Supporting Information

Chemically Debondable, High-strength and Tough Adhesives from Sulfur Modified Epoxy Networks

Yu Jin, Zhengxiang Wang, Chengcheng Hu, Jie Wang, Kangle Yan, Juan He, Zhong Wang, Zhongkai Wang, Liang Yuan*

Biomass Molecular Engineering Center, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China Email: <u>yuanliang2020@ahau.edu.cn</u>

Fig. S1. ¹H NMR spectrum of PS samples.

Fig. S2. Insoluble contents of SEA as-prepared samples and after each hot-pressing cycle.

Fig. S3. XRD spectrum of sulfur and SEA-1.

Fig. S4. Tensile testing results of SEA samples.

Sample	Strain	Strain	Strain	Mean	Standard deviation	Stess at Stess at		Stees at	Mean	Standard
	at	at	at	value		break A	break B	break C	value	deviation
	break	break	break	[%]	[%]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
	A [%]	B [%]	C [%]	[/0]	[/0]	լուս	[1011 u]	[1 111 u]	լտուսյ	լուս
SEA-1	196.54	177.47	178.36	184.12	10.76	8.79	8.11	8.24	8.38	0.36
SEA-2	196.37	209.47	231.21	212.35	17.59	2.89	2.68	3.58	3.05	0.47
SEA-3	129.22	136.76	143.22	136.40	7.01	20.88	21.64	22.99	21.84	1.07
SEA-4	196.56	194.45	203.94	198.32	4.98	5.26	5.55	5.53	5.45	0.16

Table S1. Tensile test results of SEA samples.

Table S2. Collected tensile test results for plotting Fig. 3D and the references.

Reference	rence Strain at Stress at						
number in break		break	References				
Fig. 3D	(%)	(MPa)					
S 1	1.63	19.5					
	2.33	9.43	ACS Macro Lett., 2016, 5, 1152-1156.				
	228.33	2.33	(DOI: 10.1021/acsmacrolett.6b00602)				
	1.27	10.1					
S2	280	1.38	ACC Augl Balance Mater 2020 2 5172 5179				
	320	0.44	ACS Appl. Polym. Mater., 2020, 2, 51/3-51/8.				
	430	0.13	(DOI.10.1021/acsapm.0c00924)				
S 3	2.8	17.5	ACS Marrie Lett. 2015 4 9(2) 9(4				
	7.9	6.9	ACS Macro Lett., 2013 , 4, $802-800$.				
	9.8	12.9	(DOI: 10.1021/acsinacrolett.5000502)				
S4	7.19	0.25					
	8.28	0.59					
	9.94	0.74	Adv. Funct. Mater., 2019, 1808989.				
	9.11	0.85	(DOI: 10.1002/adfm.201808989)				
	9.94	1.01					
	7.77	1.06					
S5	19	2.1	I Motor Cham A 2010 7 15692 15600				
	20	1.68	J. Mater. Chem. A, 2019, 7 , 15085-15090.				
	17	1.43	(DOI: 10.1039/c9ta03222c)				
S.C.	32	22	Macromol. Rapid Commun., 2017, 38, 1700051.				
30		22	(DOI:10.1002/marc.201700051)				
S 7	45	0.93	Chem. Eur. J., 2019, 25, 10433-10440.				
	27	0.97	(DOI:10.1002/chem.201901619)				
S 8	35.28	0.14					
	51.2	0.59	Answer Cham Let Edit 2020 50 12271 12279				
	42.06	1.88	Angew. Chem. Int. Edit., 2020, 59, 155/1-155/8.				
	15.08	9.64	(DOI:10.1002/anie.202004311)				
	11.85	20.17					
S 9	0.88	5					

	1.14	3.9	ACS Appl. Polym. Mater., 2020, 2, 3761-3765.			
	0.76	4.08	(DOI:10.1021/acsapm.0c00803)			
S10	22	1.92	J. Polym. Sci., 2020, 58, 438–445.			
	18	1.6	(DOI: 10.1002/pol.20190138)			
S11	21.5	2.6	Sustain. Chem. Pharm., 2020, 16, 100249.			
	25.7	1.5	(DOI:10.1016/j.scp.2020.100249)			
S12	17	7	RSC Adv., 2019, 9, 31460–31465			
512	1./	1	(DOI: 10.1039/c9ra06213k)			
S13	47.67	1.3	Mator Latt 2017 202 59 61			
	71.46	2	(DOL 10, 1016) = mathet 2017, 205, 38-01.			
	53.62	6.1	(DOI:10.1016/j.matlet.2017.05.133)			
S14	72	3.85	Polymers, 2017, 9, 59.			
	50	2.1	(DOI:10.3390/polym9020059)			
S15	32	2.9	I. D. J S: 2020 58 2042 2050			
	98	1.21	J Polym Sci., 2020, 58, 2943–2950.			
	32	3.7	(DOI: 10.1002/poi.20200321)			
S16	167.3	6.36	Chem. Mater. 2022, 34, 1167–1178.			
	113.28	13.21	(DOI:10.1021/acs.chemmater.1c03662)			
S17	3.44	60.44	Chem. Sci., 2022, 13, 566–572.			
	17	13.55	(DOI: 10.1039/d1sc05896g)			

Table S3. Component ratios of control studies for SEA-1.

Sampla	Sulfur	10-undecenoic	DGEBA	Oleic	1-Dodecene	Zinc diethyl-
Sample	[g]	acid [g]	[g]	acid [g]	[g]	dithiocarbamate [mg]
SEA-1	1.0	2.0	3.0	0	0	0
C-1	1.0	0	3.0	2.0	0	0
C-2	1.0	2.0	3.0	0	0	60.0
C-3	1.0	0	3.0	0	0	0
C-4	1.0	0	3.0	0	2	0

Fig. S5. Toughness calculation for SEA curves given in Fig. 3A.

Fig. S6. Solubility test of C-1 in DMF, 1 minute after putting the film in DMF (left) and 12 hours later (right).

Fig. S7. Photo of SEA-1 and other samples from the control studies.

Fig. S8. Tensile testing results of control sample C-2.

Fig. S9. DSC thermograms of SEA samples after different cycles of hot-pressing (TOP) and summarized T_g in comparison with the as-prepared sample (bottom).

Fig. S10. FT-IR spectrum of SEA-3 samples after each hot-pressing cycle.

Sample	LSS [MPa] A	LSS [MPa] B	LSS [MPa] C	Mean value [MPa]	Standard deviation [MPa]
SEA-1-Wet	33.31	28.14	32.58	31.34	2.79
SEA-2-Wet	25.99	24.12	24.40	24.84	1.01
SEA-3-Wet	24.19	26.22	25.26	25.23	1.01
SEA-4-Wet	32.21	31.46	29.97	31.22	1.14
SEA-1-Dry	12.26	13.43	12.62	12.77	0.61
SEA-2-Dry	4.07	4.41	4.05	4.18	0.20
SEA-3-Dry	19.74	23.01	22.01	21.58	1.67
SEA-4-Dry	11.94	11.67	9.93	11.18	1.09
SK-13	18.43	19.38	19.08	18.96	0.48

Table S4. Summary of lap shear strength (LSS) testing results for SEA samples and SK-13.

Fig. S11. Load displacement curves of SEA samples and commodity epoxy adhesive SK-13 during the lap shear strength testing. For all testing specimens, the overlapping area is $10 \text{ mm} \times 10 \text{ mm}$.

Fig. S12. Dry adhesive bonding test for reprocessed SEA-3 films after the second (left) and third (right) cycle.

Fig. S13. SEA-3 dry adhesive re-bonding test.