Supporting Information

Current-controlled Nickel-catalyzed Multi-electrophile Electroreductive Cross-Coupling

Shentong Xie^[a], Yuqing Yin^[a], Ya Wang^[a], Jiannan Wang^[a], Xiaoqian He^[b], Ruopeng Bai^{*[b]} and Renyi Shi^{*[a]}

[a] School of Chemical Engineering and Technology

Xi'an Jiaotong University

Xi'an 710049 (P. R. China)

E-mail: renyi.shi@xjtu.edu.cn

[b] School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of

Theoretical and Computational Chemistry

Chongqing University

Chongqing 400030 (P. R. China)

E-mail: ruopeng@cqu.edu.cn

1. General Analytical Information	S 2
2. General Reagent Information	S 2
3. General Procedure for Electroreductive Carbonylative Cross-electrophile	S 3
4 Large Scale Reaction procedure	S5
5. Optimizations of Ni-Catalyzed Electroreductive Carbonylation	S 6
6. Control Experiments	S 7
3. Kinetic experiments	S 9
7. Cyclic Voltammetry	S11
5. DFT Calculations	S14
8. Analytical Data of Substrates and Products	S 30
9. NMR Spectra of Substrates and Products	S46
10. References	S113

General Analytical Information

Nuclear Magnetic Resonance spectra were recorded on a Bruker Avance 400 MHz instruments at ambient temperature. All ¹H NMR spectra were measured in part per million (ppm) relative to the signals of tetramethylsilane (TMS, 0.00 ppm) added into the deuterated chloroform (CDCl₃, 7.30 ppm) unless otherwise stated. Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets), coupling constants, and integration. All ¹³C NMR spectra were reported in ppm relative to tetramethylsilane (0.00 ppm) unless otherwise stated, and were obtained with complete ¹H decoupling. All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with an FID detector. High-resolution mass spectra were obtained with an AB Triple 5600 mass spectrometer by ESI on a TOF mass analyzer.

General Reagent Information

Unless otherwise noted, all chemicals used in the preparations of starting materials and in the nickel catalyzed electroreductive carbonylative cross-coupling reactions were commercially available and were used as received without further purifications or prepared according to previous work. Solvents transferred to the glove box without exposure to air. Anhydrous dimethylacetamide (DMA) (99.8% purity) were purchased from China National Pharmaceutical Group Corporation.

General Procedure for Electroreductive Carbonylative Cross-electrophile

Figure S1 Hand-made electrochemical cell

Figure S2 Electrochemical reactor

General procedure A (Electroreductive Carbonylative of benzyl chlorides and iodobenzenes)

An oven-dried 20 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with dtbpy (15 mol%), NiCl₂·dme (10 mol%), LiOTf (0.2 M) in the glove. Then DMA (6 mL), benzyl chloride (0.75 mmol), ClCOOPr (1.5 mmol.), iodobenzene (0.5 mmol) were added into the tube in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode (Zn anode (12 mm X 15 mm), graphite felt cathode (12 mm X 15 mm)) onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) at room temperature for 4h. After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (4 X 30 mL). The organic layers were combined, and washed with brine (60 mL). Dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

General procedure B (Electroreductive Carbonylative of alkyl iodides and iodobenzenes)

An oven-dried 20 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with dtbpy (15 mol%), NiCl₂·dme (10 mol%), LiOTf (0.2 M), KF (2 mmol) in the glove. Then 4 mL DMA and 2 mL dioxane, alkyl iodides (0.6 mmol), ClCOOPr (2 mmol.), iodobenzenes (0.5 mmol) were added into the tube in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode (Zn anode (12 mm X 15 mm), graphite felt cathode (12 mm X 15 mm)) onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) at room temperature for 4h. After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (4 X 30 mL). The organic layers were combined, and washed with brine (60 mL). Dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

Large Scale Reaction procedure

Figure S3 Scale reaction set-up

An oven-dried 100 mL three-necked flask equipped with a Teflon-coated magnetic stir bar was sequentially charged with dtbpy (15 mol%), NiCl₂·dme (10 mol%), LiOTf (0.2 M) in the glove. Then 60 mL DMA, 1-(chloromethyl)-4-fluorobenzene **1a** (12 mmol), ClCOOPr (24 mmol.), iodobenzene **2a** (8 mmol) were added into the three-necked flask in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (60 mA) at room temperature for 12h. After electrolysis, the product was extracted from the crude reaction mixture with ethyl acetate (4 X 80 mL). The organic layers were combined, and washed with brine (160 mL). Dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

Optimizations of Ni-Catalyzed Electroreductive Carbonylation

Optimizations of electroreductive carbonylation of 1a and 2a

Table 1. Screening of the Reaction Conditions

F		↓ F	F	
1a	2a		3a	3a'
entry	deviation from standard cond	litions	yield 3a [%]	yield 3a' [%]
1	none		85 (78) ^c	14
2^b	Zn powder, 12h		48	42
3	I = 0 mA, 12h		4	66
4	I = 3 mA, 12h		44	53
5	I = 5 mA, 12h		53	40
6	I = 10 mA, 8 h		66	32
7	I = 20 mA, 3h		78	15
8	Mg instead of Zn		37	59
9	Fe instead of Zn		11	46
10	Ni foam instead of graphite	e felt	35	21
11	using 12 mmol% dtbpy	using 12 mmol% dtbpy		23
12	bpy instead of dtbpy		62	24
13	dmbpy instead of dtbpy	7	0	0
14	ⁿ Bu ₄ NBr instead of LiO	Γf	31	67
15	ⁿ BuNPF ₆ instead of LiO'	Γf	75	20
16	CO instead of ClCOO ⁿ F	r	8	trace
17	No NiCl ₂ ·dme / No dtbbpy l	igand	0	0
				>
	dtbpy	bpy	dmbpy	

^a Reaction condition 1: 0.75 mmol **1a**, 1.5 mmol ClCOOPr, 0.5 mmol **2a**, 0.2 M LiOTf, 10 mol% NiCl₂·dme, 15 mol% dtbpy, 6 mL DMAc, Zn anode, graphite felt cathode, undivided cell, constant current of 15 mA, rt, 4h. Conversion was measured by GC using naphthalene as an internal standard. ^b No electrode and electrolyte, 3 equiv. Zn powder. ^c Isolated yield.

Optimizations of electroreductive carbonylation of 10 and 2d

Table 2. Screening of the Reaction Conditions

2	0.6	1.5	DMAc	53
3 ^b	0.6	1.5	DMAc	52
4 ^c	0.6	1.5	DMAc	0
5	0.6	2	DMAc	60
6 ^d	0.6	2	DMAc	42
7 ^e	0.6	2	DMAc	55
8	0.6	2	DMAc/dioxane 4/2	72
9	0.6	2	DMAc/dioxane 2/4	57
10 ^f	0.6	2	DMAc/dioxane 4/2	79(71)

^a Reaction condition: (3-iodopropyl)benzene **10**, ClCOOPr, 0.5 mmol **2e**, 0.2 M LiOTf, 10 mol% NiCl₂·dme, 15 mol% dtbpy, 6 mL solvent, Zn anode, graphite felt cathode, undivided cell, constant current of 15 mA, rt, 4h. Conversion was measured by GC using naphthalene as an internal standard. ^b NiBr₂·dme. ^c Ligand: 3,2':6',3"-terpyridine. ^d 5 mol% NiCl₂·dme, 7.5 mol% dtbpy. ^c I= 10 mA. ^f 1.5 mmol KF as an additive.

Control Experiments

Eq.1 followed the General Procedure B using 6-iodohex-1-en-1-ylium as the substrate; Eq.2 followed the General Procedure B using (iodomethyl)cyclopropane as the substrate.

1-(4-methoxyphenyl)hept-6-en-1-one^[1] The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 6.97 – 6.93 (m, 2H), 5.89 – 5.79 (m, 1H), 5.07 – 4.96 (m, 2H), 3.89 (s, 3H), 2.96 – 2.90 (m, 2H), 2.16 – 2.10 (m, 2H), 1.79 – 1.75 (m, 2H), 1.54 – 1.47 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 199.0, 163.3, 138.6, 130.3, 130.2, 114.6, 113.7, 55.5, 38.1, 33.6, 28.7, 24.1.

1-(4-methoxyphenyl)pent-4-en-1-one^[2] The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.96 (m, 2H), 6.98 – 6.94 (m, 2H), 14 – 5.02 (m, 2H),.98 – 5.88 (m, 1H), 3.90 (s, 3H), 3.05 (t, J = 7.5 Hz, 2H), 2.54 – 2.48 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 163.4, 137.5, 130.3, 130.1, 115.2, 113.7, 55.5, 37.4, 28.4.

Eq.3 Without 1-(chloromethyl)-4-fluorobenzene iodobenzene 1a and iodobenzene 2a, the electrolysis of ClCO₂Pr followed the General Procedure A CO could be detected after the reaction using GC; Eq.4 followed the General Procedure A, using 1a and 2a as the substrate, CO could be still detected after the reaction using GC.

Eq.5 Without ClCO₂Pr, run the reaction followed the General Procedure A under the atmosphere CO/N₂ (1:7). The desired product 2-(4-fluorophenyl)-1-phenylethan-1-one **3a** was obtained with a yield of 36%.

1a + **2a**
$$(+) Zn || (-) C$$

1a + **2a** $(-) C || (-) C$
1 = 15 mA, dtbpy
3a eq. 5
DMA, CO/N₂ = 1/7, rt 34%

Kinetic experiments

An oven-dried 20 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with dtbpy (15 mol%), NiCl₂·dme (10 mol%), naphthalene (30 mg) as an internal standard, LiOTf (0.2 M) in the glove. Then 6mL DMA, **1a** (0.75 mmol), ClCOOPr (1.5 mmol.), **2a** (0.5 mmol) were added into the tube in turn. All these procedures were conducted in the glovebox. Screw the vial cap with electrode (Zn anode (12 mm X 15 mm), graphite felt cathode (12 mm X 15 mm)) onto the vial to finger tight and adapt the electrochemical cell. Then removed from the glove box. The reaction mixture was stirred and electrolyzed at a constant current (3mA and 15 mA) at room temperature. The yields of **3a** and **3a**' were detected using GC at different times.

Table 3. Monitor the reaction of nickel-catalyzed electroreductive carbonylation of 1aand 2a

	I=3mA			I=15mA	
T/h	yield 3a [%]	yield 3a' [%]	T/h	yield 3a [%]	yield 3a' [%]
1	5	1	0.5	5	2
2	11	7	1	10	9

4	28	18	1.5	12	24
6	39	30	2	13	35
8	44	37	2.5	14	48
10	49	41	3	15	60
12	53	44	3.5	15	73

Conversion was measured by GC using naphthalene as an internal standard.

Figure S4 Kinetic plots at I = 3 mA

Figure S5 Kinetic plots at I = 15 mA

Cyclic Voltammetry

Cyclic voltammograms in solvent (10 mL) by using glassy carbon as the working electrode, Pt wire as the counter electrode and Ag/AgCl as the reference electrode under N_2 at room temperature. DMA (10mL) containing 0.1 M ^{*n*}Bu₄PF₆ was poured into the electro chemical cell in all experiments. The scan rate was 100 mV s⁻¹.

1) Cathodic reduction

Figure S6: Cyclic voltammograms recorded on a glassy carbon electrode at 100 mVs⁻¹ in: (a) DMAc (10 mL), $^{n}Bu_4PF_6$ (1 mol); (b) **1a** (0.1 mmol), DMA (10 mL), $^{n}Bu_4PF_6$ (1 mol); (c) **1o** (0.1 mmol), DMA (10 mL), $^{n}Bu_4PF_6$ (1 mol); (d) ClCOOPr (0.1 mmol), DMA (10 mL), $^{n}Bu_4PF_6$ (1 mol); (d) **2a** (0.1 mmol), DMA (10 mL), $^{n}Bu_4PF_6$ (1 mol); (f) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), DMA (10 mL), $^{n}Bu_4PF_6$ (1 mol).

2) Interaction between [Ni] cat. and 2a iodobenzene

Figure S7: Cyclic voltammograms recorded on a glassy carbon electrode at 100 mVs⁻¹ in: (a) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), DMA (10 mL), ${}^{n}Bu_{4}PF_{6}$ (1 mol); (b) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), DMA (10 mL), ${}^{n}Bu_{4}PF_{6}$ (1 mol); (c) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), **2a** (0.2 mmol), DMA (10 mL), ${}^{n}Bu_{4}PF_{6}$ (1 mol).

3) Interaction between [Ni] cat. and ClCOOEt

Figure S8: Cyclic voltammograms recorded on a glassy carbon electrode at 100 mVs⁻¹ in: (a) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), DMA (10 mL), ⁿBu₄PF₆ (1 mol); (b) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), DMA (10 mL), ⁿBu₄PF₆ (1 mol); (c) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.2 mmol), DMA (10 mL), ⁿBu₄PF₆ (1 mol).

4) Interaction between [Ni] cat, 2a and ClCOOPr

Figure S9: Cyclic voltammograms recorded on a glassy carbon electrode at 100 mVs⁻¹ in: (a) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (b) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (c) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), ClCOOPr (0.1 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (d) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), dtbpy (0.15 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), **2a** (0.1 mmol), ClCOOPr (0.2 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (e) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), ClCOOPr (0.2 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (e) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), ClCOOPr (0.2 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (e) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), **2a** (0.1 mmol), ClCOOPr (0.3 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol):

5) Interaction between [Ni] cat, ClCOOPr and 2a

Figure S10: Cyclic voltammograms recorded on a glassy carbon electrode at 100 mVs⁻¹ in: (a) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (b) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (c) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), **2a** (0.1 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (d) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), ClCOOPr (0.1 mmol), **2a** (0.2 mmol), **DMA** (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (e) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), **2a** (0.2 mmol), **DMA** (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (e) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), **2a** (0.2 mmol), **DMA** (10 mL), ${}^{n}Bu_4PF_6$ (1 mol); (e) NiCl₂·dme (0.05 mmol), dtbpy (0.15 mmol), ClCOOPr (0.1 mmol), **2a** (0.3 mmol), DMA (10 mL), ${}^{n}Bu_4PF_6$ (1 mol):

DFT Calculations

Figure S11. DFT-computed energy profiles of the decarbonylation. Calculations were performed using Gaussian 16 at the M06-L/SDD-6-311+G(d, p)/SMD(DMA)//B3LYP-D3(BJ)/LANL2DZ-6-31G(d) level of theory and the values are shown in kcal/mol.

Computational Details

a) Computational methods

All DFT calculations were carried out using the Gaussian 16 series of programs^[3]. Geometries of intermediates and transition states were optimized using dispersioncorrected B3LYP-D3(BJ) functional^[4] with a mixed basis set of LANL2DZ for Ni and 6-31G(d) for other atoms in the gas phase. Vibrational frequency calculations were performed for all stationary points to confirm if each optimized structure is a local minimum or a transition state structure. All optimized transition state structures have only one imaginary (negative) frequency, and all minima (reactants, products, and intermediates) have no imaginary frequencies. The M06-L functional^[5] with a mixed basis set of SDD for Ni and 6-311+G(d,p) for other atoms was used for single-point energy calculations in solution. Solvation energy corrections were calculated in N, Ndimethylacetamide as solvent with the SMD continuum solvation model^[6] based on the gas-phase optimized geometries.

b) Cartesian coordinates (Å) and energies of optimized structures

Int-1

B3LYP-D3(BJ) SCF energy: -1286.44123339 a.u.
B3LYP-D3(BJ) enthalpy: -1285.915223 a.u.
B3LYP-D3(BJ) free energy: -1286.010599 a.u.
M06-L SCF energy in solution: -1288.18479433 a.u.
M06-L enthalpy in solution: -1287.658784 a.u.
M06-L free energy in solution: -1287.754160 a.u.

ATO	Ν	Х	Y	7	Ζ	
С	0.4	57280	0.6	504630		0.000132
С	-1.8	802105	1.1	13823	-	0.000156
С	-1.5	533949	2.4	482672	2 -	0.000165
С	-0.2	211367	2.9	937193	-	0.000152
С	0.7	91783	1.9	956375	_	0.000132
С	1.4	44803	-0.5	500507	' -	0.000129
С	1.7	40007	-2.7	795184	+ -	0.000336
С	3.1	25797	-2.6	567589) _	0.000158
С	3.7	06990	-1.3	395151		0.000053
С	2.8	23517	-0.3	307253		0.000061
Н	-2.8	809919	0.2	708883	3 -	0.000120

Н	-2.366600	3.174679	-0.000169
Η	1.833476	2.253991	-0.000148
Η	1.269844	-3.773583	-0.000499
Η	3.730466	-3.565413	-0.000210
Η	3.216700	0.701916	0.000230
N	0.904616	-1.747182	-0.000313
Ν	-0.830387	0.197330	-0.000144
Ni	-1.088266	-1.838382	-0.000245
С	5.218998	-1.157885	0.000295
С	5.603236	-0.354041	-1.261702
С	5.602831	-0.354170	1.262495
С	6.010356	-2.475761	0.000335
Η	5.335738	-0.902348	-2.171384
Η	5.100529	0.617971	-1.294404
Η	6.683798	-0.172461	-1.276381
Η	5.334995	-0.902534	2.172046
Η	6.683392	-0.172628	1.277569
Η	5.100133	0.617854	1.295113
Η	7.083484	-2.258766	0.000448
Η	5.794250	-3.079066	0.888837
Η	5.794433	-3.079003	-0.888259
С	0.169692	4.420423	-0.000119
С	1.005752	4.726738	1.262088
С	1.006264	4.726728	-1.261974
С	-1.065987	5.334976	-0.000370
Η	0.434198	4.511180	2.171256
Η	1.926109	4.134670	1.294944
Η	1.288329	5.785452	1.277908
Η	0.435131	4.511074	-2.171381
Η	1.288754	5.785466	-1.277723
Η	1.926705	4.134766	-1.294387
Η	-0.746664	6.382373	-0.000333
Η	-1.687189	5.177502	-0.888742
Η	-1.687553	5.177527	0.887743
С	-2.957618	-2.328720	-0.000204
0	-3.430686	-3.455810	-0.001059
0	-3.858708	-1.240267	0.000938
С	-5.252273	-1.571269	0.000689
С	-6.047714	-0.273771	0.000487
Η	-5.491035	-2.180739	0.881488
Η	-5.490685	-2.180868	-0.880101
Η	-5.763449	0.317400	0.881299
Η	-5.763136	0.317281	-0.880297
С	-7.559030	-0.520402	0.000246

Н	-8.118546	0.421866	0.000094
Η	-7.865988	-1.091695	-0.884256
Η	-7.866290	-1.091580	0.884719

TS-1

B3LYP-D3(BJ) SCF energy: -1286.43252526 a.u. B3LYP-D3(BJ) enthalpy: -1285.908793 a.u. B3LYP-D3(BJ) free energy: -1286.002969 a.u. M06-L SCF energy in solution: -1288.17243171 a.u. M06-L enthalpy in solution: -1287.648699 a.u. M06-L free energy in solution: -1287.742875 a.u. Imaginary frequency: -50.0659 cm⁻¹

M X	Y	Z
-0.431855	0.758862	-0.175778
1.652664	1.734546	-0.435163
1.117747	3.015520	-0.329496
-0.258611	3.182021	-0.136711
-1.027823	3 2.011877	-0.062269
-1.167098	-0.526857	-0.109918
-0.959964	-2.827297	-0.208334
-2.328931	-3.005832	-0.017767
-3.160855	5 -1.891437	0.135728
-2.541688	-0.634062	0.084909
2.714749	1.565626	-0.584187
1.784231	3.865695	-0.399120
-2.098843	3 2.082145	0.084500
-0.286030	-3.670210	-0.327937
-2.724757	7 -4.013074	0.008902
-3.138011	0.263247	0.199136
-0.386225	5 -1.622565	-0.254287
0.903721	0.628462	-0.359948
1.612232	2 -1.228786	-0.495819
-4.673402	2 -1.992874	0.350675
-5.036771	-1.332027	1.698813
-5.396595	5 -1.256115	-0.798396
-5.157286	-3.451760	0.376115
-4.529901	-1.834371	2.529755
-4.755565	5 -0.274218	1.723103
-6.117577	-1.394799	1.868553
-5.149466	5 -1.704063	-1.766907
-6.481879	9 -1.317442	-0.659537
-5.124119	-0.196486	-0.838288
	M X -0.431855 1.652664 1.117747 -0.258611 -1.027823 -1.167098 -0.959964 -2.328931 -3.160855 -2.541688 2.714749 1.784231 -2.098843 -0.286030 -2.724757 -3.138011 -0.386225 0.903721 1.612232 -4.673402 -5.036771 -5.396595 -5.157286 -4.755565 -6.117577 -5.149466 -6.481879 -5.124119	M X Y -0.431855 0.758862 1.652664 1.734546 1.117747 3.015520 -0.258611 3.182021 -1.027823 2.011877 -1.167098 -0.526857 -0.959964 -2.827297 -2.328931 -3.005832 -3.160855 -1.891437 -2.541688 -0.634062 2.714749 1.565626 1.784231 3.865695 -2.098843 2.082145 -0.286030 -3.670210 -2.724757 -4.013074 -3.138011 0.263247 -0.386225 -1.622565 0.903721 0.628462 1.612232 -1.228786 -4.673402 -1.992874 -5.036771 -1.332027 -5.396595 -1.256115 -5.157286 -3.451760 -4.529901 -1.834371 -4.755565 -0.274218 -6.117577 -1.394799 -5.149466 -1.704063

Н	-6.240886	-3.475639	0.531259
Н	-4.946132	-3.966023	-0.567786
Н	-4.693226	-4.019188	1.190154
С	-0.931563	4.551229	-0.009158
С	-1.974332	4.707835	-1.138076
С	-1.636535	4.641192	1.362431
С	0.079517	5.704355	-0.114870
Η	-1.498030	4.642383	-2.122237
Η	-2.748981	3.935865	-1.087055
Η	-2.468211	5.683010	-1.060587
Η	-0.916942	4.527046	2.180291
Η	-2.125731	5.615865	1.470033
Η	-2.403032	3.868063	1.478186
Η	-0.444236	6.660959	-0.017937
Η	0.833296	5.657231	0.678634
Η	0.594808	5.705130	-1.081568
С	2.994532	-2.569991	-0.559490
0	3.658746	-3.531643	-0.335432
0	3.788842	-1.188950	-0.781966
С	5.077618	-1.092675	-0.201503
С	5.033333	-0.381801	1.152019
Η	5.735598	-0.548502	-0.894917
Η	5.485746	-2.106112	-0.080474
Η	4.583367	0.612105	1.017576
Η	4.357576	-0.942595	1.810651
С	6.415794	-0.250685	1.795945
Η	7.099034	0.320848	1.154961
Η	6.362997	0.259261	2.764668
Н	6.867096	-1.236426	1.961697

СО

B3LYP-D3(BJ) SCF energy: -113.30764 a.u.
B3LYP-D3(BJ) enthalpy: -113.2993 a.u.
B3LYP-D3(BJ) free energy: -113.32174 a.u.
M06-L SCF energy in solution: -113.32564 a.u.
M06-L enthalpy in solution: -113.317298 a.u.
M06-L free energy in solution: -113.339741 a.u.

Cartesian coordinates

ATON	A X	Y	Z
С	0.000000	0.000000	-0.650132
0	0.000000	0.000000	0.487599

Int-2

B3LYP-D3(BJ) SCF energy: -1173.11029355 a.u.
B3LYP-D3(BJ) enthalpy: -1172.596546 a.u.
B3LYP-D3(BJ) free energy: -1172.686510 a.u.
M06-L SCF energy in solution: -1174.83175090 a.u.
M06-L enthalpy in solution: -1174.318003 a.u.
M06-L free energy in solution: -1174.407967 a.u.

ATO	M X	Y	Ζ
С	-0.973977	-0.438279	-0.174256
С	-1.347158	-2.718215	-0.347286
С	-2.709701	-2.559541	-0.132491
С	-3.240996	-1.279211	0.086182
С	-2.330696	-0.217533	0.058523
С	0.041727	0.625214	-0.237116
С	2.287096	1.072183	-0.586509
С	2.089215	2.438055	-0.422116
С	0.805851	2.929949	-0.140791
С	-0.219878	1.982660	-0.050982
Н	-0.914576	-3.701293	-0.504090
Η	-3.340784	-3.439189	-0.132647
Η	-2.681834	0.795506	0.215249
Н	3.271704	0.662525	-0.787624
Η	2.940072	3.101447	-0.510917
Η	-1.231651	2.304452	0.165517
Ν	1.295648	0.175119	-0.496020
Ν	-0.479437	-1.692184	-0.366670
Ni	1.487327	-1.831177	-0.578892
С	0.500131	4.416494	0.063540
С	-0.527990	4.871177	-0.995849
С	-0.088734	4.622831	1.476538
С	1.758261	5.289481	-0.072094
Н	-0.134235	4.729981	-2.008202
Н	-1.465683	4.311335	-0.918797
Η	-0.760665	5.934027	-0.863649
Η	0.621743	4.302802	2.246337
Н	-0.316002	5.682664	1.638995
Η	-1.015082	4.056687	1.617906
Η	1.493689	6.340840	0.081912
Η	2.517142	5.025786	0.672653
Н	2.206934	5.202874	-1.067734
С	-4.727184	-1.014716	0.341337
С	-4.892023	-0.340248	1.721161
С	-5.270809	-0.077254	-0.759491

С	-5.554471	-2.310437	0.330290
Н	-4.509554	-0.985386	2.519479
Η	-4.356420	0.613169	1.774028
Н	-5.951371	-0.140674	1.919406
Н	-5.161117	-0.532656	-1.749653
Η	-6.334772	0.125098	-0.591124
Η	-4.745554	0.883310	-0.771307
Η	-6.607627	-2.075318	0.516411
Η	-5.494805	-2.821681	-0.636793
Η	-5.227318	-3.007107	1.109891
0	2.949954	-2.873926	-0.664558
С	4.011715	-3.059117	0.206453
С	4.636466	-1.745990	0.700579
Η	4.807779	-3.646226	-0.292473
Η	3.714243	-3.650867	1.096454
Η	4.939192	-1.160955	-0.179998
Η	3.855232	-1.165222	1.212122
С	5.834242	-1.956508	1.630357
Η	6.631439	-2.517000	1.126270
Н	6.259912	-1.004367	1.968573
Н	5.545190	-2.526725	2.522194

Int-3

B3LYP-D3(BJ) SCF energy: -1746.70699464 a.u.
B3LYP-D3(BJ) enthalpy: -1746.175844 a.u.
B3LYP-D3(BJ) free energy: -1746.271667 a.u.
M06-L SCF energy in solution: -1748.47402929 a.u.
M06-L enthalpy in solution: -1747.942879 a.u.
M06-L free energy in solution: -1748.038702 a.u.

ATON	А Х	Y	Z
С	0.770314	0.819678	-0.151390
С	-1.171733	2.017189	-0.559544
С	-0.503821	3.228363	-0.403427
С	0.859188	3.248492	-0.097824
С	1.486001	2.000491	0.014732
С	1.381981	-0.522951	-0.097542
С	0.986037	-2.782212	-0.405261
С	2.312713	-3.094164	-0.113767
С	3.217078	-2.078979	0.212002
С	2.715622	-0.769312	0.214316
Н	-2.220399	1.977698	-0.825587
Н	-1.068244	4.143222	-0.529554

Η	2.547559	1.948124	0.221475
Η	0.244942	-3.536808	-0.649722
Η	2.617462	-4.132397	-0.141752
Η	3.369315	0.056986	0.464783
Ν	0.528553	-1.527679	-0.398062
Ν	-0.563889	0.829581	-0.418584
С	4.685781	-2.337122	0.557637
С	5.580721	-1.576888	-0.446103
С	4.962410	-1.826313	1.989036
С	5.040171	-3.831586	0.494339
Н	5.396369	-1.917224	-1.470720
Н	5.404966	-0.496703	-0.412977
Η	6.637005	-1.750750	-0.212388
Н	4.333237	-2.347132	2.718744
Н	6.011094	-2.002354	2.253459
Η	4.769772	-0.752680	2.083573
Н	6.096678	-3.968012	0.747101
Н	4.450447	-4.419200	1.206181
Н	4.883096	-4.244009	-0.508206
С	1.664649	4.534809	0.094252
С	2.280115	4.535355	1.511159
С	2.792130	4.584806	-0.960706
С	0.791489	5.790328	-0.061362
Н	1.498831	4.494235	2.277686
Н	2.949131	3.682583	1.665726
Н	2.863340	5.449979	1.665443
Η	2.379631	4.577460	-1.975260
Η	3.380124	5.500999	-0.836579
Η	3.475356	3.734307	-0.868391
Η	1.405344	6.684064	0.090257
Η	0.350848	5.857222	-1.061962
Η	-0.018528	5.815080	0.675693
С	-3.148516	-0.280011	-0.650385
0	-3.623307	0.448241	-1.506753
0	-3.851241	-0.648414	0.446688
С	-5.229826	-0.222253	0.489310
С	-5.848494	-0.797169	1.751646
Η	-5.740036	-0.581384	-0.410842
Н	-5.273412	0.873728	0.479112
Η	-5.739139	-1.887827	1.729726
Η	-5.281339	-0.440842	2.620843
Ni	-1.393174	-0.932864	-0.615770
Cl	-2.197006	-2.949708	-0.996602
С	-7.324301	-0.411898	1.888157

Η	-7.910963	-0.781459	1.038549
Η	-7.758674	-0.832658	2.801277
Η	-7.450351	0.677110	1.929495

TS-2

B3LYP-D3(BJ) SCF energy: -1746.64639030 a.u. B3LYP-D3(BJ) enthalpy: -1746.118979 a.u. B3LYP-D3(BJ) free energy: -1746.214322 a.u. M06-L SCF energy in solution: -1748.41822158 a.u. M06-L enthalpy in solution: -1747.890810 a.u. M06-L free energy in solution: -1747.986153 a.u. Imaginary frequency: -373.5490 cm⁻¹

ATO	М	Х	Y	Z	Z
С	0.7	14486	0.83488	33	-0.167411
С	-1.1	41249	2.2336	17	-0.277282
С	-0.3	41370	3.35834	43	-0.100192
С	1.0	46157	3.22968	86	0.028979
С	1.5	59621	1.92588	39	0.004603
С	1.1	27544	-0.57300)4	-0.132190
С	0.3	55883	-2.75975	56	-0.172359
С	1.6	46927	-3.25230)5	-0.008439
С	2.7	34561	-2.37787	75	0.087454
С	2.4	38303	-1.01019	91	0.021107
Н	-2.2	23763	2.2684′	75	-0.336579
Н	-0.8	22493	4.3269	71	-0.063483
Н	2.6	21552	1.7575	19	0.134563
Н	-0.5	06945	-3.4087	48	-0.263276
Н	1.7	81418	-4.32522	22	0.037928
Н	3.2	33820	-0.2783	04	0.090480
Ν	0.0	91068	-1.4473	67	-0.236004
Ν	-0.6	19465	1.0028	17	-0.336452
С	4.1	81720	-2.84478	86	0.255665
С	5.0	15882	-2.33420	51	-0.940260
С	4.7	49255	-2.26311	17	1.569540
С	4.2	90716	-4.3771	16	0.310948
Н	4.6	27763	-2.7289	05	-1.885343
Н	5.0	11146	-1.24122	26	-1.003993
Н	6.0	57247	-2.6584	67	-0.835641
Н	4.1	68121	-2.6051	14	2.432633
Н	5.7	86836	-2.58799	91	1.704937
Н	4.7	39852	-1.1682	52	1.569020
Н	5.3	40069	-4.6648	81	0.431563

Η	3.733566	-4.793674	1.157113
Н	3.922810	-4.843892	-0.609158
С	1.989039	4.421577	0.208169
С	2.733237	4.277456	1.554386
С	3.010527	4.431288	-0.950743
С	1.234103	5.760655	0.207037
Н	2.027615	4.257326	2.391766
Н	3.331080	3.361121	1.594905
Н	3.411905	5.125410	1.698645
Н	2.505078	4.526886	-1.917701
Н	3.696269	5.278293	-0.837755
Н	3.610934	3.515970	-0.973175
Н	1.947181	6.582116	0.330408
Н	0.699248	5.924341	-0.734761
Н	0.513366	5.821727	1.029598
С	-3.086047	0.198626	-1.769069
0	-4.050274	0.390485	-2.374908
0	-3.296974	0.578806	0.187852
С	-4.473503	0.070577	0.745312
С	-4.212216	-0.630886	2.081786
Н	-4.966953	-0.641353	0.059541
Н	-5.192368	0.895300	0.908918
Η	-3.495766	-1.440693	1.899176
Η	-3.726951	0.082958	2.761920
Ni	-1.638373	-0.604460	-0.587186
Cl	-2.737029	-2.519708	-0.771130
С	-5.488162	-1.188894	2.717077
Н	-5.964499	-1.923165	2.056052
Н	-5.279594	-1.686441	3.671478
Н	-6.219325	-0.393078	2.909567

Int-4

B3LYP-D3(BJ) SCF energy: -1633.36627581 a.u.
B3LYP-D3(BJ) enthalpy: -1632.847216 a.u.
B3LYP-D3(BJ) free energy: -1632.937445 a.u.
M06-L SCF energy in solution: -1635.11024918 a.u.
M06-L enthalpy in solution: -1634.591189 a.u.
M06-L free energy in solution: -1634.681418 a.u.

ATO	M X	Y	Z
С	0.375698	0.834618	0.000161
С	-1.770649	1.721775	0.000595
С	-1.270950	3.021258	0.000433

C	0.110589	3.245524	0.000115
С	0.932613	2.109684	-0.000016
С	1.136409	-0.426033	0.000134
С	0.964224	-2.736106	0.000716
С	2.349834	-2.874478	0.000487
С	3.173637	-1.745165	-0.000015
С	2.524719	-0.503079	-0.000180
Η	-2.826801	1.466900	0.000815
Н	-1.973815	3.844324	0.000561
Η	2.009990	2.220533	-0.000244
Η	0.292523	-3.587089	0.001000
Η	2.764053	-3.874428	0.000679
Η	3.105160	0.411375	-0.000549
N	0.359814	-1.540939	0.000513
N	-0.964850	0.657454	0.000461
С	4.702195	-1.813991	-0.000358
С	5.237200	-1.102644	-1.263000
С	5.237765	-1.102145	1.261768
С	5.214767	-3.263208	-0.000191
Н	4.864268	-1.586022	-2.172330
Н	4.939835	-0.049402	-1.294911
Η	6.332100	-1.141471	-1.278902
Н	4.865234	-1.585163	2.171454
Η	6.332673	-1.140968	1.277202
Н	4.940411	-0.048892	1.293389
Η	6.309591	-3.264019	-0.000472
Η	4.883029	-3.811051	0.888439
Η	4.882567	-3.811411	-0.888426
С	0.736334	4.642542	-0.000074
С	1.612662	4.801623	1.262164
С	1.612297	4.801459	-1.262583
С	-0.327196	5.752480	0.000006
Н	1.013792	4.684780	2.171748
Η	2.420808	4.063648	1.293726
Н	2.068860	5.797736	1.278162
Η	1.013161	4.684527	-2.171981
Η	2.068513	5.797561	-1.278826
Η	2.420420	4.063465	-1.294300
Η	0.164949	6.730456	-0.000114
Η	-0.966084	5.702780	-0.888356
Η	-0.965846	5.702882	0.888545
Ni	-1.597424	-1.200662	0.000391
Cl	-2.141832	-3.340205	-0.000030
0	-3.272007	-0.542451	0.000270

С	-4.459033	-1.286280	-0.000236
С	-5.638169	-0.307242	-0.000733
Η	-4.531494	-1.941403	0.882157
Η	-4.530755	-1.941395	-0.882667
Η	-5.552639	0.342708	0.880811
Η	-5.552181	0.342380	-0.882471
С	-6.991538	-1.022664	-0.000949
Η	-7.824127	-0.309562	-0.001390
Η	-7.098891	-1.662895	-0.885077
Η	-7.099422	-1.662432	0.883448

Int-5

 B3LYP-D3(BJ) SCF energy: -2206.92509840 a.u.

 B3LYP-D3(BJ) enthalpy: -2206.391023 a.u.

 B3LYP-D3(BJ) free energy: -2206.494080 a.u.

 M06-L SCF energy in solution: -2208.72052145 a.u.

 M06-L enthalpy in solution: -2208.186446 a.u.

 M06-L free energy in solution: -2208.289503 a.u.

ATON	И Х	Y	Z
С	1.156148	0.759107	-0.000003
С	-0.386452	2.488588	-0.000028
С	0.624686	3.447760	-0.000013
С	1.963898	3.050467	0.000063
С	2.208481	1.670076	0.000025
С	1.344696	-0.709979	-0.000049
С	0.271819	-2.759910	-0.000179
С	1.481682	-3.448961	-0.000148
С	2.684534	-2.735416	-0.000058
С	2.588530	-1.337306	-0.000006
Н	-1.437243	2.755185	-0.000062
Н	0.344956	4.493218	-0.000044
Н	3.228077	1.306184	0.000048
Н	-0.678483	-3.283696	-0.000243
Н	1.466078	-4.530994	-0.000215
Н	3.490576	-0.738660	0.000057
Ν	0.206472	-1.430156	-0.000125
Ν	-0.128034	1.180860	-0.000023
С	4.059971	-3.407524	-0.000014
С	4.834021	-2.968333	-1.262676
С	4.833904	-2.968361	1.262735
С	3.953803	-4.941098	-0.000022
Н	4.298880	-3.261884	-2.172058

Η	4.981497	-1.883991	-1.294277
Η	5.822514	-3.440820	-1.278693
Η	4.298675	-3.261915	2.172066
Η	5.822389	-3.440860	1.278851
Η	4.981381	-1.884018	1.294368
Η	4.958081	-5.377049	0.000016
Η	3.431713	-5.312073	0.888696
Η	3.431745	-5.312096	-0.888745
С	3.135562	4.035282	0.000058
С	3.992776	3.796464	1.262781
С	3.992830	3.796347	-1.262608
С	2.660687	5.497286	-0.000034
Η	3.402394	3.952006	2.172051
Η	4.398229	2.780003	1.294626
Η	4.837592	4.494082	1.278908
Н	3.402532	3.951961	-2.171915
Η	4.837737	4.493866	-1.278667
Н	4.398203	2.779851	-1.294400
Η	3.529188	6.163905	-0.000077
Н	2.063923	5.730175	-0.888587
Н	2.063942	5.730292	0.888505
С	-3.218930	0.606952	0.000029
0	-3.337842	1.804773	0.000039
0	-4.180303	-0.298953	0.000048
С	-5.543080	0.219272	0.000014
С	-6.477524	-0.974451	0.000052
Η	-5.670186	0.844441	-0.889387
Н	-5.670213	0.844529	0.889355
Н	-6.263375	-1.590290	-0.881252
Н	-6.263370	-1.590211	0.881420
Cl	-1.864999	-0.601643	-2.230575
Ni	-1.529745	-0.338140	0.000013
Cl	-1.864873	-0.602077	2.230561
С	-7.944997	-0.534789	0.000040
Н	-8.181200	0.066759	-0.885803
Н	-8.610538	-1.403914	0.000089
Н	-8.181190	0.066852	0.885822

TS-3

B3LYP-D3(BJ) SCF energy: -2206.87357239 a.u.
B3LYP-D3(BJ) enthalpy: -2206.343053 a.u.
B3LYP-D3(BJ) free energy: -2206.444887 a.u.
M06-L SCF energy in solution: -2208.67782147 a.u.
M06-L enthalpy in solution: -2208.147302 a.u.

M06-L free energy in solution: -2208.249136 a.u. Imaginary frequency: -177.2754 cm⁻¹

ATO	M X	Y Z	Z
С	-1.292784	-0.275327	0.032325
С	-1.301515	-2.583825	0.185187
С	-2.675310	-2.637971	-0.035966
С	-3.394184	-1.456298	-0.241172
С	-2.664158	-0.260224	-0.199967
С	-0.448456	0.933554	0.119605
С	1.715574	1.695920	0.492148
С	1.301726	3.024285	0.443196
С	-0.044536	3.325488	0.211558
С	-0.920302	2.240298	0.058681
Н	-0.718642	-3.485290	0.336852
Н	-3.161536	-3.604582	-0.049573
Н	-3.168580	0.685715	-0.353672
Н	2.743532	1.408221	0.682733
Н	2.037827	3.803377	0.590870
Н	-1.977100	2.417450	-0.096713
Ν	0.864640	0.689760	0.313464
Ν	-0.630680	-1.435985	0.217450
С	-0.582442	4.756418	0.136935
С	-1.236664	4.974278	-1.245521
С	-1.636590	4.955532	1.248681
С	0.528892	5.802102	0.322923
Н	-0.508698	4.829831	-2.050948
Н	-2.069257	4.284383	-1.416697
Н	-1.628350	5.995035	-1.316323
Н	-1.197211	4.794151	2.238776
Н	-2.030616	5.977147	1.210471
Н	-2.481143	4.267688	1.138866
Н	0.099613	6.806881	0.255458
Н	1.010741	5.713555	1.302668
Н	1.299145	5.718256	-0.451514
С	-4.901852	-1.424237	-0.502214
С	-5.586164	-0.593807	0.606196
С	-5.158544	-0.768256	-1.877137
С	-5.516948	-2.832957	-0.509206
Н	-5.409423	-1.035581	1.592673
Н	-5.219523	0.437581	0.628560
Н	-6.667726	-0.560213	0.434203
Н	-4.672977	-1.335266	-2.678413

Η	-6.234611	-0.737611	-2.081325
Η	-4.781715	0.258909	-1.916092
Η	-6.592690	-2.760880	-0.699137
Η	-5.083371	-3.461349	-1.294753
Η	-5.383826	-3.339171	0.453134
С	2.237274	-2.830005	0.716230
0	2.691429	-3.861908	0.886066
0	3.384035	-1.012562	0.604321
С	4.250318	-1.092522	-0.500675
С	4.417510	0.246545	-1.220818
Н	3.856087	-1.813289	-1.233408
Η	5.219330	-1.476854	-0.143207
Η	3.430250	0.567440	-1.569701
Η	4.787559	0.996772	-0.508270
Cl	1.413912	-1.588992	-2.005182
Ni	1.397986	-1.193031	0.396596
Cl	1.142681	-1.350724	2.793702
С	5.375238	0.127457	-2.408746
Η	4.987068	-0.583130	-3.147245
Η	5.506447	1.093042	-2.909115
Н	6.365778	-0.221520	-2.091650

Int-6

 B3LYP-D3(BJ) SCF energy: -2093.55692492 a.u.

 B3LYP-D3(BJ) enthalpy: -2093.036044 a.u.

 B3LYP-D3(BJ) free energy: -2093.133701 a.u.

 M06-L SCF energy in solution: -2095.33793851 a.u.

 M06-L enthalpy in solution: -2094.817058 a.u.

 M06-L free energy in solution: -2094.914715 a.u.

ATO	м Х	Y Z	Z
С	-1.174759	-0.265551	0.022518
С	-1.368325	-2.571894	0.180945
С	-2.743412	-2.513698	-0.023426
С	-3.368100	-1.277127	-0.217802
С	-2.544477	-0.143600	-0.191134
С	-0.233841	0.872867	0.085398
С	1.988024	1.462788	0.412476
С	1.685888	2.818623	0.307364
С	0.366929	3.223317	0.075727
С	-0.598169	2.210556	-0.029756
Н	-0.851053	-3.512544	0.329625
Η	-3.305921	-3.437929	-0.028690

Н	-2.973925	0.839630	-0.337209
Н	2.988996	1.093764	0.603649
Н	2.486558	3.539066	0.411710
Н	-1.636520	2.469613	-0.194857
Ν	1.052251	0.524243	0.291718
Ν	-0.610774	-1.477326	0.203373
С	-0.049939	4.690454	-0.054160
С	-0.690578	4.908938	-1.442873
С	-1.078453	5.020114	1.050520
С	1.145565	5.646067	0.089151
Η	0.018891	4.673402	-2.243372
Н	-1.578937	4.285223	-1.585738
Η	-0.995930	5.955389	-1.552782
Н	-0.649011	4.862034	2.045478
Н	-1.386701	6.068600	0.972546
Η	-1.977652	4.400882	0.969670
Η	0.800797	6.680011	-0.013399
Η	1.625083	5.552894	1.069589
Η	1.901004	5.470566	-0.684518
С	-4.873007	-1.124270	-0.451016
С	-5.467460	-0.244174	0.670918
С	-5.102686	-0.446883	-1.820304
С	-5.598818	-2.479315	-0.447073
Н	-5.306432	-0.700185	1.653509
Η	-5.020266	0.755025	0.686133
Η	-6.546185	-0.125323	0.520287
Н	-4.680292	-1.049482	-2.631451
Н	-6.176528	-0.329702	-2.003520
Н	-4.645918	0.547084	-1.866033
Н	-6.668563	-2.320950	-0.617428
Н	-5.231398	-3.139342	-1.240401
Η	-5.489368	-2.995979	0.512611
0	3.212864	-1.343702	0.833626
С	4.244022	-1.747919	-0.012863
С	4.624335	-0.727053	-1.084469
Н	4.022732	-2.723011	-0.470736
Н	5.102060	-1.922710	0.665148
Н	3.730777	-0.508580	-1.678802
Н	4.932175	0.206653	-0.592493
Cl	1.587637	-2.336372	-1.613560
Ni	1.377066	-1.474206	0.494867
Cl	0.918855	-1.678859	2.744483
С	5.745434	-1.238418	-1.992128
Η	5.430967	-2.144863	-2.522426

Н	6.022552	-0.491430	-2.743884

Н 6.647522 -1.482836 -1.416898

Analytical Data of Substrates and Products

2-(4-fluorophenyl)-1-phenylethan-1-one^[7] Light yellow solid (83.5 mg, 78% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.02 (m, 2H), 7.63 – 7.59 (m, 1H), 7.53 – 7.49 (m, 2H), 7.29 – 7.23 (m, 2H), 7.03 – 6.09 (m, 2H), 4.30 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 161.9 (d, J = 245.2 Hz), 136.4, 133.4, 131.1 (d, J = 8.0 Hz), 130.2 (d, J = 3.3 Hz), 128.7, 128.5, 115.5 (d, J = 21.5 Hz), 44.5.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.93.

2-(4-fluorophenyl)-1-(p-tolyl)ethan-1-one^[8] White solid (94.7 mg, 83% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.31 – 7.24 (m, 4H), 7.08 – 7.02 (m, 2H), 4.27 (s, 2H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.1, 161.9 (d, J = 245.0 Hz), 144.2, 134.0, 131.0 (d, J = 8.0 Hz), 130.4 (d, J = 3.3 Hz), 129.4, 128.7, 115.5 (d, J = 21.5 Hz), 44.4, 21.7.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.07.

1-(4-(tert-butyl)phenyl)-2-(4-fluorophenyl)ethan-1-one White solid (110.7 mg, 82% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.98 (m, 2H), 7.54 – 7.51 (m, 2H), 7.30 – 7.25 (m, 2H), 7.07 – 7.03 (m, 2H), 4.28 (s, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 197.1, 161.9 (d, *J* = 245.0 Hz), 157.1, 133.9, 131.0 (d, *J* = 8.0 Hz), 130.4 (d, *J* = 3.3 Hz), 128.6, 125.7, 115.5 (d, *J* = 21.3 Hz), 44.5, 35.2, 31.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.05.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₉FNaO⁺ 293.1312; Found 293.1310.

1-(3,5-dimethylphenyl)-2-(4-fluorophenyl)ethan-1-one Light yellow oil (92.1 mg, 76% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 1.7 Hz, 2H), 7.28 – 7.24 (m, 3H), 7.08 – 7.04 (m, 2H), 4.28 (s, 2H), 2.42 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 197.8, 161.9 (d, *J* = 245.0 Hz), 138.4, 136.7, 135.0, 131.1 (d, *J* = 7.9 Hz), 130.4 (d, *J* = 3.3 Hz), 126.3, 115.5 (d, *J* = 21.4 Hz), 44.5, 21.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.07.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{15}FNaO^+$ 265.0999; Found 265.0997.

2-(4-fluorophenyl)-1-(4-methoxyphenyl)ethan-1-one^[9] Light yellow oil (107.4 mg, 88% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.27 – 7.23 (m, 2H), 7.06 – 7.02 (m, 2H), 6.98 – 6.96 (m, 2H), 4.24 (s, 2H), 3.90 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.0, 163.7, 161.9 (d, *J* = 245.0 Hz), 131.0 (d, *J* = 8.0 Hz), 130.9, 130.6 (d, *J* = 3.3 Hz), 129.5, 115.5 (d, *J* = 21.4 Hz), 113.9, 55.5, 44.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.15.

2-(4-fluorophenyl)-1-(3-methoxyphenyl)ethan-1-one Yellow oil (74.6 mg, 61% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.63 (ddd, *J* = 7.7, 1.6, 1.0 Hz, 1H), 7.55 (dd, *J* = 2.7, 1.6 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.15 (ddd, *J* = 8.2, 2.7, 1.0 Hz, 1H), 7.08 – 7.02 (m, 2H), 4.28 (s, 2H), 3.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.3, 161.9 (d, *J* = 245.1 Hz), 159.9, 137.8, 131.1 (d, *J* = 8.0 Hz), 130.2 (d, *J* = 3.4 Hz), 129.7, 121.2, 119.7, 115.5 (d, *J* = 21.3 Hz), 112.9, 55.4, 44.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.97.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{13}FNaO_2^+$ 267.0792; Found 267.0789.

1-(3,5-dimethoxyphenyl)-2-(4-fluorophenyl)ethan-1-one Yellow oil (97.3 mg, 71% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (m, 2H), 7.16 (d, *J* = 2.3 Hz, 2H), 7.07 – 7.01 (m, 2H), 6.68 (t, *J* = 2.3 Hz, 1H), 4.24 (s, 2H), 3.85 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 197.14, 161.9 (d, *J* = 245.1 Hz), 160.9, 138.4, 131.0 (d, *J* = 8.0 Hz), 130.2 (d, *J* = 3.3 Hz), 115.5 (d, *J* = 21.5 Hz), 106.4, 105.4, 55.6, 44.6.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.93.

HRMS (ESI) m/z: [M + Na] + Calcd for C₁₆H₁₅FNaO₃+ 297.0897; Found 297.0902.

2-(4-fluorophenyl)-1-(o-tolyl)ethan-1-one Light yellow oil (44.5 mg, 39% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 7.7, 1.4 Hz, 1H), 7.41 (td, J = 7.5, 1.4 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.24 – 7.21 (m, 2H), 7.07 – 7.02 (m, 2H), 4.22 (s, 2H), 2.48 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.2, 161.9 (d, J = 245.3 Hz), 138.6, 137.4, 132.1, 131.5, 131.1 (d, J = 8.0 Hz), 130.1 (d, J = 3.5 Hz), 128.6, 125.7, 115.5 (d, J = 21.4 Hz), 47.4, 21.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -116.61.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃FNaO⁺ 251.0842; Found 251.0852.

2-(4-fluorophenyl)-1-(2-methoxyphenyl)ethan-1-one Light yellow oil (51.2 mg, 42% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 7.7, 1.8 Hz, 1H), 7.50 (ddd, J = 8.4, 7.3, 1.9 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.05 – 6.99 (m, 4H), 4.31 (s, 2H), 3.96 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 199.9, 161.8 (d, J = 244.4 Hz), 158.4, 133.7, 131.2 (d, J = 7.8 Hz), 130.9 (d, J = 3.3 Hz), 130.7, 128.0, 120.8, 115.2 (d, J = 21.3 Hz), 111.5, 55.5, 49.3.

 ^{19}F NMR (376 MHz, CDCl₃) δ -116.01.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{13}FNaO_2^+$ 267.0792; Found 267.0790.

1-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(4-fluorophenyl)ethan-1-one White solid (134.2 mg, 78% yield). mp 140.6–141.3 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.28 – 7.23 (m, 2H), 7.07 – 7.01 (m, 2H), 6.93 – 6.89 (m, 2H), 4.24 (s, 2H), 1.02 (s, 9H), 0.27 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 196.1, 161.9 (d, *J* = 244.9 Hz), 160.5, 131.0 (d, *J* = 8.0 Hz), 130.8, 130.5 (d, *J* = 3.3 Hz), 130.0, 120.0, 115.5 (d, *J* = 21.3 Hz), 44.2, 25.6, 18.3, -4.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.17.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{25}FNaO_2Si^+$ 367.1500; Found 367.1503.

4-(2-(4-fluorophenyl)acetyl)phenyl acetate Yellow solid (103.4 mg, 76% yield). mp 114.7–115.3 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 8/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.05 (m, 2H), 7.26 – 7.22 (m, 4H), 7.08 – 7.02 (m, 2H), 4.27 (s, 2H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.2, 168.9, 162.0 (d, J = 245.3 Hz), 154.5, 134.0, 131.1 (d, J = 8.0 Hz), 130.2, 130.0 (d, J = 3.3 Hz), 121.94, 115.6 (d, J = 21.4 Hz), 44.5, 21.2.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.82.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{14}FO_3^+$ 273.0921; Found 273.0915.

2-(4-fluorophenyl)-1-(4(((triisopropylsilyl)oxy)methyl)phenyl)ethan-1-one White solid (118.1 mg, 59% yield). mp 90.1–90.9 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.01 (m, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.07 – 7.03 (m, 2H), 4.93 (s, 2H), 4.29 (s, 2H), 1.27 – 1.18 (m, 3H), 1.14 (d, J = 6.7 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 161.9 (d, J = 245.2 Hz), 147.6, 135.1, 131.1 (d, J = 8.0 Hz), 130.3 (d, J = 3.3 Hz), 128.6, 125.7, 115.5 (d, J = 21.3 Hz), 64.6, 44.5, 18.0, 12.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -116.01.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{24}H_{33}FNaO_2Si^+$ 423.2126; Found 423.2122.

2-(4-fluorophenyl)-1-(4-(methylthio)phenyl)ethan-1-one^[10] Light yellow solid (70.2 mg, 54% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 10/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.93 (m, 2H), 7.31 – 7.22 (m, 4H), 7.07 – 7.01 (m, 2H), 4.25 (s, 2H), 2.55 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 161.9 (d, J = 245.2 Hz), 146.3, 132.7, 131.0 (d, J = 7.9 Hz), 130.3 (d, J = 3.4 Hz), 129.0, 125.0, 115.5 (d, J = 21.3 Hz) 44.4, 14.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.95.

2-(4-fluorophenyl)-1-(4-morpholinophenyl)ethan-1-one Gray solid (101.7 mg, 68% yield). mp 127.7–128.6 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 5/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.95 (m, 2H), 7.28 – 7.22 (m, 2H), 7.06 – 7.00 (m, 2H), 6.91 – 6.88 (m, 2H), 4.21 (s, 2H), 3.90 – 3.87 (m, 4H), 3.35 – 3.33 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 195.7, 161.8 (d, *J* = 244.7 Hz), 154.3, 130.9 (d, *J* = 3.4 Hz), 130.9, 130.7, 127.1, 115.4 (d, *J* = 21.3 Hz), 113.3, 66.6, 47.4, 44.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.32.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₈FNNaO₂⁺ 322.1214; Found 322.1213.

tert-butyl (4-(2-(4-fluorophenyl)acetyl)phenyl)carbamate White solid (88.9 mg, 54% yield). mp 169.8–170.4 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 3/1 (v/v) as an eluent.

¹H NMR (400 MHz, DMSO- d_6) δ 9.82 (s, 1H), 8.00 – 7.96 (m, 2H), 7.64 – 7.61 (m, 2H), 7.32 – 7.29 (m, 2H), 7.16 – 7.11 (m, 2H), 4.33 (s, 2H), 1.51 (s, 9H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 196.5, 161.5 (d, J = 242.1 Hz), 153.0, 144.8, 132.0, 132.0 (d, J = 8.3 Hz), 130.3 (d, J = 28.5 Hz), 117.7, 115.4 (d, J = 21.1 Hz), 80.2, 43.8, 28.5.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.11.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{20}FNNaO_3^+$ 352.1319; Found 322.1322.

1-(4-((2-fluorobenzyl)oxy)phenyl)-2-(4-fluorophenyl)ethan-1-one White solid (126.7 mg, 75% yield). mp 132.7–132.3 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.01 (m, 2H), 7.54 – 7.50 (m, 1H), 7.40 – 7.35 (m, 1H), 7.27 – 7.12 (m, 4H), 7.08 – 7.02 (m, 4H), 5.23 (s, 2H), 4.24 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.0, 162.5, 161.9 (d, J = 245.0 Hz), 160.5 (d, J = 247.3 Hz) 131.0 (d, J = 8.0 Hz), 130.9, 130.5 (d, J = 3.3 Hz), 130.1 (d, J = 8.1 Hz), 129.9, 129.7 (d, J = 3.8 Hz), 124.4 (d, J = 3.6 Hz), 123.3 (d, J = 14.2 Hz), 115.5 (d, J = 21.0 Hz), 115.5 (d, J = 21.4 Hz), 114.6, 63.9(d, J = 4.6 Hz), 44.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.11, -118.45. HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{16}F_2NaO_2^+$ 361.1011; Found 361.1008.

1-(4-(3-chloropropoxy)phenyl)-2-(4-fluorophenyl)ethan-1-one White solid (93.3 mg, 61% yield). mp 73.3–75.7 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.27 – 7.24 (m, 2H), 7.07 – 6.96 (m, 4H), 4.24 -4.19 (m, 4H), 3.78 (t, J = 6.2 Hz, 2H), 2.29 (p, J = 6.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.0, 161.8 (d, J = 244.9 Hz), 160.6, 131.0 (d, J = 7.9 Hz), 130.91, 130.6 (d, *J* = 3.3 Hz), 129.7, 115.5 (d, *J* = 21.3 Hz), 114.3, 64.5, 44.2, 41.3, 32.0.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.09.

HRMS (ESI) m/z: [M + Na] + Calcd for C₁₇H₁₆ClFNaO₂+ 329.0715; Found 329.0706.

1-(4-chlorophenyl)-2-(4-fluorophenyl)ethan-1-one^[11] White solid (44.7 mg, 36% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.95 (m, 2H), 7.48 – 7.46 (m, 2H), 7.26 – 7.22 (m, 2H), 7.08 -7.03 (m, 2H), 4.27 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.22, 162.0 (d, J = 245.5 Hz), 139.8, 134.7, 131.0 (d, J = 8.0 Hz), 130.0, 129.8 (d, J = 3.5 Hz), 129.2, 115.6 (d, J = 21.5 Hz), 44.5.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.65.

1-(benzo[d][1,3]dioxol-5-yl)-2-(4-fluorophenyl)ethan-1-one White solid (91.6 mg, 71% yield). mp 92.6–94.9 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 15/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 8.2, 1.8 Hz, 1H), 7.49 (d, J = 1.7 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.07 - 7.01 (m, 2H), 6.89 (d, J = 8.2 Hz, 1H), 6.08 (s, 2H), 4.21 (s, 2H).

 13 C NMR (101 MHz, CDCl₃) δ 195.5, 161.9 (d, J = 245.1 Hz), 152.0, 148.3, 131.3, 130.9 (d, J = 245.1 Hz) 8.0 Hz), 130.4 (d, J = 3.3 Hz), 124.9, 115.5 (d, J = 21.5 Hz), 108.3, 108.0, 101.9, 44.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.04.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₁FNaO₃⁺ 281.0584; Found 281.0594.

1-(4-((1H-indol-1-yl)methyl)phenyl)-2-(4-fluorophenyl)ethan-1-one Yellow solid (101.2 mg, 59%

yield). mp 80.5-81.2 °C. (The product was purified by silica gel column chromatography, using

petroleum ether /EA = 8/1 (v/v) as an eluent.)

¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.95 (m, 2H), 7.75 (dd, J = 7.0, 1.5 Hz, 1H), 7.30 – 7.18 (m, 8H), 7.09 – 7.03 (m, 2H), 6.66 (d, J = 3.1 Hz, 1H), 5.40 (s, 2H), 4.23 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.9, 161.9 (d, *J* = 245.1 Hz), 143.3, 136.2, 135.8, 131.1 (d, *J* = 8.0 Hz), 130.1 (d, *J* = 3.3 Hz), 129.1, 128.9, 128.3, 126.9, 122.0, 121.2, 119.9, 115.6 (d, *J* = 21.4 Hz), 109.6, 102.3, 49.8, 44.6.

¹⁹F NMR (377 MHz, CDCl₃) δ -115.79.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{23}H_{19}FNO^+$ 344.1445; Found 344.1446.

2-(4-fluorophenyl)-1-(9-phenyl-9H-carbazol-3-yl)ethan-1-one White solid (136.5 mg, 72%

yield). mp 102.4-103.6 °C. The product was purified by silica gel column chromatography, using

petroleum ether /EA = 6/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 1.7 Hz, 1H), 8.24 (dt, J = 7.8, 1.0 Hz, 1H), 8.14 (dd, J = 8.7, 1.8 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.59 – 7.49 (m, 4H), 7.46 – 7.32 (m, 5H), 7.09 – 7.05 (m, 2H), 4.44 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 196.9, 161.9 (d, *J* = 245.0 Hz), 143.7, 141.8, 136.9, 131.1 (d, *J* = 8.0 Hz), 131.0 (d, *J* = 3.3 Hz), 130.1, 128.9, 128.2, 127.1, 127.0, 126.9, 123.4, 123.3, 122.0, 121.0, 120.6, 115.5 (d, *J* = 21.3 Hz), 110.4, 109.6, 44.6.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.15.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₁₈FNNaO⁺ 402.1265; Found 402.1264.

ethyl 2-(4-(2-(4-fluorophenyl)acetyl)phenoxy)-2-methylpropanoate White solid (130.7 mg, 76% yield). mp 101.7–102.5 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 8/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.26 – 7.21 (m, 2H), 7.06 – 7.01 (m, 2H), 6.88 – 6.84 (m, 2H), 4.28 – 4.22 (m, 4H), 1.68 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.0, 173.7, 161.9 (d, *J* = 245.0 Hz), 160.0, 131.0 (d, *J* = 8.0 Hz), 130.5, 130.4, 130.0, 117.4, 115.5 (d, *J* = 21.3 Hz), 79.4, 6.73, 44.2, 25.4, 14.0.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.13.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{21}FNaO_4^+$ 367.1316; Found 367.1316.

5-fluoro-3-(4-(2-(4-fluorophenyl)acetyl)benzyl)-1-(tetrahydrofuran-2-yl)pyrimidine-

2,4(1H,3H)-dione 1-(3,5-dimethylphenyl)-2-(4-fluorophenyl)ethan-1-one Yellow oil (140.6 mg, 66% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 5/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.58 – 7.56 (m, 2H), 7.44 (d, *J* = 5.8 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.06 – 7.00 (m, 2H), 6.00 (ddd, *J* = 6.3, 3.0, 1.4 Hz, 1H), 5.23 – 5.12 (m, 2H), 4.27 – 4.22 (m, 3H), 4.01 (td, *J* = 8.4, 6.4 Hz, 1H), 2.48 – 2.38 (m, 1H), 2.12 – 2.03 (m, 2H), 1.98 – 1.89 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 197.0, 161.9 (d, J = 245.3 Hz), 157.1 (d, J = 25.6 Hz), 149.0, 141.5, 139.9 (d, J = 234.7 Hz), 135.9, 131.0 (d, J = 7.9 Hz), 130.1 (d, J = 3.3 Hz), 129.3, 128.8, 122.1 (d, J = 34.0 Hz), 115.5 (d, J = 21.3 Hz), 88.2, 70.4, 44.6, 44.4, 33.0, 23.8.

¹⁹F NMR (377 MHz, CDCl₃) δ -116.0, -164.1.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{23}H_{20}F_2N_2NaO_4^+$ 449.1283; Found 449.1284.

1-(4-methoxyphenyl)-2-phenylethan-1-one^[12] White solid (96.0 mg, 85% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.01 (m, 2H), 7.38 – 7.26 (m, 5H), 6.98 – 6.95 (m, 2H), 4.27 (s, 2H), 3.89 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 163.5, 135.0, 131.0, 129.7, 129.4, 128.7, 126.8, 113.8, 55.5, 45.3.

1-(4-methoxyphenyl)-2-(p-tolyl)ethan-1-one1-one^[13] Light yellow oil (97.2 mg, 81% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.01 (m, 2H), 7.20 – 7.14 (m, 4H), 6.97 – 6.93 (m, 2H), 4.22 (s, 2H), 3.89 (s, 3H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.5, 163.5, 136.4, 131.9, 131.0, 129.7, 129.4, 129.2, 113.8, 55.5, 44.9, 21.1.

1,2-bis(4-methoxyphenyl)ethan-1-one^[9] White solid (92.2 mg, 72% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 15/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.00 (m, 2H), 7.24 – 7.20 (m, 2H), 6.98 – 6.94 (m, 2H), 6.91 – 6.87 (m, 2H), 4.21 (s, 2H), 3.89 (s, 3H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.6, 163.5, 158.5, 131.0, 130.4, 129.6, 127.0, 114.1, 113.8, 55.5, 55.3, 44.4.

1-(4-methoxyphenyl)-2-(m-tolyl)ethan-1-one^[14] White solid (94.8 mg, 79% yield). (The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.)

¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.03 (m, 2H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.11 (dd, *J* = 12.1, 5.5 Hz, 3H), 6.98 – 6.95 (m, 2H), 4.23 (s, 2H), 3.89 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.4, 163.5, 138.3, 134.9, 131.0, 130.1, 129.7, 128.6, 127.6, 126.4, 113.8, 55.5, 45.3, 21.4.

2-(2,5-dimethylphenyl)-1-(4-methoxyphenyl)ethan-1-one Yellow oil (83.8 mg, 66% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.04 (m, 2H), 7.14 (d, *J* = 7.7 Hz, 1H), 7.05 – 6.98 (m, 4H), 4.26 (s, 2H), 3.91 (s, 3H), 2.33 (s, 3H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 163.5, 135.5, 133.7, 133.6, 131.0, 130.7, 130.2, 130.0, 127.9, 113.8, 55.5, 43.1, 21.0, 19.4.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}NaO_2^+$ 277.1199; Found 277.1199.

2-(3,4-dimethylphenyl)-1-(4-methoxyphenyl)ethan-1-one White solid (106.7 mg, 84% yield). mp 49.0–50.4 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.02 (m, 2H), 7.13 – 7.09 (m, 2H), 7.04 (dd, *J* = 7.7, 2.0 Hz, 1H), 6.98 – 6.94 (m, 2H), 4.21 (s, 2H), 3.89 (s, 3H), 2.27 (d, *J* = 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 196.63, 163.5, 136.9, 135.1, 132.3, 131.0, 130.6, 129.9, 129.7, 126.7, 113.8, 55.5, 44.9, 19.8, 19.4.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}NaO_2^+$ 277.1199; Found 277.1198.

2-(2-fluorophenyl)-1-(4-methoxyphenyl)ethan-1-one White solid (69.5 mg, 57% yield). mp 75.3–76.9 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.04 (m, 2H), 7.32 – 7.26 (m, 2H), 7.16 – 7.08 (m, 2H), 7.00 – 6.97 (m, 2H), 4.31 (s, 2H), 3.90 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.0, 160.9 (d, *J* = 245.4 Hz), 159.7, 131.6 (d, *J* = 4.2 Hz), 129.5, 128.8 (d, *J* = 8.1 Hz), 124.2 (d, *J* = 3.5 Hz), 122.3, 122.1, 115.4 (d, *J* = 22.0 Hz), 113.9, 55.5, 38.3 (d, *J* = 2.2 Hz).

 ^{19}F NMR (377 MHz, CDCl₃) δ -117.20.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃FNaO₂⁺ 267.0792; Found 267.0796.

2-(4-chlorophenyl)-1-(4-methoxyphenyl)ethan-1-one^[15]Light yellow solid (84.5 mg, 65% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.02 – 8.00 (m, 2H), 7.33 – 7.30 (m, 2H), 7.24 – 7.22 (m, 2H), 6.98 – 6.96 (m, 2H), 4.24 (s, 2H), 3.90 (s, 3H.

¹³C NMR (101 MHz, CDCl₃) δ 195.7, 163.7, 133.4, 132.8, 130.9, 130.8, 129.4, 128.8, 113.9, 55.5, 44.4.

2-(3-chlorophenyl)-1-(4-methoxyphenyl)ethan-1-one^[16] White solid (87.1 mg, 67% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.99 (m, 2H), 7.30 – 7.21 (m, 3H), 7.18 (dt, *J* = 6.8, 1.9 Hz, 1H), 6.99 – 6.95 (m, 2H), 4.23 (s, 2H), 3.89 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.5, 163.7, 136.9, 134.4, 130.9, 129.8, 129.6, 129.4, 127.7, 127.1, 113.9, 55.5, 44.7.

2-(4-bromophenyl)-1-(4-methoxyphenyl)ethan-1-one^[17] White solid (77.5 mg, 51% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.99 (m, 2H), 7.49 – 7.46 (m, 2H), 7.19 – 7.15 (m, 2H), 6.99 – 6.95 (m, 2H), 4.22 (s, 2H), 3.90 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.6, 163.7, 133.9, 131.7, 131.2, 130.9, 129.4, 120.9, 113.9, 55.5, 44.5.

2-(3,5-difluorophenyl)-1-(4-methoxyphenyl)ethan-1-one Light yellow solid (81.2 mg, 62% yield). mp 77.2–79.6 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.98 (m, 2H), 7.00 – 6.96 (m, 2H), 6.85 – 6.80 (m, 2H), 6.73 (tt, *J* = 9.0, 2.4 Hz, 1H), 4.24 (s, 2H), 3.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 194.8, 163.9, 163.0 (dd, *J* = 248.3, 13.0 Hz), 138.5 (t, *J* = 9.6 Hz), 130.9, 129.2, 114.0, 112.7 – 112.4 (m), 102.4 (t, *J* = 25.2 Hz), 55.5, 44.6 (t, *J* = 2.1 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 196.3, 163.5, 135.0, 131.0, 129.7, 129.4, 128.7, 126.8, 113.8, 55.5, 45.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -110.00.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{12}F_2NaO_2^+$ 285.0698; Found 285.0697.

3-(2-(4-methoxyphenyl)-2-oxoethyl)benzonitrile Light yellow solid (77.8 mg, 62% yield). mp 81.4-82.7 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.00 (m, 2H), 7.60 – 7.45 (m, 4H), 7.01 – 7.68 (m, 2H), 4.31 (s, 2H), 3.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 194.8, 163.9, 136.3, 134.3, 133.2, 130.8, 130.6, 129.3, 129.2, 118.8, 114.0, 112.6, 55.6, 44.3.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{13}NNaO_2^+$ 274.0838; Found 274.0836.

methyl 4-(2-(4-methoxyphenyl)-2-oxoethyl)benzoate White solid (63.9 mg, 45% yield). mp 155.5-156.1 °C. (The product was purified by silica gel column chromatography, using petroleum ether /EA = 10/1 (v/v) as an eluent.)

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.99 (m, 4H), 7.38 – 7.36 (m, 2H), 6.99 – 6.95 (m, 2H), 4.32 (s, 2H), 3.93 (s, 3H), 3.89 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.4, 167.0, 163.7, 140.3, 130.9, 129.9, 129.6, 129.4, 128.8, 113.9, 55.5, 52.1, 45.2.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{13}NNaO_2^+$ 307.0941; Found 307.0955.

1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)ethan-1-one^[18] Light yellow solid (122.1 mg, 83% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 2H), 7.62 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.00 – 6.98 (m, 2H), 4.33 (s, 2H), 3.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 195.3, 163.8, 139.0 (d, *J* = 1.5 Hz), 130.9, 129.9, 129.2 (d, *J* = 32.6 Hz), 128.98, 125.5 (q, *J* = 3.8 Hz), 122.9, 114.0, 55.5, 44.8.

¹⁹F NMR (377 MHz, CDCl₃) δ -62.41.

1-(4-methoxyphenyl)-4-phenylbutan-1-one^[19] White solid (90.2 mg, 71% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.33 (dd, *J* = 8.1, 6.7 Hz, 2H), 7.26 – 7.22 (m, 3H), 6.98 – 6.94 (m, 2H), 3.90 (s, 3H), 2.97 (t, *J* = 7.3 Hz, 2H), 2.76 (t, *J* = 7.6 Hz, 2H), 2.12 (p, *J* = 7.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.8, 163.4, 141.8, 130.3, 130.1, 128.6, 128.4, 126.0, 113.7, 55.5, 37.4, 35.3, 26.0.

1-(4-methoxyphenyl)-4-(p-tolylthio)butan-1-one Yellow oil (84.0 mg, 56% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 15/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.32 – 7.29 (m, 2H), 7.14 – 7.11 (m, 2H), 6.97 – 6.93 (m, 2H), 3.89 (s, 3H), 3.10 (t, *J* = 7.1 Hz, 2H), 3.02 (t, *J* = 7.0 Hz, 2H), 2.34 (s, 3H), 2.08 (p, *J* = 7.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.1, 163.5, 136.2, 132.3, 130.3, 130.1, 130.0, 129.7, 113.7, 55.5, 36.6, 33.9, 23.7, 21.0.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{20}NaO_2S^+$ 323.1076; Found 323.1080.

1-(4-methoxyphenyl)-4-phenoxybutan-1-one White solid (72.9 mg, 54% yield). mp 60.1–61.2 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.99 (m, 2H), 7.34 – 7.29 (m, 2H), 7.00 – 6.90 (m, 5H), 4.10 (t, *J* = 6.0 Hz, 2H), 3.90 (s, 3H), 3.19 (t, *J* = 7.1 Hz, 2H), 2.30 – 2.24 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.3, 163.5, 158.9, 130.3, 130.1, 129.5, 120.7, 114.5, 113.7, 66.9, 55.5, 34.6, 24.0.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}NaO_3^+$ 293.1148; Found 293.1152.

4-((4-fluorobenzyl)oxy)-1-(4-methoxyphenyl)butan-1-one White solid (77.1 mg, 51% yield). mp 54.5–55.1 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.88 (m, 2H), 7.36 – 7.24 (m, 2H), 7.08 – 7.00 (m, 2H), 6.98 – 6.91 (m, 2H), 4.48 (s, 2H), 3.89 (s, 3H), 3.59 (t, *J* = 6.1 Hz, 2H), 3.07 (t, *J* = 7.2 Hz, 2H), 2.14 – 2.02 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 198.5, 162.3 (d, J = 245.4 Hz), 161.1, 134.2 (d, J = 3.3 Hz), 130.3, 130.1, 129.4 (d, J = 8.1 Hz), 115.2 (d, J = 21.3 Hz), 113.7, 72.2, 69.5, 55.5, 34.7, 24.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -114.97.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₉FNaO₃⁺ 325.1210; Found 325.1207.

3-((tert-butyldimethylsilyl)oxy)-1-(4-methoxyphenyl)propan-1-one White solid (91.2 mg, 62% yield). mp 41.3–42.3 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 9.0 Hz, 2H), 4.07 (t, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.18 – 3.15 (m, 2H), 0.89 (s, 9H), 0.07 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 197.8, 163.5, 130.5, 130.5, 113.7, 59.5, 55.5, 41.4, 25.9, 18.3, -5.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₆NaO₃Si⁺ 317.1543; Found 317.1553.

4,4,4-trifluoro-1-(4-methoxyphenyl)butan-1-one^[20] Light yellow solid (40.6 mg, 35% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 25/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.97 (m, 2H), 7.00 – 6.95 (m, 2H), 3.91 (s, 3H), 3.26 – 3.22 (m, 2H), 2.67 – 2.54 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 194.9, 163.9, 130.3, 129.2, 127.2 (q, J = 275.9 Hz), 113.9, 55.5, 30.8 (q, J = 2.6 Hz), 28.5 (q, J = 29.6 Hz).

¹⁹F NMR (377 MHz, CDCl₃) δ -66.37.

1-(4-methoxyphenyl)-4-phenylbutane-1,4-dione^[21] Whoite solid (88.5 mg, 66% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 15/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.03 (m, 4H), 7.62 – 7.58 (m, 1H), 7.52 – 7.48 (m, 2H), 7.00 – 6.96 (m, 2H), 3.90 (s, 3H), 3.50 – 3.42 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 198.9, 197.2, 163.6, 136.8, 133.1, 130.4, 129.9, 128.6, 128.1, 113.8, 55.5, 32.7, 32.2.

4-(1H-indol-1-yl)-1-(4-methoxyphenyl)butan-1-one Yellow solid (64.5 mg, 44% yield). mp 68.8-70.6 °C. The product was purified by silica gel column chromatography, using petroleum ether /EA = 15/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.7 Hz, 2H), 7.68 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.27 – 7.22 (m, 1H), 7.17 – 7.13 (m, 2H), 6.96 – 6.92 (m, 2H), 6.54 (d, *J* = 3.1 Hz, 1H), 4.30 (t, *J* = 6.8 Hz, 2H), 3.89 (s, 3H), 2.91 (t, *J* = 6.8 Hz, 2H), 2.33 (p, *J* = 6.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 197.8, 163.6, 136.0, 130.3, 129.8, 128.7, 127.9, 121.6, 121.0, 119.4, 113.8, 109.5, 101.2, 55.5, 45.5, 34.6, 24.6.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₉NNaO₂⁺ 316.1308; Found 316.1308.

4-(4-methoxyphenyl)-4-oxobutyl2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-
yl)acetate White solid (138.6 mg, 52% yield). mp 133.3-134.0 °C. The product was purified by
silica gel column chromatography, using petroleum ether /EA = 3/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.79 (m, 2H), 7.65 – 7.62 (m, 2H), 7.47 – 7.44 (m, 2H), 7.01 (d, J = 2.5 Hz, 1H), 6.92 – 6.88 (m, 3H), 6.69 (dd, J = 9.0, 2.6 Hz, 1H), 4.23 (t, J = 6.3 Hz, 2H), 3.88 (s, 3H), 3.82 (s, 3H), 3.68 (s, 2H), 2.89 (t, J = 7.2 Hz, 2H), 2.40 (s, 3H), 2.12 – 2.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 170.8, 168.3, 163.5, 156.1, 139.2, 135.9, 133.9, 131.2, 130.8, 130.6, 130.2, 129.8, 129.1, 115.0, 113.7, 112.7, 111.7, 101.3, 64.4, 55.7, 55.5, 34.2, 30.5, 23.3, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₀H₂₈CINNaO₆⁺ 566.1497; Found 566.1509.

cyclohexyl(4-methoxyphenyl)methanone^[22] White solid (62.2 mg, 57% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 6.98 – 6.94 (m, 2H), 3.89 (s, 3H), 3.25 (tt, *J* = 11.5, 3.2 Hz, 1H), 1.92 – 1.73 (m, 5H), 1.57 – 1.22 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 202.5, 163.2, 130.5, 129.3, 113.7, 55.5, 45.3, 29.6, 26.0, 25.9.

(4-methoxyphenyl)(tetrahydro-2H-pyran-4-yl)methanone^[23] Light yellow solid (46.3 mg, 42% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 5/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 6.99 – 6.94 (m, 2H), 4.08 (ddd, *J* = 11.5, 4.3, 2.4 Hz, 2H), 3.90 (s, 3H), 3.58 (td, *J* = 11.6, 2.4 Hz, 2H), 3.49 (tt, *J* = 11.2, 3.9 Hz, 1H), 1.96 – 1.86 (m, 2H), 1.81 – 1.76 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 200.4, 163.5, 130.6, 128.7, 113.9, 67.4, 55.5, 42.3, 29.2.

cycloheptyl(4-methoxyphenyl)methanone^[24] Colorless oil (60.3 mg, 52% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 6.98 – 6.95 (m, 2H), 3.90 (s, 3H), 3.42 (tt, *J* = 9.6, 4.0 Hz, 1H), 1.97 – 1.91 (m, 2H), 1.86 – 1.55 (m, 10H).

¹³C NMR (101 MHz, CDCl₃) δ 203.0, 163.2, 130.6, 129.3, 113.7, 55.5, 46.3, 31.0, 28.4, 26.9.

1-(4-methoxyphenyl)-2-methyl-4-phenylbutan-1-one^[25] Colorless oil (72.4 mg, 54% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 30/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.33– 7.29 (m, 2H), 7.25 – 7.18 (m, 3H), 6.98 – 6.93 (m, 2H), 3.90 (s, 3H), 3.51 – 3.42 (m, 1H), 2.70 – 2.65 (m, 2H), 2.25– 2.16 (m, 1H), 1.83 – 1.75 (m, 1H), 1.26 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.7, 163.4, 141.9, 130.6, 129.5, 128.5, 128.4, 125.9, 113.8, 55.5, 39.3, 35.4, 33.5, 17.5.

4-((4-chlorobenzyl)oxy)-1-(4-methoxyphenyl)-2-methylbutan-1-one Colorless oil (59.7 mg, 36% yield). The product was purified by silica gel column chromatography, using petroleum ether /EA = 20/1 (v/v) as an eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.97 (m, 2H), 7.29 – 7.19 (m, 4H), 6.97 – 6.93 (m, 2H), 4.41 (d, *J* = 3.7 Hz, 2H), 3.90 (s, 3H), 3.74 – 3.69 (td, *J* = 7.4, 6.1 Hz, 1H), 3.55 (ddd, *J* = 9.5, 6.7, 5.3 Hz, 1H), 3.45 (ddd, *J* = 9.5, 7.1, 5.2 Hz, 1H), 2.23 – 2.15 (m, 1H), 1.81 – 1.72 (m, 1H), 1.22 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 202.7, 163.4, 136.9, 133.2, 130.7, 129.6, 128.9, 128.5, 113.8, 72.1, 68.2, 55.5, 36.8, 33.7, 17.9.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{21}CINaO_3^+$ 355.1071; Found 355.1081.

NMR Spectra of Substrates and Products

8.064 8.052 8.054 8.055 8.056 8.038

(108) (1

-1.379

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-2.317 -2.302 -2.287 -2.271 -2.271

¹H NMR

B. 8002
 B. 8125
 B. 8255
 B. 84144
 B. 1266
 B. 1276
 B. 1276
 B. 1276
 B. 1276
 B. 1276
 B. 1277
 B. 1277

$\begin{array}{c} 7.3\, 2.9\, 1.7\, 2.9\,$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

8.032 8.032 8.024 8.024 8.024 8.007 7.7.299 7.7.189 7.7.189 7.7.189 7.7.189 7.7.189 7.7.189 7.7.189 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.173 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.173 7.7.173 7.7.163 7.7.163 7.7.173 7.7.173 7.7.173 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.163 7.7.173 7.7.173 7.7.173 7.7.173 7.7.173 7.7.173 7.7.173 7.7.173 7.7.173 7.7.173 7.7.163 7.7.163 7.7.173 7.7.133 7.7.173 7.7.1333 7.7.1333 7.7.1333 7.7.1333 7.7.1333 7.7.1333 7.7.1333 7.7.1333 7.7.1333 7

$\begin{array}{c} & 8.026\\ & 8.019\\ & 8.019\\ & 8.019\\ & 8.019\\ & 7.195\\ & 7.195\\ & 7.185\\ & 7.145\\ & 7.135\\ & 7.163\\ & 7.1$

7.969 7.966 7.965 7.965 7.945 7.933 7.73333 7.73333 7.73333 7.73333 7.73333 7.73333 7.

7.971 7.946 7.946 7.946 7.946 7.946 7.927 7.927 7.927 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 6.959 6.959 6.959 6.959 6.959 6.953 6.533 6.533 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 7.312 6.953 6.533 7.312 6.5333 6.5333 7.312 7.312 6.5333 6.5333 6.5333 7.312 7.312 6.5333 6.5333 7.312 7.312 6.5333 7.312 7.31

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

$\begin{array}{c} 8.022\\ 8.017\\ 8.017\\ 1.7.331\\ 7.7.331\\ 7.7.335\\ 7.$

2.01<u>+</u> I.94⊣ 2.234 5.08-1 2.00⊣ 3.01⊣ -66.1 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) -163.485 -158.915 130.336 130.069 129.484 129.688 114.509 -198.252-34.605 -55.488 -24.014 -66.922 Ö ¹³C NMR 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Ó f1 (ppm)

7.393 7.395 7.3968 7.3968 7.3968 7.3968 7.3968 7.3968 7.3968 7.3008 7.3008 7.3005 7.3008 7.3005 7.3008 7.3005 7.3008 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 7.308 6.942 7.308 6.942 7.308 6.942 7.308 6.942 6.942 7.308 7.308 6.942 6.942 7.308 6.942 7.308 6.942 6.942 6.942 7.308 6.942 6.942 6.942 7.308 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 6.942 7.308 6.942 6.942 6.942 7.308 6.942 7.308 6.942 7.308 7.005 7.308 7.005 7.0

$\begin{array}{c} 8.105\\ 8.105\\ 8.085\\ 8.085\\ 8.085\\ 8.085\\ 8.085\\ 8.085\\ 8.083\\ 8.085\\ 8.083\\ 8.085\\ 8.085\\ 8.083\\ 8.085\\ 8.083\\ 8.085\\ 8.083\\ 8.083\\ 8.085\\ 8.083\\ 8.083\\ 8.083\\ 8.083\\ 8.083\\ 8.083\\ 8.092\\ 8.$

-3.894 -3.894 -3.894 -3.894 -3.894 -3.894 -3.890 -2.345 2.34

 $\sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{j=1}^{7} \sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{j=1}^{7} \sum_{i=1}^{7} \sum_{j=1}^{7} \sum_{7$

$\begin{array}{c} 7, 369\\ 7, 369\\ 6, 976\\$

 $\begin{array}{c} 388\\ -373737398\\ -373737398\\ -588665896\\ -588665896\\ -588665896\\ -588665886\\ -588665886\\ -588665886\\ -588665886\\ -588665886\\ -588668\\ -588668\\ -588668\\ -588668\\ -58866\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58868\\ -58888\\ -58868\\ -58888$

7.997 7.997 7.967 7.967 7.967 7.965 6.988 6.988 6.988 6.967 6.968 6.965 6.5030

References

- L. Huang, T. Ji, C. Zhu, H. Yue, N. Zhumabay, M. Rueping, Nat. Commun. 2022, 13, 809-818.. [1]
- [2] D.-T. Yang, Q. Meng, J.-J. Zhong, M. Xiang, Q. Liu, L.-Z. Wu, Eur. J. Org. Chem. 2013, 33, 7528-7532
- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
- [4] (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785-789; (b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652
- Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241
- [6] A. V. Marenich, C. J Cramer, D. G. Truhlar, J. Phys. Chem. B. 2019, 113, 6378-6396.
- [7] B. Shu, X. Wang, Z. Shen, T. Che, M. Zhong, J. Song, H. Kang, H. Xie, L. Zhang, S. Zhang, Org. Chem. Front. 2020, 7, 1802-1808.
- J. Liu, X. Zhou, H. Rao, F. Xiao, C. Li, G. Deng, Eur. J. Org. Chem. 2011, 17, 7996-7999. [8]
- [9] X. Chen, Z. Chen, C.-M. So, J. Org. Chem. 2019, 84, 6337-6346.
- [10] C. Francisco, J. Juan-Miguel, G. Núria, A. Mercè, C. Alvaro, S. Lídia, B. Jordi, R. Hamish, I. María, J. Med. Chem. 2004, 47, 3874-3886.
- [11] S. Cao, S. Zhong, L. Xin, J.-P Wan, C.-P Wen, Chem. Cat. Chem. 2015, 7, 1478-1482.
- [12] L. Boran and J. Chirik, J. Am. Chem. Soc. 2020, 142, 2429-2437.
- [13] L. Brant, B. Christophe, C. Wang, N. Oscar, J. Org. Chem. 2011, 76, 1390-1397.
- [14] C.-C. Ren, T.-Q. Wang, Y. Zhang, D. Peng, X.-Q. Liu, Q.-A. Wu, X.-F. Liu, S.-P. Luo, *ChemistrySelect*, **2021**, *6*, 2523-2528.
 [15] S. Michael, H. K. Ulbrich, D. Gerd, *Eur. J. Org. Chem.* **2008**, *43*, 1152-1159.
- [16] H. Kristina, A. P. Häring, S. F. Kirsch, Eur. J. Org. Chem. 2019,17, 2824-2831.
- [17] J. Maud, P. Olivier, J. F. Peyrat, J. D. Brion, H. Abdallah, A. Mouâd, Tetrahedron, 2010, 66, 3775-
- [18] D.-H. Wang, Z.-G. Zhang, Org. Lett. 2003, 24, 4645–4648.
- [19] W. Sun, L. Wang, C.-G. Xia, C. Liu, Angew. Chem. Int. Ed. 2018, 57, 5501-5505; Angew. Chem. **2018**, 130, 5599–5603.
- [20] W.-P. Mai, Y. Liu, H.-D. Sui, Y.-M. Xiao, P. Mao, K. Lu, Eur. J. Org. Chem. 2019, 48, 7814-7819.
- [21] L.-H. Wang, J. Zhao, Eur. J. Org. Chem. 2018, 31, 4345-4348.
 [22] G. Liu, B. Xu, Tetrahedron Lett. 2018, 59, 869-872.
- [23] T. Kerackian, A. Reina, D. Bouyssi, N. Monteiro, A. Amgoune, Org. Lett. 2020, 22, 2240–2245.
- [24] X. Zhang, Z. Wang, X. Fan, J. Wang, J. Org. Chem. 2015, 80, 10660–10667.
- [25] M. Shohei, S. Yohei, K. Motomu, Tetrahedron Lett. 2012, 55, 4381-4384.