## **Supporting Information**

# Enhanced driving force and charge separation efficiency of protonated anthraquinone for C-H photooxygenation of alkane by proton-coupled electron transfer

Hui Yin, Yingying Yuan, Yangbin Li, Jing Tang, Wenzhou Zhong\* and Liqiu Mao\*

National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Chemical Biology Traditional Chinese Medicine Reserach Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal

University, Changsha 410081, P. R.

#### **Table of Contents**

| I. Effects of different photocatalytic reaction conditions                    | <b>S2</b>  |
|-------------------------------------------------------------------------------|------------|
| II. Comparison of the results of cyclohexane photooxidation and references    | <b>S</b> 3 |
| III. Self-assembly photo-reactor used in this study                           | <b>S</b> 5 |
| IV. Effect of HCl/ethylAQs on photocatalytic reaction                         | <b>S6</b>  |
| V. UV-Vis spectra of the samples                                              | <b>S7</b>  |
| VI. Cyclic voltammograms (CVs) of the samples.                                | <b>S8</b>  |
| VII. Electronic properties of AQ and 2-ethylAQ-H <sub>3</sub> PO <sub>4</sub> | <b>S9</b>  |
| VIII. Calculated UV-Vis spectra of 2-ethylAQ in different solvents            | <b>S10</b> |

|       | Solvent         | Conv. (%) | Sele. (%) |      |      |  |  |
|-------|-----------------|-----------|-----------|------|------|--|--|
| Entry |                 |           | но-       | 0=   | CI   |  |  |
| 1     | Acetonitrile    | 8.9       | 28.9      | 46.9 | 24.2 |  |  |
| 2     | Ethanol         | 3.2       | 40.4      | 39.2 | 20.4 |  |  |
| 3     | Acetone         | 36.2      | 18.9      | 80.2 | 0.8  |  |  |
| 4     | Ethyl acetate   | 4.2       | 37.9      | 40.5 | 21.6 |  |  |
| 5     | Benzene         | 10.7      | 12.6      | 52.6 | 34.8 |  |  |
| 6     | Benzonitrile    | 8.2       | 81.3      | 9.9  | 8.8  |  |  |
| 7     | Dichloromethane | 7.6       | 66.2      | 0.5  | 33.3 |  |  |
| 8     | DMF             | 0.8       | 38.3      | 15.3 | 46.4 |  |  |

Table S1 Effects of different solvents on the photocatalytic reactions

Reaction conditions: 1.2 mmol cyclohexane, 0.1 mmol 2-ethylAQ photocatalyst, 5 mL solvent, 0.06 mL concentrated hydrochloric acid additive (0.7 mmol HCl), 35W tungsten–bromine lamp ( $\lambda$ >400 nm), O<sub>2</sub> (0.1 MPa), at about 20 °C 24 h.

|       | t (min) |           | Sele. (%) |      |     |  |  |
|-------|---------|-----------|-----------|------|-----|--|--|
| Entry |         | Conv. (%) | 0=        | но   | CI  |  |  |
| 1     | 20      | 1.0       | 22.6      | 77.2 | 0.3 |  |  |
| 2     | 40      | 1.1       | 15.7      | 83.5 | 0.8 |  |  |
| 3     | 60      | 1.4       | 49.2      | 45.7 | 5.1 |  |  |
| 4     | 90      | 1.9       | 55.6      | 37.9 | 6.5 |  |  |
| 5     | 120     | 2.6       | 49.3      | 49.1 | 1.6 |  |  |

### Table S2 Effects of the reaction times on the photocatalytic reactions

Reaction conditions: 1.2 mmol cyclohexane, 0.1 mmol 2-ethylAQ photocatalyst, 5 mL solvent, 0.06 mL concentrated hydrochloric acid additive (0.7 mmol HCl), 35W tungsten–bromine lamp ( $\lambda$ >400 nm), O<sub>2</sub> (0.1 MPa), at about 20 °C.

| Entry              | Catalyst                                  | Oxidant/<br>(MPa)     | T (°C) | t (h) | Solvent | Conv.<br>(%) | KA-oil<br>Sele. (%) | Ref.      |
|--------------------|-------------------------------------------|-----------------------|--------|-------|---------|--------------|---------------------|-----------|
| 1 <sup>a, h</sup>  | 5%-VOSO <sub>4</sub> -HTS                 | $O_2(0.1)$            | 36,    | 6     | MeCN    | 14.5         | 94.0                | [1]       |
| 2 <sup>b</sup>     | Fe <sub>0.2</sub> Ti <sub>0.02</sub> -SBA | O <sub>2</sub> (0.25) | rt.    | 48    | MeCN    | 2.3          | >99                 | [2]       |
| 3°                 | NH <sub>2</sub> -M125/P25-4               | $O_2(0.1)$            | 25     | 5     | MeCN    | 0.7          | 99                  | [3]       |
| 4 <sup>c</sup>     | N-TiO <sub>2</sub> -3                     | $O_2(0.1)$            | 25     | 7     | $CCl_4$ | 0.1          | 100                 | [4]       |
| 5 <sup>d</sup>     | WO <sub>3</sub> NCs-AgNPs                 | TBHP                  | rt.    | 48    | None    | 40.2         | 97.0                | [5]       |
| 6 <sup>e</sup>     | Cu-40min/a-C <sub>3</sub> N <sub>4</sub>  | $H_2O_2$              | 60     | 4     | MeCN    | 88.0         | 95                  | [6]       |
| $7^{\rm f}$        | WO <sub>3</sub> -NCDs                     | Air (1.5)             | 120    | 8     | Acetone | 7.9          | 98.9                | [7]       |
| 8 <sup>f</sup>     | MoO <sub>3</sub> -Ag80                    | Air (1.5)             | 120    | 8     | Acetone | 8.6          | 99                  | [8]       |
| 9 <sup>g, i</sup>  | BiOI                                      | Air (0.1)             | rt.    | 3     | None    | < 0.1        | 98.8                | [9]       |
| $10^{\rm f, \ h}$  | VOCl <sub>2</sub>                         | $O_2(0.1)$            | 30     | 4     | MeCN    | 23.3         | 97.0                | [10]      |
| 11 <sup>a, h</sup> | $V^{IV}OQ_2$                              | O <sub>2</sub> (0.1)  | 30     | 10    | MeCN    | 18.7         | 86                  | [11]      |
| 12 <sup>a, h</sup> | 2-EthylAQ                                 | O <sub>2</sub> (0.1)  | rt.    | 24    | Acetone | 36.2         | 99.8                | This work |
| 13 <sup>a, j</sup> | 2-EthylAQ                                 | O <sub>2</sub> (0.1)  | rt.    | 10    | Acetone | 24.9         | 100                 | This work |

 Table S3 Comparison of the results of oxidation reaction of cyclohexane under different

 photooxidation systems

<sup>a</sup> 35 W bromine tungsten lamp; <sup>b</sup> solar simulator ( $\lambda > 300$  nm, 1.5 AM); <sup>c</sup> 300 W Xenon lamp ( $\lambda \ge 420$  nm); <sup>d</sup> 220 W Xenon lamp; <sup>e</sup> 400 W Xenon lamp ( $\lambda \ge 420$  nm); <sup>f</sup> 300 W Xenon lamp; <sup>g</sup> 400 W metal halide lamp; <sup>h</sup> HCl as additive; <sup>i</sup> water as additive; <sup>j</sup> KH<sub>2</sub>PO<sub>4</sub> as additive;

#### References

- [1] W. Zhong, T. Qiao, J. Dai, L. Mao, Q. Xu, G. Zou, X. Liu, D. Yin, and F. Zhao, Visible-light-responsive sulfated vanadium-doped TS-1 with hollow structure: Enhanced photocatalytic activity in selective oxidation of cyclohexane, *J. Catal.*, 2015, 330, 208-221. https://doi.org/10.1016/j.jcat.2015.06.013.
- [2] Y. Ide, M. Iwata, Y. Yagenji, N. Tsunoji, M. Sohmiya, K. Komaguchi, T. Sano and Y. Sugahara, Fe oxide nanoparticles/Ti-modified mesoporous silica as a photo-catalyst for efficient and selective cyclohexane conversion with O<sub>2</sub> and solar light, *J. Mater. Chem. A*, 2016, 4, 15829-15835. https://doi.org/10.1039/c6ta04222h.
- [3] X. Zhao, Y. Zhang, P. Wen, G. Xu, D. Ma and P. Qiu, NH<sub>2</sub>-MIL-125(Ti)/TiO<sub>2</sub> composites as superior visible-light photocatalysts for selective oxidation of cyclohexane, *Mol. Catal.*, 2018, 452, 175-183. https://doi.org/10.1016/j.mcat.2018.04.004.
- [4] G. Xu, Y. Zhang, D. Peng, D. Sheng, Y. Tian, D. Ma and Y. Zhang, Nitrogen-doped mixed-phase TiO<sub>2</sub> with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane, *Appl. Surf. Sci.*, 2021, **536**, 147953-147964, https://doi.org/10.1016/j.apsusc.2020.147953.
- [5] Y. Xiao, J. Liu, J. Mai, C. Pan, X. Cai and Y. Fang, High-performance silver nanoparticles coupled with monolayer hydrated tungsten oxide nanosheets: The structural effects in photocatalytic oxidation of cyclohexane, *J. Colloid. Interface Sci.*, 2018, 516, 172-181. https://doi.org/10.1016/j.jcis.2018.01.057.
- [6] A. Shahzeydi, M. Ghiaci, H. Farrokhpour, A. Shahvar, M. Sun and M. Saraji, Facile and green synthesis of copper nanoparticles loaded on the amorphous carbon nitride for the oxidation of cyclohexane, *Chem. Eng. J.*, 2019, **370**, 1310-1321. https://doi.org/10.1016/j.cej.2019.03.227.

- [7] J. Zhang, J. Liu, X. Wang, J. Mai, W. Zhao, Z. Ding and Y. Fang, Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane, *Appl. Catal. B Environ.*, 2019, 259, 118063, https://doi.org/ 10.1016/j.apcatb.2019.118063.
- [8] X. Wang, Z. Feng, J. Liu, Z. Huang, J. Zhang, J. Mai and Y. Fang, In-situ preparation of molybdenum trioxide-silver composites for the improved photothermal catalytic performance of cyclohexane oxidation, *J. Colloid Interface Sci.*, 2020, 580, 377-388, https://doi.org/10.1016/j.jcis.2020.07.015.
- [9] D. Contreras, V. Melin, K. Márquez, G. Pérez-González, H. D. Mansilla, G. Pecchi and A. Henríquez, Selective oxidation of cyclohexane to cyclohexanol by BiOI under visible light: Role of the ratio (1 1 0)/(0 0 1) facet, *Appl. Catal. B Environ.*, 2019, 251, 17-24, https://doi.org/10.1016/j.apcatb.2019.03.058.
- [10] Y. Wan, Q. Guo, K. Wang and X. Wang, Efficient and selective photocatalytic oxidation of cyclohexane using O<sub>2</sub> as oxidant in VOCl<sub>2</sub> solution and mechanism insight, *Chem. Eng. Sci.*, 2019, **203**, 163-172, https://doi.org/10.1016/j.ces.2019.03.079.
- [11] J. She, X. Lin, Z. Fu, J. Li, S. Tang, M. Lei, X. Zhang, C. Zhang and D. Yin, HCl and O<sub>2</sub> coactivated bis(8-quinolinolato) oxovanadium (iv) complexes as efficient photoactive species for visible light-driven oxidation of cyclohexane to KA oil, *Catal. Sci. Tech.*, 2019, 9, 275-285, https://doi.org/10.1039/c8cy01241e.



**Figure S1** Photograph of the package box of lamp (which the instruction of lamp's package box clearly shows that the UV light has been filtered).



Figure S2 Self-assembly photo-reactor used in this study.



Figure S3 Gas chromatogram of product distribution



Figure S4 Effect of HCl/ethylAQs on photocatalytic reaction.

Reaction conditions: 1.2 mmol cyclohexane, 0.1 mmol 2-ethylAQ photocatalyst, 5mL acetone, 0.06 mL concentrated hydrochloric acid additive (0.7 mmol HCl), 35 W tungsten–bromine lamp ( $\lambda$ >400 nm), O<sub>2</sub> (0.1 MPa), at about 20 °C. 24 h.



Figure S5 UV-Vis spectra of 2-ethylAQ or HCl (A) and other AQ derivatives (B).



Figure S6 Tauc plots from UV-Vis spectra of 2-ethylAQ with acids (A) and other AQ derivatives (B).



Figure S7 Cyclic voltammograms (CVs) of ethylAQ+acids (A) and other AQ derivatives (B) in acetone.



Figure S8 Electronic properties of optimized AQ and 2-ethylAQ-H<sub>3</sub>PO<sub>4</sub> structures in the  $S_0$ ,  $S_1$  and  $T_1$  states



Figure S9 Calculated UV-Vis spectra of 2-ethylAQ in different solvents