈S ([M+Na]⁺): 580.9738; found: 580.9741.

(13)Dimethyl(2*R**,3*S**)-2-(4-chlorophenyl)-2-iodo-3-(phenylsulfonyl)cyclopropane-1,1-dicarboxylate (3n) (pcx-3-47, pcx-11-9).

Following General Procedure I, after being stirred for 2 h, **3n** was afforded as a white solid (0.2 mmol scale, 96.6 mg, 90%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 168.5-170.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 7.0 Hz, 2 H), 7.75 (t, *J* = 7.4 Hz, 1 H), 7.65 (t, *J* = 7.7 Hz, 2 H), 7.20 (d, *J* = 8.3 Hz, 2 H), 7.01 (d, *J* = 8.1 Hz, 2 H), 3.98 (s, 3 H), 3.68 (s, 1 H), 3.56 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.07, 161.98, 141.57, 139.72, 134.58, 134.55, 129.54,

129.12, 128.64, 128.25, 54.09, 53.63, 51.30, 45.01, 5.56; HRMS calcd for $C_{19}H_{16}{}^{35}CIINaO_6S$ ([M+Na]⁺): 556.9293; found:556.9294.

(14) Dimethyl $(2R^*,3S^*)-2-(3-\text{chlorophenyl})-2-\text{iodo-}3-$

(phenylsulfonyl)cyclopropane-1,1-dicarboxylate (30) (pcx-4-2, pcx-11-10).

Following General Procedure I, after being stirred for 2 h, **30** was afforded as a white solid (0.2 mmol scale, 101.8 mg, 95%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 178.8-180.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.19-8.15 (m, 2 H), 7.76 (t, *J* = 7.5 Hz, 1 H), 7.66 (t, *J* = 7.8 Hz, 2 H), 7.17 (t, *J* = 7.8 Hz, 1 H), 7.14-7.10 (m, 1 H), 7.04 (s, 1 H), 6.96 (d, *J* = 7.6 Hz, 1 H), 3.98 (s, 3 H), 3.69 (s, 1 H), 3.57 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.06, 161.93, 144.76, 139.68, 134.61, 134.39, 130.15, 129.55, 128.93, 128.64, 127.09, 125.05, 54.09, 53.65, 51.23, 44.96, 5.28; HRMS calcd for C₁₉H₁₆³⁵ClINaO₆S ([M+Na]⁺): 556.9293; found: 556.9290.

(15)Dimethyl(2R*,3S*)-2-iodo-3-(phenylsulfonyl)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxylate (3p) (pcx-3-46).

Following General Procedure I, after being stirred for 2.5 h, **3p** was afforded as a white solid (0.2 mmol scale, 104.7 mg, 92%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 148.4 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 7.1 Hz, 2 H), 7.76 (t, *J* = 7.5 Hz, 1 H), 7.66 (t, *J* = 7.8 Hz, 2 H), 7.49 (d, *J* = 8.2 Hz, 2 H), 7.17 (d, *J* = 8.0 Hz, 2 H), 3.99 (s, 3 H), 3.71 (s, 1 H), 3.56 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.09, 161.91, 146.65, 139.65, 134.68, 130.68

(q, J = 32.7 Hz), 129.60, 128.68, 127.35, 125.96 (q, J = 3.7 Hz), 123.53 (q, J = 272.5 Hz), 54.17, 53.71, 51.20, 44.84, 5.65; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.79; HRMS calcd for C₂₀H₁₆F₃INaO₆S ([M+Na]⁺): 590.9557; found: 590.9559.

(16)Dimethyl(2*R**,3*S**)-3-((4-bromophenyl)sulfonyl)-2-iodo-2-phenylcyclopropane-1,1-dicarboxylate (3q) (pcx-2-43).

Following General Procedure I, after being stirred overnight, **3q** was afforded as a white solid (0.2 mmol scale, 115.1 mg, 99%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 165.5-167.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.7 Hz, 2 H), 7.78 (d, *J* = 8.6 Hz, 2 H), 7.24 (t, *J* = 8.6 Hz, 2 H), 7.16 (t, *J* = 7.4 Hz, 1 H), 7.09 (d, *J* = 7.0 Hz, 2 H), 3.97 (s, 3 H), 3.73 (s, 1 H), 3.52 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.03, 162.06, 142.82, 138.78, 132.85, 130.23, 130.02, 128.92, 128.80, 126.82, 54.00, 53.62, 51.33, 45.20, 6.45; HRMS calcd for C₁₉H₁₆⁷⁹BrINaO₆S ([M+Na]⁺): 600.8788; found: 600.8790.

(17)Dimethyl(2R*,3S*)-3-((4-bromophenyl)sulfonyl)-2-iodo-2-(p-tolyl)cyclopropane-1,1-dicarboxylate (3r) (pcx-2-50).

Following General Procedure I, after being stirred for 4 h, **3r** was afforded as a white solid (0.2 mmol scale, 103.6 mg, 87%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 199.1-200.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2 H), 7.78 (d, *J* = 8.3 Hz, 2 H), 7.04 (d, *J* = 7.9 Hz, 2 H), 6.98 (d, *J* = 7.8 Hz, 2 H), 3.97 (s, 3 H), 3.70 (s, 1 H), 3.54 (s, 3 H), 2.29 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.86, 161.68, 140.06, 138.62, 137.78, 132.66, 130.54, 129.21,

129.03, 126.79, 53.96, 53.24, 49.77, 44.50, 20.67, 5.75; HRMS calcd for $C_{20}H_{18}^{79}BrINaO_6S$ ([M+Na]⁺): 614.8944; found: 614.8944.

(18)Dimethyl(2*R**,3*S**)-3-((4-bromophenyl)sulfonyl)-2-iodo-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1,1-dicarboxylate (3s) (pcx-3-10).

Following General Procedure I, after being stirred for 3.5 h, **3s** was afforded as a white solid (0.2 mmol scale, 111.3 mg, 87%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 202.4-204.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.2 Hz, 2 H), 7.92 (d, *J* = 8.0 Hz, 2 H), 7.79 (d, *J* = 8.2 Hz, 2 H), 7.16 (d, *J* = 8.0 Hz, 2 H), 3.98 (s, 3 H), 3.88 (s, 3 H), 3.70 (s, 1 H), 3.54 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.53, 162.91, 161.58, 147.67, 138.54, 132.71, 130.56, 129.66, 129.28, 129.15, 127.45, 54.13, 53.35, 52.37, 49.53, 44.31, 5.20; HRMS calcd for C₂₁H₁₈⁷⁹BrINaO₈S ([M+Na]⁺): 658.8843; found: 658.8843.

(19) Dimethyl (2*R**,3*S**)-3-((4-chlorophenyl)sulfonyl)-2-iodo-2-(*p*-tolyl)cyclopropane-1,1-dicarboxylate (3t) (pcx-3-2).

Following General Procedure I, after being stirred for 2 h, **3t** was afforded as a white solid (0.2 mmol scale, 89.0 mg, 81%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 195.5 °C (decomposition); ¹H NMR (500 MHz, DMSO- d_6) δ 8.22 (d, J = 8.7 Hz, 2 H), 7.83 (d, J = 8.6 Hz, 2 H), 7.09 (d, J = 8.0 Hz, 2 H), 6.98 (d, J = 8.2 Hz, 2 H), 4.19 (s, 1 H), 3.81 (s, 3 H), 3.44 (s, 3 H), 2.25 (s, 3 H); ¹³C NMR (126 MHz, DMSO- d_6) δ 162.87, 161.69, 140.07, 139.83, 138.20, 137.78,

130.55, 129.72, 129.22, 126.79, 53.97, 53.25, 49.81, 44.51, 20.68, 5.80; HRMS calcd for C₂₀H₁₈³⁵ClINaO₆S ([M+Na]⁺): 570.9450; found: 570.9447.

(20)Dimethyl(2*R**,3*S**)-3-((4-chlorophenyl)sulfonyl)-2-iodo-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1,1-dicarboxylate (3u) (pcx-3-11).

Following General Procedure I, after being stirred for 2 h, **3u** was afforded as a white solid (0.2 mmol scale, 115.4 mg, 97%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 185.4-186.5 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.23 (d, *J* = 8.7 Hz, 2 H), 7.89 (d, *J* = 8.5 Hz, 2 H), 7.84 (d, *J* = 8.7 Hz, 2 H), 7.25 (d, *J* = 8.5 Hz, 2 H), 4.36 (s, 1 H), 3.83 (s, 6 H), 3.43 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.53, 162.91, 161.59, 147.67, 139.92, 138.11, 130.57, 129.76, 129.66, 129.28, 127.44, 54.13, 53.35, 52.37, 49.57, 44.31, 5.24; HRMS calcd for C₂₁H₁₈³⁵CIINaO₈S ([M+Na]⁺): 614.9348; found: 614.9352.

(21) Diethyl (2*R**,3*S**)-2-iodo-2-phenyl-3-(phenylsulfonyl)cyclopropane-1,1dicarboxylate (3v) (pcx-5-42).

Following General Procedure I, after being stirred for 2 h, **3v** was afforded as a white solid (0.2 mmol scale, 80.4 mg, 76%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 126.8-128.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 7.7 Hz, 2 H), 7.74 (t, *J* = 7.5 Hz, 1 H), 7.65 (t, *J* = 7.7 Hz, 2 H), 7.21 (t, *J* = 7.6 Hz, 2 H), 7.14 (t, *J* = 7.2 Hz, 1 H), 7.07 (d, *J* = 7.6 Hz, 2 H), 4.55-4.38 (m, 2 H), 4.04-3.90 (m, 2 H), 3.73 (s, 1 H), 1.42 (t, *J* = 7.1 Hz, 3 H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.73, 161.74, 143.14, 140.05, 134.40, 129.45, 128.77,

128.69, 128.62, 127.02, 63.26, 62.96, 51.27, 45.00, 13.93, 13.80, 7.01; HRMS calcd for C₂₁H₂₁INaO₆S ([M+Na]⁺): 550.9996; found: 550.9997.

(22) Di-*tert*-butyl (2*R**,3*S**)-2-iodo-2-phenyl-3-tosylcyclopropane-1,1dicarboxylate (3w) (pcx-3-32).

Following General Procedure I, after being stirred for 2.5 h, **3w** was afforded as a white solid (0.15 mmol scale, 67.5 mg, 75%) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 160.7-161.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.3 Hz, 2 H), 7.42 (d, *J* = 8.1 Hz, 2 H), 7.19 (t, *J* = 7.5 Hz, 2 H), 7.11 (t, *J* = 7.4 Hz, 1 H), 7.05 (d, *J* = 7.5 Hz, 2 H), 3.62 (s, 1 H), 2.49 (s, 3 H), 1.63 (s, 9 H), 1.28 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.64, 160.58, 145.25, 143.28, 137.52, 130.00, 128.61, 128.57, 128.41, 127.35, 84.29, 83.91, 50.99, 45.98, 27.90, 27.73, 21.85, 7.77; HRMS calcd for C₂₆H₃₁INaO₆S ([M+Na]⁺): 621.0778; found: 621.0778.

2. Iodosulfonylation of styrenes.

General Procedure II: To a 10 mL reaction tube equipped with a stirring bar was added 4 (1.0 equiv), **2a** (1.2 equiv), and H₂O (c = 0.1 mol/L for **4**) successively, and the tube was sealed with a septum. The mixture was stirred at room temperature overnight until completion of the reaction. In case that a solid was formed, filtration was performed to give the crude product. Otherwise the mixture was extracted with ethyl acetate (5 mL × 3), washed with brine (5 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo to give the crude product. Further recrystallization of the

crude product with a mixture of ethyl acetate and petroleum ether afforded the pure product.

(1) Methyl 4-(1-iodo-2-tosylethyl)benzoate (6a) (pcx-9-44).

Following General Procedure II, **6a** was afforded as a white solid (0.2 mmol scale, 89.9 mg, >99%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 103.4-104.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.4 Hz, 2 H), 7.42 (d, *J* = 8.3 Hz, 2 H), 7.26 (d, *J* = 8.4 Hz, 2 H), 7.10 (d, *J* = 7.5 Hz, 2 H), 5.53 (dd, *J* = 11.5, 4.1 Hz, 1 H), 4.28 (dd, *J* = 14.7, 11.5 Hz, 1 H), 4.04 (dd, *J* = 14.6, 4.0 Hz, 1 H), 3.90 (s, 3 H), 2.34 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.27, 145.32, 145.09, 135.87, 130.05, 129.99, 129.80, 128.03, 127.22, 65.48, 52.31, 21.57, 16.41; HRMS calcd for C₁₇H₁₇INaO₄S ([M+Na]⁺): 466.9784; found: 466.9783. (2) Methyl 3-(1-iodo-2-tosylethyl)benzoate (6b) (pcx-10-44).

Following General Procedure II, **6b** was afforded as a white solid (0.2 mmol scale, 69.1 mg, 79%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 128.2 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 1 H), 7.77 (s, 1 H), 7.43 (d, *J* = 7.9 Hz, 1 H), 7.39 (d, *J* = 8.4 Hz, 2 H), 7.23 (t, *J* = 7.8 Hz, 1 H), 7.08 (d, *J* = 8.0 Hz, 2 H), 5.56 (dd, *J* = 11.6, 4.0 Hz, 1 H), 4.34 (dd, *J* = 14.7, 11.6 Hz, 1 H), 4.06 (dd, *J* = 14.7, 4.0 Hz, 1 H), 3.89 (s, 3 H), 2.32 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.00, 144.80, 140.93, 136.02, 131.62, 130.72, 129.77, 129.52, 128.91, 128.19, 127.95, 65.53, 52.31, 21.54, 16.71; HRMS calcd for C₁₇H₁₇INaO₄S ([M+Na]⁺): 466.9784; found: 466.9873.

(3) Methyl 2-(1-iodo-2-tosylethyl)benzoate (6c) (pcx-10-43).

Following General Procedure II, **6c** was afforded as a white solid (0.2 mmol scale, 78.4 mg, 73%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 85.4-86.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1 H), 7.47 (d, *J* = 8.3 Hz, 3 H), 7.28 (td, *J* = 7.6, 1.6 Hz, 1 H), 7.23 (td, *J* = 7.6, 1.3 Hz, 1 H), 7.16 (d, *J* = 8.0 Hz, 2 H), 6.72 (s, 1 H), 4.36 (t, *J* = 13.2 Hz, 1 H), 4.07 (dd, *J* = 14.7, 4.3 Hz, 1 H), 3.94 (s, 3 H), 2.38 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 167.12, 144.82, 141.96, 135.96, 132.52, 130.92, 129.84, 129.10, 128.12, 128.05, 65.66, 52.56, 21.67, 13.21; HRMS calcd for C₁₇H₁₇INaO₄S ([M+Na]⁺): 466.9784; found: 466.9785.

(4) 4-(1-Iodo-2-tosylethyl)benzonitrile (6d) (pcx-11-50).

Following General Procedure II, **6d** was afforded as a white solid (0.2 mmol scale, 70.6 mg, 86%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 118.8 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1 Hz, 2 H), 7.43 (d, *J* = 7.8 Hz, 2 H), 7.34 (d, *J* = 8.0 Hz, 2 H), 7.19 (d, *J* = 7.9 Hz, 2 H), 5.51 (dd, *J* = 11.6, 3.9 Hz, 1 H), 4.24 (dd, *J* = 14.6, 11.7 Hz, 1 H), 4.02 (dd, *J* = 14.6, 4.0 Hz, 1 H), 2.41 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 145.74, 145.44, 135.89, 132.47, 129.96, 128.02, 118.13, 112.15, 65.28, 21.69, 15.25; HRMS calcd for C₁₆H₁₄INNaO₂S ([M+Na]⁺): 433.9682; found: 433.9686.

(5) 1-((2-Iodo-2-(4-(trifluoromethyl)phenyl)ethyl)sulfonyl)-4-methylbenzene (6e) (pcx-10-29).

6e

Following General Procedure II, **6e** was afforded as a white solid (0.2 mmol scale, 72.6 mg, 81%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 132.0-134.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2 H), 7.32 (d, *J* = 8.4 Hz, 2 H), 7.28 (d, *J* = 8.3 Hz, 2 H), 7.07 (d, *J* = 8.0 Hz, 2 H), 5.55 (dd, *J* = 11.9, 3.8 Hz, 1 H), 4.30 (dd, *J* = 14.7, 11.9 Hz, 1 H), 4.06 (dd, *J* = 14.8, 3.8 Hz, 1 H), 2.34 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 145.06, 144.28, 135.91, 130.42 (q, *J* = 32.7 Hz), 129.77, 127.93, 127.63, 125.65 (q, *J* = 3.7 Hz), 123.71 (q, *J* = 272.1 Hz), 65.58, 21.44, 15.92; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.85; HRMS calcd for C₁₆H₁₄F₃INaO₂S ([M+Na]⁺): 476.9603; found: 476.9604.

(6) 1-Fluoro-4-(1-iodo-2-tosylethyl)benzene (6f) (pcx-10-28).

6f

Following General Procedure II, **6f** was afforded as a white solid (0.2 mmol scale, 63.3 mg, 73%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 122.6-123.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2 H), 7.20 (dd, *J* = 8.8, 5.1 Hz, 2 H), 7.16 (d, *J* = 8.0 Hz, 2 H), 6.80 (t, *J* = 8.6 Hz, 2 H), 5.54 (dd, *J* = 11.6, 4.1 Hz, 1 H), 4.25 (dd, *J* = 14.6, 11.5 Hz, 1 H), 4.04 (dd, *J* = 14.6, 4.1 Hz, 1 H), 2.39 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 162.35 (d, *J* = 249.3 Hz), 144.96, 136.55 (d, *J* = 3.2 Hz), 136.16, 129.78, 129.07 (d, *J* = 8.3 Hz), 128.03, 115.75 (d, *J* = 21.9 Hz), 66.19, 21.63, 17.09; ¹⁹F NMR (471 MHz, CDCl₃) δ -112.10; HRMS calcd for C₁₅H₁₄FINaO₂S ([M+Na]⁺): 426.9635; found: 426.9638.

(7) 1-Bromo-4-(1-iodo-2-tosylethyl)benzene (6g) (pcx-10-30).

Following General Procedure II, **6g** was afforded as a white solid (0.2 mmol scale, 82.1 mg, 87%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 107.1-108.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.3 Hz, 2 H), 7.20 (d, *J* = 8.5 Hz, 2 H), 7.14 (d, *J* = 8.0 Hz, 2 H), 7.05 (d, *J* = 8.5 Hz, 2 H), 5.48 (dd, *J* = 11.7, 3.9 Hz, 1 H), 4.25 (dd, *J* = 14.6, 11.7 Hz, 1 H), 4.02 (dd, *J* = 14.6, 4.0 Hz, 1 H), 2.41 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 145.07, 139.49, 131.84, 129.80, 128.80, 127.98, 122.51, 65.84, 21.71, 16.79; HRMS calcd for C₁₅H₁₄⁷⁹BrINaO₂S ([M+Na]⁺): 486.8835; found: 486.8835.

3. Iodosulfonylation of alkynes.

General Procedure III: To a 10 mL reaction tube equipped with a stirring bar was added 5 (1.0 equiv), **2a** (1.2 equiv), and H₂O (c = 0.1 mol/L for **5**) successively, and the tube was sealed with a septum. The mixture was stirred at 120 °C for indicated time until completion of the reaction. In case that a solid was formed, filtration was performed to give the crude product. Otherwise the mixture was extracted with ethyl acetate (5 mL × 3), washed with brine (5 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo to give the crude product. Further recrystallization of the crude product with a mixture of ethyl acetate and petroleum ether afforded the pure product unless otherwise stated.

(1) (E)-1-((2-Iodo-2-phenylvinyl)sulfonyl)-4-methylbenzene (7a) (pcx-9-33).

Following General Procedure III, after being stirred for 3.5 h, **7a** was afforded as a white solid (0.2 mmol scale, 61.4 mg, 77%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 80.7-82.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 2 H), 7.36 (s, 1 H), 7.34-7.26 (m, 3 H), 7.24-7.21 (m, 2 H), 7.19 (d, *J* = 8.0 Hz, 2 H), 2.39 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 144.63, 141.33, 139.73, 137.39, 129.85, 129.73, 127.98, 127.95, 127.77, 114.23, 21.71; HRMS calcd for C₁₅H₁₃INaO₂S ([M+Na]⁺): 406.9573; found: 406.9572.

(2) (*E*)-4-(1-Iodo-2-tosylvinyl)benzonitrile (7b) (pcx-10-2).

Following General Procedure III, after being stirred for 2 h, **7b** was afforded as a white solid (0.2 mmol scale, 60.6 mg, 73%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 188.1 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2 H), 7.52 (d, *J* = 8.4 Hz, 2 H), 7.38-7.33 (m, 3 H), 7.27 (d, *J* = 8.0 Hz, 2 H), 2.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.38, 144.19, 142.36, 136.92, 131.81, 130.10, 128.33, 127.92, 118.08, 113.42, 109.86, 21.78; HRMS calcd for C₁₆H₁₄INNaO₂S ([M+Na]⁺): 431.9526; found: 431.9523.

(3) Methyl (E)-4-(1-iodo-2-tosylvinyl)benzoate (7c) (pcx-9-28).

Following General Procedure III, after being stirred for 2 h, **7c** was afforded as a white solid (0.2 mmol scale, 65.6 mg, 73%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 158.1-160.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2 H), 7.49 (d, *J* = 7.8 Hz, 2 H), 7.37 (s, 1 H), 7.29 (d, *J* = 8.0 Hz, 2 H), 7.22 (d, *J* = 7.9 Hz, 2 H), 3.94 (s, 3 H), 2.41 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.24, 145.06, 144.07, 141.91, 137.18, 131.08, 129.94, 129.26, 127.97, 127.64, 111.93, 52.44, 21.74; HRMS calcd for C₁₇H₁₅INaO₄S ([M+Na]⁺): 464.9628; found: 464.9627.

(4) (*E*)-1-((2-Iodo-2-(4-(trifluoromethyl)phenyl)vinyl)sulfonyl)-4-methylbenzene
(7d) (pcx-10-7, pcx-10-39).

Following General Procedure III, after being stirred for 3 h, **7d** was afforded as a white solid (0.2 mmol scale, 53.9 mg, 57%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 145.8-146.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.1 Hz, 2 H), 7.47 (d, *J* = 8.3 Hz, 2 H), 7.40 (s, 1 H), 7.32 (d, *J* = 8.0 Hz, 2 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 2.40 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 145.11, 143.19, 142.55, 136.94, 131.51 (q, *J* = 33.0 Hz), 129.91, 128.01, 127.97, 125.05 (q, *J* = 3.8 Hz), 123.64 (q, *J* = 272.9 Hz), 110.75, 21.69; ¹⁹F NMR (471 MHz, CDCl₃) δ - 62.91; HRMS calcd for C₁₆H₁₂F₃INaO₂S ([M+Na]⁺): 474.9447; found: 474.9447. **(5)** (*E*)-1-((2-Iodooct-1-en-1-yl)sulfonyl)-4-methylbenzene (7e) (pcx-10-40).

Following General Procedure III, after being stirred for 2 h, **7e** was afforded as a white solid (0.2 mmol scale, 41.8 mg, 52%) by extraction with ethyl acetate and chromatography on silica gel (0-8% ethyl acetate in petroleum ether): m.p. 51.5-52.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 7.00 (s, 1 H), 3.01 (t, *J* = 7.5 Hz, 2 H), 2.44 (s, 3 H), 1.55-1.47 (m, 2 H), 1.34-1.26 (m, 6 H), 0.88 (d, *J* = 7.0 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 144.88, 138.98, 138.16, 130.16, 127.58, 125.83, 40.06, 31.59, 29.92, 28.23, 22.56, 21.75, 14.12; HRMS calcd for C₁₅H₂₁INaO₂S ([M+Na]⁺): 415.0199; found: 415.0200.

(6) (*E*)-(1-Iodo-2-tosylethene-1,2-diyl)dibenzene (7f) (pcx-9-34).

Following General Procedure III, after being stirred for 2 h, **7f** was afforded as a white solid (0.2 mmol scale, 68.7 mg, 74%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 188.5-190.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.30 (m, 8 H), 7.26 (d, *J* = 8.1 Hz, 2 H), 7.17 (d, *J* = 7.2 Hz, 2 H), 7.10 (d, *J* = 7.9 Hz, 2 H), 2.37 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 149.15, 144.32, 142.59, 139.45, 136.84, 130.36, 129.27, 129.07, 128.62, 128.40, 127.93, 127.44, 118.13, 21.70; HRMS calcd for C₂₁H₁₇INaO₂S ([M+Na]⁺): 482.9886; found: 482.9884.

(7) (*E*)-3-Iodo-1,3-diphenyl-2-tosylprop-2-en-1-one (7g) (pcx-9-31).

Following General Procedure III, after being stirred for 2 h, **7g** was afforded as a white solid (0.2 mmol scale, 54.8 mg, 55%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 117.3-118.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, *J* = 7.3 Hz, 2 H), 7.70 (t, *J* = 7.4 Hz, 1 H), 7.60 (t, *J* = 7.7 Hz, 2 H), 7.33 (d, *J* = 8.3 Hz, 2 H), 7.32-7.26 (m, 3 H), 7.18 (d, *J* = 7.2 Hz, 2 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 2.38 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 190.71, 149.40, 144.95, 140.08, 137.44, 134.69, 133.88, 130.35, 129.61, 129.43, 129.27, 128.53, 127.99, 127.52, 113.82, 21.76; HRMS calcd for C₂₂H₁₇INaO₃S ([M+Na]⁺): 510.9835; found: 510.9831.

(8) Methyl (E)-3-iodo-3-phenyl-2-tosylacrylate (7h) (pcx-9-21).

Following General Procedure III, after being stirred for 2.5 h, **7h** was afforded as a white solid (0.2 mmol scale, 71.4 mg, 80%) by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 126.6-128.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 8.0 Hz, 2 H), 7.27 (d, *J* = 7.1 Hz, 1 H), 7.22 (t, *J* = 7.5 Hz, 2 H), 7.11 (d, *J* = 8.0 Hz, 2 H), 7.05 (d, *J* = 7.6 Hz, 2 H), 3.96 (s, 3 H), 2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.10, 146.53, 144.93, 139.45, 136.99, 129.63, 129.35, 128.18, 127.80, 127.25, 114.44, 53.72, 21.64; HRMS calcd for C₁₇H₁₅INaO₄S ([M+Na]⁺): 464.9628; found: 464.9627.

(9) Methyl (E)-4-(4-hydroxy-1-iodo-2-tosylbut-1-en-1-yl)benzoate (7i) (pcx-10-15).

Following General Procedure III, after being stirred for 2 h, **7i** was afforded as a white solid (0.2 mmol scale, 80.8 mg, 84%): by extraction with ethyl acetate and recrystallization (ethyl acetate/petroleum ether = 1:20) m.p. 146.6 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2 H), 7.32 (d, *J* = 8.4 Hz, 2 H), 7.09 (d, *J* = 8.1 Hz, 2 H), 7.07 (d, *J* = 8.4 Hz, 2 H), 4.05 (t, *J* = 6.5 Hz, 2 H), 3.93 (s, 3 H), 3.23 (t, *J* = 6.5 Hz, 2 H), 2.37 (s, 3 H), 1.25 (s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.32, 146.96, 146.89, 144.69, 137.08, 130.08, 129.61, 128.98, 127.85, 127.68, 115.51, 61.00, 52.40, 42.15, 21.69; HRMS calcd for C₁₉H₁₉INaO₅S ([M+Na]⁺): 508.9890; found: 508.9889.

(10) (E)-N-(4-Iodo-4-phenyl-3-tosylbut-3-en-1-yl)-4-methylbenzenesulfonamide
(7j) (pcx-9-43).

Following General Procedure III, after being stirred for 2 h, **7j** was afforded as a white solid (0.2 mmol scale, 100.5 mg, 86%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 192.4-193.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.4 Hz, 2 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 7.24 (s, 1 H), 7.20-7.16 (m, 1 H), 7.16-7.09 (m, 2 H), 7.07 (d, *J* = 8.0 Hz, 2 H), 6.95-6.90 (m, 2 H), 5.16 (s, 1 H), 3.42 (q, *J* = 6.6 Hz, 2 H), 3.11 (t, *J* = 7.2 Hz, 2 H), 2.45 (s, 3 H), 2.36 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 145.57, 144.31, 143.59, 142.42, 137.06, 136.94, 129.88, 129.53, 128.84,

127.83, 127.73, 127.58, 127.35, 118.35, 41.40, 39.32, 21.65; HRMS calcd for $C_{24}H_{24}INNaO_4S_2$ ([M+Na]⁺): 604.0084; found: 604.0084.

(11) (E)-1-((6-Iododec-5-en-5-yl)sulfonyl)-4-methylbenzene (7k) (pcx-10-9).

Following General Procedure III, after being stirred for 2 h, **7k** was afforded by extraction with ethyl acetate and chromatography on silica gel (0-8% ethyl acetate in petroleum ether) as a white solid (0.2 mmol scale, 34.5 mg, 40%): m.p. 52.3-53.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 2 H), 7.33 (d, *J* = 8.0 Hz, 2 H), 3.13 (t, *J* = 7.7 Hz, 2 H), 2.59 (t, *J* = 8.3 Hz, 2 H), 2.44 (s, 3 H), 1.56-1.48 (m, 2 H), 1.46-1.38 (m, 2 H), 1.32 (tt, *J* = 15.2, 7.6 Hz, 4 H), 0.88 (q, *J* = 7.5 Hz, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 144.59, 144.42, 138.72, 129.90, 127.77, 127.39, 43.49, 40.36, 32.53, 30.33, 22.73, 21.94, 21.68, 13.98, 13.72; HRMS calcd for C₁₇H₂₅INaO₂S ([M+Na]⁺): 443.0512; found: 443.0512.

4. Synthesis of alkynes 9.

 Table S1 Screening the conditions for esterification.

General Procedure IV:¹ To a round bottom flask were added corresponding alcohol (1.0 equiv), 4-ethynylbenzoic acid 8 (1.5 equiv), EDC-HCl (1.8 equiv), DMAP (0.25 equiv), and ^{*i*}PrOAc (0.25 M for alcohol). The mixture was stirred at 60 °C overnight until the completion of the reaction as monitored by TLC. Then the mixture was concentrated in vacuo. Alkynes 9 were obtained via chromatography on silica gel (0-30% ethyl acetate in petroleum ether).

(1) (1R,2S,5R)-2-*Iso* propyl-5-methylcyclohexyl 4-((E)-1-iodo-2-tosylvinyl)

benzoate (9a) (pcx-11-35, pcx-11-47).

Following General Procedure IV, **9a** was afforded as a colorless oil (3.0 mmol scale, 552.6 mg, 65%): ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 2 H), 7.54

(d, J = 8.2 Hz, 2 H), 4.99-4.88 (m, 1 H), 3.22 (s, 1 H), 2.12 (d, J = 12.0 Hz, 1 H), 1.97-1.89 (m, 1 H), 1.72 (d, J = 12.3 Hz, 2 H), 1.60-1.50 (m, 2 H), 1.18-1.04 (m, 2 H), 0.96- $0.88 \text{ (m, 7 H)}, 0.79 \text{ (d, } J = 7.2 \text{ Hz}, 3 \text{ H)}; {}^{13}\text{C} \text{ NMR} (126 \text{ MHz}, \text{CDCl}_3) \delta 165.46, 132.08,$ 130.93, 129.49, 126.58, 82.97, 79.95, 75.23, 47.32, 41.01, 34.37, 31.52, 26.60, 23.72, 22.10, 20.82, 16.60; HRMS calcd for C₁₉H₂₄NaO₂ ([M+Na]⁺): 307.1669; found: 307.1665.

(2) (1S,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 4-ethynylbenzoate (9b) (pcx-11-36).

Following General Procedure IV, 9b was afforded as a white solid (3.0 mmol scale, 600.1 mg, 71%): m.p. 103.8-105.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.4Hz, 2 H), 7.55 (d, J = 8.3 Hz, 2 H), 5.14-5.08 (m, 1 H), 3.23 (s, 1 H), 2.52-2.43 (m, 1 H), 2.14-2.07 (m, 1 H), 1.84-1.76 m, 1 H), 1.73 (t, *J* = 4.5 Hz, 1 H), 1.44-1.37 (m, 1 H), 1.33-1.27 (m, 1 H), 1.13-1.09 (m, 1 H), 0.96 (s, 3 H), 0.90 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 166.12, 132.08, 130.90, 129.41, 126.60, 82.92, 80.87, 80.02, 49.15, 47.94, 45.01, 36.92, 28.13, 27.44, 19.76, 18.95, 13.67; HRMS calcd for C₁₉H₂₂NaO₂ ([M+Na]⁺): 305.1512; found: 305.1528.

(3) 2-(2-Methyl-5-nitro-1*H*-imidazol-1-yl)ethyl 4-ethynylbenzoate (9c) (pcx-11-22).

Following General Procedure IV, 9c was afforded as a white solid (1.0 mmol scale, 221.2 mg, 73%): m.p. 126.6-128.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1 H), 7.87 (d, J = 8.4 Hz, 2 H), 7.54 (d, J = 8.5 Hz, 2 H), 4.74-4.64 (m, 4 H), 3.26 (s, 1 H), 2.47 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.43, 150.78, 138.62, 133.34, 132.39, 129.48, 128.97, 127.61, 82.55, 80.78, 63.08, 45.28, 14.41; HRMS calcd for C₁₅H₁₃N₃NaO₄ ([M+Na]⁺): 322.0798; found: 322.0798.

(4) (3S,5S,8R,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-ethynylbenzoate (9d) (pcx-11-31).

Following General Procedure IV, **9d** was afforded as a white solid (1.0 mmol scale, 263.7 mg, 51%): m.p. 147.4-149.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 2 H), 7.53 (d, *J* = 8.1 Hz, 2 H), 4.94 (tt, *J* = 10.9, 4.9 Hz, 1 H), 3.21 (s, 1 H), 2.00-1.90 (m, 2 H), 1.83-1.75 (m, 2 H), 1.73-1.61 (m, 3 H), 1.53-1.47 (m, 3 H), 1.38-1.22 (m, 10 H), 1.17-1.07 (m, 7 H), 1.04-0.97 (m, 3 H), 0.90 (d, *J* = 6.5 Hz, 4 H), 0.88-0.84 (m, 9 H), 0.66 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.50, 132.04, 131.05, 129.48, 126.52, 83.01, 79.90, 74.80, 56.51, 56.37, 54.33, 44.80, 42.69, 40.08, 39.61, 36.88, 36.27, 35.90, 35.61, 35.59, 34.19, 32.09, 28.73, 28.34, 28.10, 27.66, 24.31, 23.94, 22.91, 22.66, 21.32, 18.77, 12.38, 12.17; HRMS calcd for C₃₆H₅₂NaO₂ ([M+Na]⁺): 539.3860; found: 539.3861.

5. Iodosulfonylation of alkynes 9.

(1) (1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-ethynylbenzoate (10a) (pcx-10-8).

Following General Procedure III, after being stirred for 2 h, **10a** was afforded as a white solid (0.2 mmol scale, 124.8 mg, 99%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 121.0-122.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2 H), 7.50 (d, *J* = 8.2 Hz, 2 H), 7.36 (s, 1 H), 7.29 (d, *J* = 8.2 Hz, 2 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 4.95 (td, *J* = 10.9, 4.4 Hz, 1 H), 2.41 (s, 3 H), 2.12 (d, *J* = 12.2 Hz, 1 H), 2.00-1.93 (m, 1 H), 1.77-1.71 (m, 2 H), 1.59-1.53 (m, 2 H), 1.19-1.14 (m, 1 H), 1.13-1.06 (m, 1 H), 0.99-0.89 (m, 7 H), 0.81 (d, *J* = 7.0 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.20, 145.01, 143.88, 141.80, 137.16, 131.80, 129.92, 129.23, 128.00, 127.56, 112.01, 75.32, 47.35, 41.02, 34.36, 31.55, 26.56, 23.64, 22.13, 21.73, 20.89, 16.55; HRMS calcd for C₂₆H₃₁INaO₄S ([M+Na]⁺): 589.0880; found: 589.0879. (2) (1*S*,2*R*,4*S*)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl 4-((*E*)-1-iodo-2-tosylvinyl) benzoate (10b) (pcx-10-31).

Following General Procedure III, after being stirred for 2 h, **10b** was afforded as a white solid (0.2 mmol scale, 62.2 mg, 55%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 158.3-159.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 2 H), 7.51 (d, *J* = 8.1 Hz, 2 H), 7.36 (s, 1 H), 7.31 (d, *J* = 8.1 Hz, 2 H), 7.23 (d, *J* = 8.0 Hz, 2 H), 5.12 (d, *J* = 9.7 Hz, 1 H), 2.53-2.45 (m, 1 H), 2.41 (s, 3 H), 2.14-2.08 (m, 1 H), 1.86-1.78 (m, 1 H), 1.75 (t, *J* = 4.5 Hz, 1 H), 1.46-1.39 (m, 1 H), 1.35-1.28 (m, 1 H), 1.12 (dd, J = 13.8, 3.6 Hz, 1 H), 0.97 (s, 3 H), 0.92 (s, 6 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.88, 145.02, 143.95, 141.70, 137.13, 131.77, 129.94, 129.16, 127.95, 127.54, 111.95, 81.01, 49.17, 47.98, 45.02, 36.96, 28.15, 27.45, 21.72, 19.78, 18.98, 13.69; HRMS calcd for C₂₆H₂₉INaO₄S ([M+Na]⁺): 587.0723; found: 587.0723.

(3) 2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl (*E*)-4-(1-iodo-2-tosylvinyl) benzoate (10c) (pcx-11-24).

10c

Following General Procedure III, after being stirred for 2 h, **10c** was afforded as a white solid (0.2 mmol scale, 82.4 mg, 71%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 205.9-207.8 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.08 (s, 1 H), 7.83 (s, 1 H), 7.79 (d, *J* = 8.2 Hz, 2 H), 7.53 (d, *J* = 8.2 Hz, 2 H), 7.38 (d, *J* = 8.0 Hz, 2 H), 7.27 (d, *J* = 8.2 Hz, 2 H), 4.76 (t, *J* = 5.1 Hz, 2 H), 4.67 (t, *J* = 5.1 Hz, 2 H), 2.39 (s, 3 H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 164.78, 151.58, 145.42, 144.83, 140.48, 138.70, 137.15, 133.33, 130.10, 129.35, 128.67, 127.57, 127.40, 113.48, 63.28, 44.82, 21.22, 14.09; HRMS calcd for C₄₃H₅₉INaO₄S ([M+Na]⁺): 604.0010; found: 604.0009.

(4) (3S,5S,8R,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2yl)hexadecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-((*E*)-1-iodo-2-tosylvinyl) benzoate (10d) (pcx-11-33).

Following General Procedure III, after being stirred for 2 h, **10d** was afforded as a white solid (0.2 mmol scale, 63.9 mg, 40%) by filtration and recrystallization (ethyl acetate/petroleum ether = 1:20): m.p. 186.2-187.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2 H), 7.50 (d, *J* = 7.9 Hz, 2 H), 7.35 (s, 1 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 7.23 (d, *J* = 7.9 Hz, 2 H), 4.96 (tt, *J* = 10.9, 5.0 Hz, 1 H), 2.41 (s, 3 H), 2.00-1.92 (m, 2 H), 1.85-1.77 (m, 2 H), 1.72-1.62 (m, 3 H), 1.54-1.47 (m, 3 H), 1.38-1.21 (m, 10 H), 1.17-1.06 (m, 7 H), 1.04-0.98 (m, 3 H), 0.91 (d, *J* = 6.5 Hz, 4 H), 0.88 (s, 6 H), 0.86 (s, 3 H), 0.66 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.25, 145.03, 143.85, 141.77, 137.22, 131.94, 129.96, 129.22, 128.00, 127.51, 112.11, 74.86, 56.52, 56.37, 54.34, 44.81, 42.70, 40.08, 39.61, 36.88, 36.26, 35.89, 35.61, 35.59, 34.19, 32.10, 28.74, 28.34, 28.10, 27.67, 24.31, 23.93, 22.91, 22.65, 21.75, 21.32, 18.76, 12.39, 12.17; HRMS calcd for C₄₃H₅₉INaO4S ([M+Na]⁺): 821.3071; found: 821.3074.

6. Synthesis of cyclopropenes 11.

Table S2 Screening the conditions for cyclopropenation of phenylacet
--

Ph	MeO ₂ C CO ₂ Me	Rh ₂ (OAc) ₄ (0.25 mol%)	MeO ₂ C CO ₂ Me
	N ₂	solvent, T ^o C	Ph
Entry	Solvent	Temperature (°C)	Yield (%)
1	dichloromethane	40	45
2	^{<i>i</i>} PrOAc	60	0
3	dimethyl carbonat	te 60	0
4	anisole	60	31
5	heptane	100	32

2	heptane	100	29
1	anisole	100	0
Entry	Solvent	Temperature (°C	2) Yield (%)
9b			^O 11b
Me Me	+ MeO ₂ C CO ₂ Me	Rh ₂ (OAc) ₄ (0.25 mol%)	Me MeO ₂ C CO ₂ Me

Table S3 Screening the conditions for cyclopropenation of 9b.

$$R \longrightarrow + \underbrace{MeO_2C}_{N_2} \underbrace{CO_2Me}_{heptane, 100 \ ^\circ C} \underbrace{ReO_2C}_{R} \underbrace{CO_2Me}_{R}$$

General Procedure V: Under nitrogen atmosphere, to a three-neck flask equipped with a stirring bar were added anhydrous Rh₂(OAc)₄ (0.25 mol%), and a solution of alkyne 9 (1 equiv) in heptane (0.025 M). The mixture was then heated at 100 °C. After that, a solution of dimethyl 2-diazomalonate (3 equiv) in heptane (0.05 M) was added via a syringe pump over a period of 2 h. After complete conversion of the starting material as monitored by TLC, the mixture was concentrated in vacuo. Cyclopropene 11 was obtained via chromatography on silica gel (0-20%) ethyl acetate in petroleum ether).

(1) Dimethyl2-(4-(((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)phenyl)cycloprop-2-ene-1,1-dicarboxylate (11a) (pcx-7-4, pcx-7-7-2)

Following General Procedure V, **11a** was afforded as a colorless oil (0.4 mmol scale, 16.6 mg, 10%): ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 2 H), 7.69 (d,

J = 8.3 Hz, 2 H), 7.04 (s, 1 H), 4.94 (td, J = 10.9, 4.5 Hz, 1 H), 3.74 (d, J = 2.3 Hz, 6 H), 2.14-2.09 (m, 1 H), 1.95-1.90 (m, 1 H), 1.76-1.71 (m, 2 H), 1.59-1.52 (m, 2 H), 1.15-1.07 (m, 2 H), 0.96-0.89 (m, 7 H), 0.79 (d, J = 6.9 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.73, 170.72, 165.17, 132.39, 130.11, 129.98, 127.84, 111.71, 97.98, 75.28, 52.41, 52.39, 47.18, 40.84, 34.20, 32.88, 31.37, 26.53, 23.62, 21.95, 20.64, 16.49; HRMS calcd for C₂₄H₃₀NaO₆ ([M+Na]⁺): 437.1935; found: 437.1936.

(2) Dimethyl 2-(4-((((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)carbonyl)phenyl)cycloprop-2-ene-1,1-dicarboxylate (11b) (pcx-7-18, pcx-7-23, pcx-11-42).

Following General Procedure V, **11b** was afforded as a pale yellow oil (0.2 mmol scale, 11.9 mg, 29%): ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 2 H), 7.69 (d, *J* = 8.4 Hz, 2 H), 7.04 (s, 1 H), 5.15-5.10 (m, 1 H), 3.73 (s, 6 H), 2.51-2.44 (m, 1 H), 2.13-2.06 (m, 1 H), 1.84-1.77 (m, 1 H), 1.74 (t, *J* = 4.5 Hz, 1 H), 1.45-1.38 (m, 1 H), 1.31-1.29 (m, 1 H), 1.11 (dd, *J* = 13.8, 3.5 Hz, 1 H), 0.96 (s, 3 H), 0.91 (s, 3 H), 0.90 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.84, 166.03, 132.58, 130.28, 130.05, 128.00, 111.93, 98.08, 81.09, 52.56, 49.21, 47.99, 45.05, 36.96, 33.04, 28.15, 27.46, 19.77, 18.97, 13.66; HRMS calcd for C₂₄H₂₈NaO₆ ([M+Na]⁺): 435.1778; found: 435.1783.

7. Iodosulfonylation of cyclopropenes 11.

(1) Dimethyl (2*R**,3*S**)-2-iodo-2-(4-(((((1*R*,2*S*,5*R*)-2-isopropyl-5methylcyclohexyl)oxy)carbonyl)phenyl)-3-tosylcyclopropane-1,1-dicarboxylate (12a) (pcx-7-10).

Following General Procedure I, after being stirred for 3 h, **12a** was afforded as a white solid (0.1 mmol scale, 47.5 mg, 74%, 1:1 dr based on original chiral centres of the substrate) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 181.1-182.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, *J* = 8.4, 2.4 Hz, 2 H), 7.90 (dd, *J* = 8.8, 1.9 Hz, 2 H), 7.44 (dd, *J* = 8.1, 2.1 Hz, 2 H), 7.13-7.10 (d, *J* = 7.1 Hz, 2 H), 4.89 (tt, *J* = 10.8, 4.0 Hz, 1 H), 3.98 (s, 3 H), 3.70 (s, 1 H), 3.57 (d, *J* = 3.2 Hz, 3 H), 2.50 (s, 3 H), 2.08-2.03 (m, 1 H), 1.92-1.87 (m, 1 H), 1.71 (d, *J* = 12.3 Hz, 2 H), 1.50 (d, *J* = 10.9 Hz, 2 H), 1.11 (d, *J* = 11.6 Hz, 1 H), 1.04 (dd, *J* = 11.3, 3.3 Hz, 1 H), 0.92-0.88 (m, 7 H), 0.76 (dd, *J* = 7.0, 1.8 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.11, 163.25, 162.06, 147.35, 147.32, 145.81, 136.79, 130.99, 130.96, 130.19, 130.17, 129.96, 128.77, 126.91, 75.27, 54.14, 53.64, 51.31, 51.28, 47.32, 47.29, 44.80, 44.75, 40.99, 34.33, 31.50, 26.48, 26.47, 23.58, 22.08, 21.88, 20.86, 20.84, 16.48, 16.46, 6.51, 6.44; HRMS calcd for C₃₁H₃₇INaO₈S ([M+Na]⁺): 719.1146; found: 719.1155.

(2) Dimethyl (2*R**,3*S**)-2-iodo-3-tosyl-2-(4-(((((1*S*,2*R*,4*S*)-1,7,7trimethylbicyclo[2.2.1]heptan-2-yl)oxy)carbonyl)phenyl)cyclopropane-1,1dicarboxylate (12b) (pcx-7-25).

Following General Procedure I, after being stirred for 2 h, **12b** was afforded as a white solid (0.25 mmol scale, 129.9 mg, 75%, 1:1 dr based on original chiral centres of the substrate) by filtration and trituration (ethyl acetate/petroleum ether = 1:20): m.p. 188.2 °C (decomposition); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2 H), 7.92 (d, *J* = 8.4 Hz, 2 H), 7.45 (d, *J* = 8.0 Hz, 2 H), 7.14 (d, *J* = 8.1 Hz, 2 H), 5.08-5.03

(m, 1 H), 3.98 (s, 3 H), 3.71 (s, 1 H), 3.57 (d, J = 4.0 Hz, 3 H), 2.51 (s, 3 H), 2.48-2.40 (m, 1 H), 2.08-2.01 (m, 1 H), 1.83-1.75 (m, 1 H), 1.72 (t, J = 4.5 Hz, 1 H), 1.42-1.35 (m, 1 H), 1.31-1.23 (m, 1 H), 1.10-1.03 (m, 1 H), 0.94 (s, 3 H), 0.90 (s, 3 H), 0.88 (d, J = 4.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.78, 163.27, 162.03, 147.43, 145.80, 136.81, 131.00, 130.19, 130.15, 128.77, 126.96, 81.01, 80.98, 54.15, 53.62, 51.31, 51.29, 49.17, 49.13, 47.98, 45.03, 44.75, 36.96, 36.90, 28.14, 27.45, 21.89, 19.78, 18.96, 13.67, 13.65, 6.46, 6.44; HRMS calcd for C₃₁H₃₅INaO₈S ([M+Na]⁺): 717.0990; found: 717.0997.

8. Synthesis of a MAT2A inhibitor 15.

(1) Gram-scale synthesis of 13 (pcx-11-5).

To a 50 mL reaction tube equipped with a stirring bar was added **5a** (0.44 mL, 3.0 mmol, 1.0 equiv), **2b** (964.9 mg, 3.6 mmol, 1.2 equiv), and H₂O (30 mL) successively, and the tube was sealed with a septum. The mixture was heated at 120 °C for 2 hours. After the reaction was complete, the aqueous layer was extracted with EtOAc (10 mL \times 3), washed with brine (15 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. After that, the mixture triturated with a mixture of ethyl acetate and petroleum ether (1:15) to afford **13** (1.1713g, 91%) as a white solid: ¹H NMR (500 MHz, CDCl₃) δ 7.50 (t, *J* = 7.4 Hz, 1 H), 7.41 (d, *J* = 7.2 Hz, 2 H), 7.29 (t, *J* = 7.8 Hz, 2 H), 7.24 (d, *J* = 7.0 Hz, 1 H), 7.18 (t, *J* = 7.6 Hz, 2 H), 7.00 (d, *J* = 7.3 Hz, 2 H), 3.95 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.94, 146.35, 139.89, 139.27, 133.73, 129.65, 128.71, 127.99, 127.84, 127.18, 114.90, 53.76; HRMS calcd for C₂₁H₁₄CINNaO₃S ([M+Na]⁺): 450.9471; found: 450.9472.

To a 10 mL microwave reaction tube equipped with a stirring bar was added **13** (85.9 mg, 0.2 mmol, 1.0 equiv), **14** (107.4 mg, 0.3 mmol, 1.5 equiv), Pd(dppf)Cl₂ (7.6 mg, 0.01mmol, 5 mol%), Na₂CO₃ (43.5 mg, 0.4mmol, 2.0 equiv), and THF/H₂O (1:1, 2 mL) successively and the tube was sealed with a septum and heated at 120 °C for 1h under 120 W of microwave irradiation. The mixture was cooled to room temperature. The mixture was extracted with EtOAc (5 mL × 3), washed with brine (5 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The residual was purification by chromatography on silica gel (0-50% ethyl acetate in petroleum ether) to afford the product **15** as an oil (0.2 mmol scale, 37.4 mg, 47%): ¹H NMR (500 MHz, CDCl₃) δ 12.82 (s, 1 H), 8.03 (d, *J* = 7.6 Hz, 2 H), 7.62-7.59 (m, 1 H), 7.58 (s, 2 H), 7.56 (d, *J* = 7.1 Hz, 2 H), 7.48 (t, *J* = 7.5 Hz, 2 H), 7.38-7.33 (m, 2 H), 7.23 (d, *J* = 8.5 Hz, 1 H), 7.06 (s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 156.34, 141.47, 137.82, 133.79, 133.40, 133.29, 129.15, 129.05, 128.83, 128.53, 128.38, 128.34, 127.86, 121.68, 117.73; HRMS calcd for C₂₁H₁₄CINNaO₃S ([M+Na]⁺): 418.0275; found: 418.0273.

9. Formal synthesis of a dipeptide renin inhibitor 20.

(1) Gram-scale synthesis of 3a (pcx-5-49).

To a 50 mL reaction tube equipped with a stirring bar was added **1a** (464.4 mg, 2.0 mmol, 1.0 equiv), **2a** (680.7 mg, 2.4 mmol, 1.2 equiv), and H₂O (20.0 mL) successively, and the tube was sealed with a septum. The mixture was heated at 120 °C for 2 hours. After that, the mixture was filtered and triturated with a mixture of ethyl acetate and petroleum ether (1:15) to afford **3a** (909.7 mg, 88%) as a solid.
(2) Dimethyl 2-phenyl-3-tosylcyclopropane-1,1-dicarboxylate (16) (pcx-7-33).

To a flame-dried Schlenk tube was added $Mn_2(CO)_{10}$ (7.8 mg, 0.02 mmol) and Hantzsch ester (113.1 mg, 0.4 mmol). Compound **3a** (102.9 mg, 0.2 mmol) and anhydrous DMSO (2 mL) were sequentially added under nitrogen. After that, the Schlenk tube was irradiated using a Blue LED light. A fan was used to maintain room temperature. After being stirred overnight, the reaction was complete as monitored by TLC. 3 M HCl (3 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL × 3) and the combined organic layer was washed with brine (5 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. **16** was obtained via chromatography (0-25% ethyl acetate in petroleum ether) as a white solid (76.4 mg, 98%, *cis/trans* = 71:29): m.p. 134.4-136.0 °C.

The following signals are discernible for the *cis*-isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.63 (m, 2 H), 7.62 (d, *J* = 8.3 Hz, 2 H), 7.40 (d, *J* = 8.1 Hz, 1 H), 7.32 (d, *J* = 1.9 Hz, 2 H), 7.29 (d, *J* = 8.2 Hz, 2 H), 3.81 (s, 3 H), 3.78 (s, 3 H), 3.61 (d, *J* = 10.2 Hz, 1 H), 3.28 (d, *J* = 10.1 Hz, 1 H), 2.44 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 168.83, 163.50, 144.85, 137.80, 131.01, 130.04, 129.60, 127.84, 127.74, 127.62 , 53.88, 52.82, 47.85, 39.29, 36.22, 21.61.

The following signals are discernible for the *trans*-isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2 H), 7.34 (d, *J* = 4.6 Hz, 1 H), 7.33 (d, *J* = 2.2 Hz, 2 H), 7.26 (d, *J* = 2.3 Hz, 2 H), 7.14-7.11 (m, 2 H), 3.98 (d, *J* = 7.8 Hz, 1 H), 3.92 (s, 3 H), 3.92 (d, *J* = 7.5 Hz, 1 H), 3.48 (s, 3 H), 2.47 (s, 3 H) ¹³C NMR (126 MHz, CDCl₃) δ 164.88, 164.69, 145.27, 136.68, 131.58, 129.27, 128.51, 128.25, 128.13, 127.94, 53.56, 53.14, 48.53, 44.08, 33.78, 21.67; HRMS calcd for C₂₀H₂₀NaO₆S ([M+Na]⁺): 411.0873; found: 411.0876.

(3) Methyl 2-phenyl-3-tosylcyclopropane-1-carboxylate (17) (pcx-8-48).

To a flame-dried Schlenk tube were added NaCl (26.0 mg, 0.41 mmol), Compound 16 (176.1 mg, 0.41 mmol) in anhydrous DMSO (2 mL), and H₂O sequentially under nitrogen. After the reaction mixture was heated at 160 °C for 2 hours, H₂O (3 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL \times 3) and the combined organic layer was washed with brine (5 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. 17 (133.9 mg, 99%, dr = 61:23:16) was obtained via chromatography on silica gel (0-25% ethyl acetate in petroleum ether) as an oil: ¹H NMR (500 MHz, CDCl₃) & 7.88-7.83 (m, 1.51 H), 7.43-7.37 (m, 1.52 H), 7.32-7.24 (m, 3.61 H), 7.21-7.17 (m, 0.94 H), 7.13-7.08 (m, 1.50 H), 3.83 (s, 0.48 H), 3.79 (0.68 H), 3.59 (dd, J = 6.3, 4.9 Hz, 0.73 H), 3.51 (s, 1.82 H), 3.41 (dd, J = 10.4, 6.5 Hz, 0.61 H), 3.32 (d, J = 8.1 Hz, 0.44 H), 3.10 (t, J = 8.1 Hz, 0.25 H), 3.05-3.01 (m, 0.15 H), 2.94 (dd, J = 10.4, 4.9 Hz, 0.58 H), 2.59 (dd, J = 9.3, 7.2 Hz, 0.20 H), 2.49 (s, 1.68 H), 2.48 (s, 0.63 H), 2.43 (s, 0.64 H); ¹³C NMR (126 MHz, CDCl₃) δ 170.87, 167.53, 167.10, 145.12, 144.92, 144.58, 137.43, 137.09, 136.75, 135.71, 132.43, 130.41, 130.25, 130.01, 129.93, 129.57, 129.53, 128.87, 128.71, 128.49, 128.12, 127.93, 127.88, 127.83, 127.78, 127.72, 127.44, 126.88, 52.88, 52.81, 52.34, 47.57, 46.56, 44.68, 44.21, 32.26, 31.51, 30.69, 30.27, 29.76, 28.27, 27.43, 23.74, 21.76, 21.68; HRMS calcd for C₁₈H₁₈NaO₄S ([M+Na]⁺): 353.0818; found: 353.0823.

(4) 2-Phenyl-3-tosylcyclopropane-1-carboxylic acid (18) (pcx-8-49).

To a round bottom flask was added LiOH (42.0 mg, 1.7 mmol) and compound **17** (112.0 mg, 0.34 mmol) in THF/H₂O (1:1, 4.0 mL). The mixture was stirred at 60 °C stirred overnight until the reaction was complete as monitored by TLC. 3 M HCl (2 mL)

was added to quench the reaction. The aqueous layer was extracted with EtOAc (5 mL × 3) and the combined organic layer was washed with brine (5 mL), dried over anhydrous MgSO₄, filtered and concentrated in vacuo. **18** (95.7 mg, 89%, dr = 74:22:<4) was obtained via chromatography on silica gel (eluent: petroleum ether/diethyl ether = 3/1) as an oil: ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.2 Hz, 1.48 H), 7.80 (d, *J* = 8.2 Hz, 0.08 H), 7.54 (d, *J* = 8.5 Hz, 0.10 H), 7.40 (d, *J* = 8.1 Hz, 1.50 Hz), 7.33-7.27 (m, 1.57 H), 7.26-7.22 (m, 2.12 H), 7.21-7.15 (m, 1.04 H), 7.10-7.05 (m, 1.45 H), 3.54 (dd, *J* = 6.3, 5.1 Hz, 0.74 H), 3.44 (dd, *J* = 10.3, 6.7 Hz), 3.29 (dd, *J* = 9.3, 4.8 Hz, 0.22 H), 3.23 (t, *J* = 5.8 Hz, 0.22 H), 3.09 (dd, *J* = 9.0, 7.2 Hz, 0.24 H), 2.87 (dd, *J* = 10.4, 4.8 Hz, 0.72 H), 2.49 (s, 2.15 H), 2.45 (s, 0.12 H), 2.43 (s, 0.67 H); ¹³C NMR (126 MHz, CDCl₃) δ 175.53, 172.34, 145.27, 144.75, 136.86, 136.46, 131.86, 130.29, 130.12, 129.98, 129.64, 129.44, 128.90, 128.70, 128.52, 128.16, 127.97, 127.93, 127.89, 127.81, 127.71, 126.83, 46.70, 44.48, 32.63, 31.49, 31.27, 30.25, 29.75, 29.41, 27.11, 23.74, 22.74, 21.75, 21.67, 14.17; HRMS calcd for C₁₇H₁₅O4S ([M-H]⁻): 315.0697; found: 315.0699.

According to literature,² condensation of acid 18 with amine 19 will give the final renin inhibitor 20.

10. Control experiment (pcx-8-31).

To a 10 mL reaction tube equipped with a stirring bar was added **1** (24.8 mg, 0.1 mmol, 1.0 equiv), **2** (36.0 mg, 0.12 mmol, 1.2 equiv), TEMPO (46.9 mg, 0.3 mmol, 3.0 equiv), and H₂O (1.0 mL) successively and the tube was sealed with a septum. The mixture was stirred at 120 °C for 2 h. **3a** was not observed in this reaction.

References

1 A. Jordan, K. D. Whymark, J. Sydenham, H. F. Sneddon, *Green Chem.*, 2021, 23, 6405.

2 W. R. Baker, H.-S. Jae, S. R. Martin, S. L. Condon, H. H. Stein, J. Cohen, H. D. Kleinert, *Bioorg. Med. Chem. Lett.*, 1992, **2**, 1405.

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

-62.794

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 11 (ppm)

-112.097

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

