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Chemicals. All chemicals were purchased from commercial supplies and used
without further purification. Nickel acetate (Ni(CH;COO),-4H,0O, 98%), zinc
hydroxide (Zn(OH),, 98%), nickel nitrate hexahydrate (Ni(NOs),-6H,0, 98%), zinc
nitrate hexahydrate (Zn(NOs),:-6H,0, 98%) 2-methylimidazole (2-MeIM, 99%), and
methanol (CH30H, 99%) were received from Tianjin Fuchen Chemical Corporation.
Amines (>98%), phenylsilane (PhSiH3, 98%), and N, N-Dimethylformamide (DMF,
98%) were received from Aladdin. Carbon dioxide and Ar gas were obtained from
Tianjin Dongrun Gas Co., Ltd.

Characterizations. The morphology and structure were acquired by field-emission
scanning electron microscopy with different accelerating voltages (SEM, FEI Nova
NanoSEM450) and transmission electron microscopy (TEM, FEI Talos F200S, 200
kV). The aberration-corrected high-angle annular dark-field scanning transmission
electron microscopy (AC-HAADF-STEM) measurements were taken on a Titan
Themis Cubed G2 60-300, FEI. X-ray diffraction (XRD) patterns were investigated by
a Bruker D8-Davinci equipped with Cu Ko radiation source. X-ray photoelectron
spectroscopy (XPS) measurements were conducted on a Thermo Scientific ESCALab-
250Xi spectrometer with monochromatic Al Ka radiation, and the binding energies
were calibrated using the C 1s peak at 284.6 eV. Nitrogen adsorption-desorption
isotherms were acquired on a surface area and porosity analyzer (Micromeritics ASAP
2020). The content of Ni atoms was investigated by an Optima 7300 DV inductively
coupled plasma optical emission spectroscopy (ICP-OES). Fourier transform infrared

(FT-IR) spectra were performed on a Bruker VECTOR-22 spectrometer. The 'H-



nuclear magnetic resonance (NMR) spectra were analyzed and identified by a Bruker
400 spectrometer using CDClI; as a solvent and tetramethylsilane (TMS) as an internal
standard. Electron paramagnetic resonance (EPR) spectra were collected by a Bruker
EMXnano. Raman spectra were recorded on a Renishaw inVia Reflex UV Raman
spectrometer with an excitation laser wavelength of A = 532 nm. The obtained liquid
solution after the reaction was identified by GC-MS. Magnetic hysteresis loops of the
materials were measured at room temperature via a vibrating sample magnetometer
(VSM, MPMS XL-7).

Computational details. All the calculations are performed in the framework of the
density functional theory with the projector augmented plane-wave method, as
implemented in the Vienna ab initio simulation package. The generalzied gradient
approximation proposed by Perdew, Burke, and Ernzerhof is selected for the exchange-
correlation potential. The long range van der Waals interaction is described by the DFT-
D3 approach. The cut-off energy for plane wave is set to 550 eV. The energy criterion
is set to 107 eV in iterative solution of the Kohn-Sham equation. A vacuum layer of 20
A is added perpendicular to the sheet to avoid artificial interaction between periodic
images. The Brillouin zone integration is performed using a 2x2x1 k-mesh. All the
structures are relaxed until the residual forces on the atoms have declined to less than

0.01 eV/A.



Figure S1. SEM image of Ni-SAs/NPs@BNCNTs (concentric backscattered

retractable detector at 1 kV).



Figure S2. SEM image of Ni-SAs/NPs@BNCNTs (concentric backscattered

retractable detector at 5 kV).



Figure S3. (a) SEM image and (b) aberration-corrected HAADF-STEM image of the

Ni-SAs@NC.
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Figure S4. SEM images of the Ni-NPs@BNCNTs (a) concentric backscattered

retractable detector at 1 kV and (b) at 5 kV.
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Figure S5. (a) Wide-survey XPS spectrum, (b) high-resolution N 1s XPS spectrum,

and (c) high-resolution Ni 2p XPS spectrum of Ni-SAs@BNCNTs.
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Figure S6. (a) Ni K-edge XANES and (b) Fourier transform (FT) Ni K-edge EXAFS
spectra of Ni foil, NiO, and Ni-SAs@NC. (c) FT-EXAFS R-space fitting curve of Ni-
SAs@NC. Inset: the model of Ni-SAs@NC.

To uncover the valence state and coordination environment of single-Ni atoms in Ni-
SAs@NC, a synchrotron-based X-ray absorption test was performed. The X-ray
absorption near-edge structure (XANES) spectra disclose that the energy absorption
threshold values of Ni in Ni-SAs@NC lies between those of Ni foil and NiO, indicating
the oxidation state of the single-Ni species between 0 and +2 (Figure 6a). Fourier
transform-extended X-ray absorption fine structures (FT-EXAFS) of Ni-SAs@NC
display Ni-N peaks at 1.4 A without Ni-O (1.6 A) or Ni-Ni bonds (2.2 A), illustrating
the single-atomic Ni dispersion (Figure 6b). Additionally, the EXAFS fittings result
confirms that Ni-N, configuration is the dominant coordination mode of Ni atoms in

Ni-SA@BNCNTs (Figure 6c¢).
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Figure S7. (a) XRD patterns of ZIF-ZnNi mixture and pure ZIF-ZnNi. (b) SEM image

of the pure ZIF-ZnNi. (c) XRD pattern of Ni-SAs/NPs@BNCNTs.
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Figure S8. (a) SEM images of Ni-SAs@BNCNTs. (b) XRD pattern of the Ni-

SAs@BNCNTs.
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Figure S9. CO,-TPD profiles of Ni-SAs/NPs@BNCNTs and carbon black.
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Side

Figure S10. CO, adsorption model on Ni-N-C.

Table S1. The effect of photogenerated electrons on the adsorption energy of CO,.

Adsorption Energy
Ni-N-C  Ni-N-C and e~
Data
Ey 0.224eV  -0.072¢eV

Ni-Ccos (distance) 3319A 3.285A
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Figure S11. The magnetic hysteresis loop of Ni-NPs/SAs@BNCNTs.
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Figure S12. (a) SEM image (at 1 kV), (b) SEM image (at 5 kV), (c) Aberration-
corrected HAADF-STEM image, and (d) HAADF-STEM image and corresponding

element mappings of Ni-SAs/NPs@BNCNTs after using for 10 times.
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Figure S13. XPS spectra of Ni-SAs/NPs@BNCNTs after using for 10 times (a) survey

scan and (b) Ni 2p.
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Figure S14. Crude "H-NMR spectra of N-formylation of N-methylaniline with CO, and
PhSiHj; by using Ni-SAs/NPs@BNCNTs. Signals with asterisk are related to PhSiHj.
Product (N-methylformanilide). 'H-NMR (CDCl;, 400 MHz) ¢ 8.48 (s, 1H), 0 7.42

(t,J=7.8 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 7.6 Hz, 2H), & 3.33 (s, 3H).
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Figure S15. The mass spectra of N-methylaniline and N-methylformanilide.
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Figure S16. Crude '"H-NMR spectra of N-formylation of p-toluidine with CO, and
PhSiHj; by using Ni-SAs/NPs@BNCNTs. Signals with asterisk are related to PhSiHj.

Product (N-p-tolylformamide). '"H-NMR (CDCl;, 400 MHz)[] 8.42,8.15(d,J=11.35
Hz, and br, total 1H), 7.42 (d, J = 8.72, 1H), 7.15 (t, J = 8.54, 2H), 6.97 (d, J = 8.01,

1H),2.32 (d, J=6.47, 3H).
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Figure S17. The mass spectra of p-toluidine and N-p-tolylformamide.
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Figure S18. Crude "H-NMR spectra of N-formylation of aniline with CO, and PhSiH;
by using Ni-SAs/NPs@BNCNTs. Signals with asterisk are related to PhSiHs.
Product (N-phenylformamide). 'H-NMR (CDCls, 400 MHz)[] 6 = 8.68 (s, 1H), 8.36

(s, 1H), 7.60-7.48 (m, 1H), 7.43-7.28 (m, 2H), 7.24-7.05 (m, 2H).
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Figure S19. The mass spectra of aniline and N-phenylformamide.
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Figure S20. Crude "H-NMR spectra of N-formylation of aniline with CO, and PhSiH;
by using Ni-SAs/NPs@BNCNTs. Signals with asterisk are related to PhSiHs.
Product (3,4-dihydroquinoline-1(2H)-carbaldehyde). 'H-NMR (CDCl;, 400
MHz)[] major isomer 6 8.76 (s, 1H), 7.24 — 7.04 (m, 4H), 3.81 — 3.78 (m, 2H), 2.80 (t,
J=6.4Hz, 2H), 1.97 — 1.91 (m, 2H); minor isomer ¢ 8.30 (s, 0.09H), 7.42 — 7.30 (m,

0.36H), 3.64 — 3.62 (m,0.18H), 2.89 (t, J = 6.7 Hz, 0.18H), 2.05 — 1.99 (m, 0.18H).
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Figure S21. 1,2,3,4-tetrahydroquinoline and  3,4-dihydroquinoline-1(2H)-

carbaldehyde.
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Table S2. Summary of high performance metal-based catalysts for N-formylation.

Reaction Conditions

Catalyst Metal Hydrosilane P Y;jld Reference
T (°C) €O Time(h) (%)
(MPa)
: Asian J. Org. Chem. 2022,
PdNPore Pd PhSiH; 60 1 20 90 02900064
Zn powder Zn (EtO);SiH 120 1.5 24 80  Chin. J. Chem. 2020, 38, 1057-1064
Br-PMOF(Ir) Ir PhSiH; 25 0.1 43 83 Chem. Eur. J. 2022, 202200555
diphenylmethylsil
Pd@HMP-1 Pd P eny;‘;e yista 60 1 20 93 ChemCatChem 2017, 9, 1939-1946
poly(methyl- )
Pd-PS-amtp Pd ) 50 1 10 96 ChemistrySelect 2019, 4, 3961-3972
hydrosiloxane)
ZnO+TBAB Zn PhSiH; 40 1 2 98 Catal. Commun. 2021, 149, 106195
- Am. . Soc. 2019, 141, 4086-
Pty/TisC, T, Pt Et;SiH 140 1 10 g7~ Am- Chem SZ%%O , 141, 4086
. Appl. Catal B-Environ. 2021, 294,
Zn-TpPa Zn PhSiH; 30 0.1 12 97.5 120238
Zn(o’?;’\)fgpl(Blpy' Zn PhSiH; 30 0.1 5 94 J. CO, Util. 2022, 65, 102214
. Sei. T 12022, 12, 2688-
ZnPc/g-CyN, Zn PhSiH, 20WLED 0.1 24 g5~ Catal Sci eCh;;) éz 022, 12, 2688
Cu/BiVO, Cu PhSiH; 20WLED 0.1 24 64 J. CO, Util. 2021, 45, 101402
Ni- , . , .
By e R PhSiH, 0.2 W/em 0.1 12 95 This work
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