Supporting information

Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production

Wuhuan Li^{a,b}, Xuesong Tan^{b*}, Changlin Miao^b, Zhanying Zhang^c, Yunxuan Wang^d, Arthur J. Ragauskas^{d,e,f}, Xinshu Zhuang^{a,b*}

^aSchool of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China

^bGuangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key

Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and

Renewable Energy Research and Development, Guangzhou 510640, PR China

°School of Mechanical, Medical and Process Engineering, Faculty of Engineering;

Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland

University of Technology, Brisbane, Queensland 4000, Australia

^dDepartment of Chemical and Biomolecular Engineering, University of Tennessee -Knoxville, Knoxville, TN, USA.

^eJoint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

^fCenter of Renewable Carbon, Department of Forestry, Wildlife, and Fisheries,

University of Tennessee Institute of Agriculture, Knoxville, TN, USA.

* Corresponding author:

E-mail address: zhuangxs@ms.giec.ac.cn,tanxs@ms.giec.ac.cn,

List of supporting information

Figure S1 SEM images of raw biomass (SCB) and residues

Figure S2 FTIR of raw biomass and residues (LOI=A1430cm⁻¹/A898cm⁻¹)

Figure S3 XRD of raw biomass and residues

Figure S4 Quantitative ³¹P NMR spectrum of MWL and APWL derivatized with

TMDP using cyclohexanol as internal standard

Table S1 Four-fraction Box-Behnken design

Table S2 Variance analysis of the quadratic model

Table S3 Comparison of treatment with APW to that with other organsolv solvents

Table S4 The assignment of peaks in 2D HSQC spectra of MWL and APWL

Table S5 Hydroxyl group contents of MWL and APWL as determined by ³¹P NMR analysis

Figure S1 SEM images of raw biomass (SCB) and residues (SCB-1, 125 °C - 120 min - 0.17 M H2SO4 - LSR15; SCB-2, 110 °C - 120 min - 0.15 M H2SO4 - LSR10; SCB-3, 110 °C - 110 min - 0.1 M H2SO4 - LSR10; SCB-4, 110 °C - 80 min - 0.2 M H2SO4 - LSR10; SCB-5, 110 °C - 90 min - 0.15 M H2SO4 - LSR10).

Figure S2 FTIR of raw biomass and residues (LOI=A1430cm-1/A898cm-1)

Figure S3 XRD of raw biomass and residues

Figure S4 Quantitative ³¹P NMR spectrum of MWL and APWL derivatized with TMDP using cyclohexanol as internal standard

Symbol	Variable		Coding level			
Symbol	variable	-1	0	1		
X_1	Time, min	30	75	120		
X_2	Temperature,°C	80	105	130		
X_3	H_2SO_4, M	0.05	0.175	0.3		
X_4	L:S	10	15	20		

Table S1 Four-fraction Box-Behnken design

Source	Sum of	10	Mean	El.	p-value	D
	squares	ar	square	F value	Prob>F	Remarks
Model	18158.1	14	1297	22.52	0.000	significant
X_1	1657.5	1	1657.5	28.78	0.000	significant
X_2	11660.1	1	11660.1	202.46	0.000	significant
X_3	2167.9	1	2167.9	37.64	0.000	significant
X_4	5.7	1	5.7	0.1	0.758	
X_1^2	90.6	1	90.6	1.57	0.230	
X_2^2	1955.3	1	1955.3	33.95	0.000	significant
X_3^2	440.0	1	440.0	7.64	0.015	
X_4^2	105.7	1	105.7	1.84	0.197	
$X_1 X_2$	49.8	1	49.8	0.87	0.368	
$X_1 X_3$	281.4	1	281.4	4.89	0.044	
$X_1 X_4$	14.9	1	14.9	0.26	0.619	
$X_2 X_3$	164.0	1	164.0	2.85	0.114	
$X_2 X_4$	22.3	1	22.3	0.39	0.544	
$X_3 X_4$	13.7	1	13.7	0.24	0.634	
Residual	806.3	14	57.6			
Lack of	702.2	10	70.2	22.65	0.004	
fit	192.3	10	19.2	22.03	0.004	
Pure error	14.0	4	3.5			
Cor Total	18964.4	28				

Table S2 Variance analysis of the quadratic model

Plant species	Pretreatment conditions	Lignin removal rate	Reference	
Sugarcane	APW, 0.2 M H2SO4,	04.049/	This study	
bagasse	110 °C, 80min,	94.94%		
Sugarcane	50% ethanol + BHT, 20% H2SO4,	70.450/	[1]	
bagasse	120°C, 30min	/2.45%		
Sugarcane	Water/1-buthanol (4.0mol/mol),	670/	[2]	
bagasse	200°C,	67%		
D	70% EPH:30%H2O, 0.05M H2SO4,		507	
Rice straw	130°C, 2h	63.16%	[3]	
Corncob	60 % pentanol, 160 °C, 60 min	85%	[4]	

Table S3 Comparison of treatment with APW to that with other organsolv solvents

Reference

[1] A. A. Schmatz and M. Brienzo, BioEnergy Research, 2021, 15, 166-174.

[2] Y. Kawamata, T. Yoshikawa, Y. Koyama, H. Ishimaru, S. Ohtsuki, E. Fumoto, S. Sato, Y.

Nakasaka and T. Masuda, Industrial Crops and Products, 2021, 159.113078.

[3] Q. Zhang, Y. Deng, X. Tan, W. Wang, Q. Yu, X. Chen, C. Miao, Y. Guo, Y. Zhang, X. Zhuang and Z. Yuan, Industrial Crops and Products, 2020, 145.112091.

[4] M. Madadi, Zahoor, G. J. Song, K. Karimi, D. C. Zhu, M. Elsayed, F. B. Sun and A. Abomohra, Bioresource Technology, 2022, 359.127503.

Label	$\delta_{\rm C}/\delta_{\rm H}(\rm ppm)$		- Assignment		
	MWL	APWL	Assignment		
B'_{β}	50.49/2.62	ND	C_{β} – H_{β} in β - β tetrahydrofuran (B')		
\mathbf{B}_{eta}	53.36/3.71	54.25/3.69	$C\beta$ – $H\beta$ in β - β tetrahydrofuran (B')		
OCH ₃	55.44/3.74	56.22/3.67	C-H in methoxyl		
A_{γ}	60.14/3.57	ND	C_{γ} -H _{γ} in β -O-4 substructures (A)		
\mathbf{B}_{γ}	66.16/3.76	71.77/4.20	C_{γ} -H _{γ} in phenylcoumaran substructures (B)		
A'_{γ}	63.95/4.27	ND	C_{γ} -H _{γ} in γ -acylated β -O-4 (A')		
\mathbf{B}_{γ}	71.77/4.19	69.75/3.97	C_{γ} – H_{γ} in β - β resinol (B)		
Glc ₅	71.47/3.51	ND	C ₅ -H ₅ in cellulose		
A_{α}	72.35/4.85	ND	C_{α} -H _{α} in β -O-4 substructures (A)		
X_2	72.71/3.21	ND	C_2 -H ₂ in β -D-xylopyranoside (X)		
B'_{α}	83.57/4.97	ND	C_{α} – H_{α} in β - β (B', tetrahydrofuran)		
\mathbf{B}_{α}	85.08/4.69	82.13/4.88	C_{α} - H_{α} in β - β resinol (B)		
X_3	74.94/3.25	ND	C_3 -H ₃ in β -D-xylopyranoside (X)		
X_4	76.14/3.53	ND	C ₄ -H ₄ in xylan substructures (X)		
A _g (G)	83 27/4 41	ND	C_{β} -H _{β} in β -O-4 substructures linked to		
μ(C)	001277 1111		G (A)		
$A_{B}(S)$	86.38/4.13	ND	C_{β} -H _{β} in β -O-4 substructures linked to a S		
þ(-)	5) 00.50/4.15 ND		unit (A)		
T_6	94.75/6.60	ND	C' _{2,6} –H' _{2,6} in tricin (T)		
T_8	99.38/6.25	ND	$C_{2,6}$ – $H_{2,6}$ in tricin (T)		
T ₃	105.45/7.05	ND	C_8 – H_8 in tricin (T)		
S _{2,6}	104.53/6.72	105.96/6.62	$C_{2,6}$ -H _{2,6} in syringyl units (S)		
S′ _{2,6}	107.13/7.34	106.76/7.32	$C_{2,6}$ -H _{2,6} in oxidized S units (S')		
T′ _{2,6}	106.49/7.30	ND	C' _{2,6} –H' _{2,6} in tricin (T)		
G ₂	111.64/7.0	ND	C ₂ -H ₂ in guaiacyl units (G)		
FA_2	112.02/7.35	111.89/7.32	C_2 – H_2 in ferulic acid (FA)		
pCE_8	114.20/6.24	114.59/6.29	C_8 -H ₈ in p-coumarate unites (pCA)		
G_5	115.47/6.8	114.28/6.76	C ₅ -H ₅ in guaiacyl units (G)		
G_6	119.72/6.84	120.84/6.81	C_6 -H ₆ in guaiacyl units (G)		
${ m H}_{2,6}$	128.51/7.18	129.65/7.16	C _{2,6} -H _{2,6} in p-hydroxyphenyl units (H)		
pCE _{2,6}	130.48/7.46	130.06/7.45	C _{2,6} -H _{2,6} in p-coumaric acid (pCA)		
pCE ₇ /FA ₇	145.31/7.41	145.08/7.44	C ₇ -H ₇ in p-coumarate unites (pCA) / ferulate units (FA)		

Table S4 The assignment of peaks in 2D HSQC spectra of MWL and APWL

Lignin sample	Aliphatic OH - mmol/g	Phe	COOU		
		Syringyl	Guaiacyl	p-hydroxy phenyl	mmol/g
MWL	8.60	0.18	0.53	1.70	ND
APWL	6.12	0.52	0.66	1.86	ND

Table S5 Hydroxyl group contents of MWL and APWL as determined by ³¹P NMR analysis