A Heuristic Predictive Model for Screening Green Entrainer

Comparing Life Cycle Assessment Indexes and Economics

Electronic Supplementary Information

Qinggang Xu^a, Jiafu Xing^a, Yuyang Jiao^a, Zihao Su^a, Yanli Zhang^a, Peizhe Cui^a, Jianguang Qi^a, Zhaoyou Zhu ^a, Yinglong Wang ^{a,*}, Yixin Ma^b

 ^a College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
^b College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China

*Corresponding Author: Yinglong Wang

*E-mail: wangyinglong@qust.edu.cn College of Chemical Engineering, Qingdao University of Science and Technology 266042, Qingdao, China

	Methanol-toluer			
Azeotrope	x _{methanol} /mol Ten	mperature /K		
Experimental data	0.8820-0.8860 33	6.41-336.95		
NRTL model	0.887	337.02		
UNIQUAC model	0.8843	336.91		
Table S2: The method of acc	ounting the necessary parameters to evaluate TA	\С.		
Project	Content	Unit		
ID	Aspen tray sizing	m		
Н	0.61×(NT/0.75-3) +6	m		
Column shell cost C_1	$H_{\rm I} = \left(\frac{M\&S}{280}\right) \times 937.636 \times D^{1.066} \times H^{0.802} \times (2.18 \times 10^{-1000})$	$+F_c$) \$		
F _C =Fm·Fp, F	$Fm=3.67, Fp=1.05, P \le 6.8 atm; Fp=1.00, P \le 3.4$	4atm		
A _C	$A_C = \frac{Q_C}{K_C \Delta T_C}$	m ²		
Kc	0.852	$kW \cdot m^{-2} \cdot K^{-1}$		
EH cost	$C_2 = \left(\frac{M\&S}{280}\right) \times 474.668 \times A^{0.65} \times (2.29 + F_c)$	\$		
$F_{C} = (F_{d} + F_{p}) \cdot F_{m}, F_{m} = 3.75, F_{d}$	$_{d}$ =1.35(kettle reboiler), F_{d} = (fixed tube sheet heat	at exchangers), $F_p=0$		
A _R	$A_R = \frac{Q_R}{K_R \Delta T_C}$	m ²		
K _R	0.568	$kW \cdot m^{-2} \cdot K^{-1}$		
Energy costs				
LP steam /433 K)	7.78	\$∙GJ ⁻¹		
MP steam /457 K	8.22	GJ^{-1}		
HP steam /537 K	9.88	GJ^{-1}		
M&S	1431.7			
Membrane Material	327.62 X A.	\$		
Cost	$527.02 \cdots A_{\mathrm{M}}$	ψ		
Vacuum Pump Cost	$C_3 = 4200 \times \left(\frac{60 \times F_P \times 8.314 \times 273.15}{3600 \times 101.325}\right)^{0.55}$	\$		
Fp	Aspen simulation results	kmol∙h ⁻¹		
TAC	$TAC = rac{capital\ cost}{paybackperiod} + energy\ cost$	\$·y ⁻¹		
Payback period	3	years		

Table S1: The thermodynamic data of Methanol-Toluene azeotrope.

Fig. S1 The simulated and optimized procedure of the extractive distillation process.

Project	Unit	NMP	Aniline	DMF	Styrene	o-xylene	p-xylene	m-xylene
GWP	$kg \cdot y^{-1}CO_2 Eq.$	289.703	281	285.973	335.708	345.655	407.781	494.128
AP	$kg \cdot y^{-1}SO_2 Eq.$	0.5176	0.5021	0.511	0.5998	0.6176	0.7287	0.8775
HTP	kg DCB Eq.	8.9837	8.7138	8.8681	10.4103	10.7188	12.6447	15.2299
FETP	kg DCB Eq.	0.1545	0.1499	0.1525	0.1791	0.1844	0.2175	0.262
TETP	kg DCB Eq.	0.1611	0.1563	0.159	0.1867	0.1922	0.2268	0.2731
TEDI		0.56	0.58	0.79	1.62	1.74	2.75	2.81
LTEDI		0.3815	0.4156	0.5319	0.7431	0.7772	0.9981	1.0178

Table S3: The detailed life cycle inventory of each entrainer for separating TOL+META azeotropes with the extractive distillation process.

Table S4: The detailed life cycle inventory of each entrainer for separating ACT+META azeotropes with the extractive distillation process.

Project	Unit	MEA	DMSO	Water	DMF	Ethanol
GWP	kg·y-1CO ₂ Eq.	273.415	353.737	516.617	487.398	1883.69
AP	kg·y-1SO ₂ Eq.	0.488513	0.632023	0.923043	0.870837	3.36561
HTP	kg DCB Eq.	8.4786	10.9694	16.0203	15.1142	58.4134
FETP	kg DCB Eq.	0.1458	0.1887	0.2756	0.26	1.0048
TETP	kg DCB Eq.	0.152	0.1967	0.2873	0.271	1.0495
TEDI		1.06	2.21	4.5	7.32	12.77
LTEDI		0.5209	0.7985	1.4536	1.6221	2.8898

$V_{i=} \mathbf{D} + \mathbf{L} = D_i \times (R_{i+1})$
$F(TAC)_i = C_1 \times N_i \times V_i$
$\frac{1}{ \alpha_{i,min} } \times \frac{x_{D,LK}}{ \alpha_{i}-1 } \times \frac{x_{D,LK}}{ x_{F,LK} } - \alpha_{i} \times \frac{x_{D,HK}}{ x_{F,HK} } = \frac{1}{ \alpha_{i}-1 } \times \frac{x_{D,LK}}{ x_{F,LK} }$
$R_{i,min} = \frac{C_2 \times \frac{1}{ \alpha_i - 1 }}{ \alpha_i - 1 }$
$\frac{C_3}{ \alpha_i - 1 }$
$\log_{10} \left(\frac{x_{D,LK}}{x_{D,HK}} \times \frac{x_{W,HK}}{x_{W,LK}} \right) = C_4 \times \frac{1}{\log_{10} \alpha_i}$
$C_5 \times \frac{C_4}{\log_{10} \alpha_i}$
F(TAC) _i = $C_1 \times N_i \times V_{i=}$ $C_1 \times C_2 \times C_3 \times C_4 \times C_5 \times \frac{1}{ \alpha_i - 1 } \times \frac{1}{\log_{10} \alpha_{i=}}$
$\frac{C}{ \alpha_i - 1 \log_{10} \alpha_i}$
$\sum_{F(TAC)=i=1}^{n} \frac{C}{ \alpha_{i}-1 \log_{10} \alpha_{i}} (i=1,2,,n)$

Table S5: The theoretical derivation formula for process assumption of the TAC model of Zhu et al..