Supporting Information

Continuous production of amines directly from alkenes via cyclodextrinmediated hydroaminomethylation using only water as the solvent

Authors: Thomas Roth¹, Rebecca Evertz¹, Niklas Kopplin¹, Sébastien Tilloy², Eric Monflier², Dieter Vogt¹ and Thomas Seidensticker^{1*}

¹TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany

²University Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-62300 Lens, France

*Mail: thomas.seidensticker@tu-dortmund.de, Tel: +49 231 755 2310, Web: https://tc.bci.tu-dortmund.de/

Table of Contents

Product Identification	S2
Batch Experiments	S 3
Recycling experiment	S 3
Increased CD- Concentration:	S5
Additional Results: Reducing Catalyst concentration at high Cyclodextrine Concentrations:	S5
Continuous Experiments	S6
First continuous experiment	S6
Second continuous experiment	S6
Third continuous experiment	S7
Detection of CD loss to product phase <i>via</i> MS:	S7
Calibration:	S8

Product Identification

The measurement of NMR spectra was recorded with a 400 MHz spectrometer type BRUKER DVANCE III HD NANOBAY. Deuterated chloroform was used as the solvent for the samples.

¹H-NMR (400 MHz, CDCl₃): δ = 0.87 (t, 3H, CH₃), 1.01 (t, 6H, CH₃), 1.26 (m, 12H, CH₂), 1.43 (m, 2H, CH₂), 2.40 (m, 2H, CH₂), 2.52 (q, 4H, CH₂)

¹³C NMR (400MHz, CDCl₃) for the main product N,N,diethylnonylamine: δ =11.78, 14.25, 22.82, 27.09, 27.90, 29.45, 29.75, 29.8, 32.04, 47.03, 53.16

Figure S1: ¹H NMR (400MHz, CDCl₃) for the main product N,N,diethylnonylamine:

Figure S2: ¹³C NMR (400MHz, CDCl₃) for the main product N,N,diethylnonylamine.

Batch Experiments

Recycling experiment

The reaction temperature was set to 120 °C, with a pressure of 30 bar and a molar ratio of hydrogen to carbon monoxide of 2:1. The organic volume fraction φ was 0.2. The molar ratio of catalyst to ligand to CD was set to 1:7:15, and mixing was assured using a pitched blade stirrer set to 800 rpm combined with a baffle system. The catalyst preforming time was set to 2 h, and the reaction time was decreased from 30 h to 24 h compared to the referenced publication.

Figure S3: Recycle experiments for the hydroaminomethylation of octene *I*-1 with diethylamine. Conditions: T = 120 °C; p = 35 bar; $n_{\text{CO}}/n_{\text{H2}} = 1:2$; u = 800 rpm; $c_{\text{Rh}} = 3.2 \text{ mmol } \text{L}^{-1}$; $n_{\text{P}:}n_{\text{Rh}} = 7$; $V_{liq} = 100\text{ ml}$; $\varphi = 0.2$; $n_{\text{DEA}:}n_{\text{I-1}} = 1.5$; $n_{\text{CD}:}n_{\text{Rh}} = 15$; t = 24 h; $n_{l-1,\text{per run}} = 0.117$ mol; preforming_{run0}: T = 120 °C; p = 30 bar; $n_{\text{CO}}/n_{\text{H2}} = 1:1$; u = 800 rpm; t = 2 h.

Table S1: ICP-OES measurements of organic phase after the recycle experiments for the hydroaminomethylation of 1-octene with diethylamine. Leaching of catalyst and ligand were calculated based on the remaining masses after the previous run.

Run:		0	1	2	3	
W _{Rh,org}	[ppm]	1	1	1	1	
L_{Rh}	[%]	0,21	0,21	0,21	0,22	
WP,org	[ppm]	8	6	7	7	
L _P	[%]	0,25	0,19	0,22	0,22	

Increased CD-concentration:

Figure S4: Yield over time for the HAM in dependency of the CD to catalyst ratio as presented in Figure 5 in the main part. Conditions: T = 120 °C; p = 35 bar; $n_{CO}/n_{H2} = 1:2$; u = 800 rpm; $c_{Rh} = 3.2$ mmol L⁻¹; $n_{P:R_{Rh}} = 7$; $\varphi = 0.2$; $n_{DEA:n_{1}}A_{Ikene} = 1.5$; $n_{CD}:n_{Rh} = 50$ to 250; preforming: T = 120 °C; p = 35 bar; $n_{CO}/n_{H2} = 1:1$; u = 800 rpm; t > 12 h

Additional Results: Reducing catalyst concentration at high cyclodextrine Concentrations:

Figure S5: Yield over time for various substrate to catalyst and cyclodextrine to Catalyst ratios of the hydroaminomethylation of 1- octene with diethylamine. Conditions: T = 120 °C; p = 35 bar; n_{CO}/n_{H2} = 1:2; n = 800 rpm; c_{Rh} = 1.1 to 3.2 mmol L-1; $n_{P:n_{Rh}}$ = 7; ϕ = 0.2; n_{DEA} : $n_{1 \text{ Alkene}}$ = 1.5; t = 10 h; preforming: T = 120 °C; p = 35 bar; n_{CO}/n_{H2} = 1:1; n = 800 rpm; t > 12 h

Continuous Experiments

First continuous experiment

Figure S6: Mole fraction of gasses in reactor during the first continuous experiment.

Figure S7: Mole fraction of gasses in reactor during the second continuous experiment.

Second continuous experiment

Third continuous experiment

Figure S8: Mole fraction of gasses in reactor during the third continuous experiment.

Detection of CD loss to product phase via MS:

Figure S10: Mass spectrum product solution of third continuous experiment. a: whole spectrum, b: zoomed in lower intensities

Calibration:

Analysis of product mixtures was done with a gas chromatography by Agilent Technologies (7890A) with a flame ionization detector and a capillary column type HP-5 ($30m \times 0.32mm \times 0.25\mu m$). For this purpose, 0.6 g of Tetrahydrofuran as the solvent, 0.05 of di-*n*-butylether as the internal standard, and 0.35 g of sample were used.

	Rate [°C/min]	Target Value [°C]	Hold Time [min]
T _{Start}		40	3
Ramp 1	7.5	150	0
Ramp 2	40	320	0
T _{End}		320	8

Table S2: Heat	profile for the	GC-FID analysis.
----------------	-----------------	------------------

Spezies	Retention Time [min]	Response Factor	
DEA , Diethylamin	1.77	1.0483	
<i>l-1</i> , 1-Octen	4.26	1.3434	
6, Octan	4.43	1.3642	
iso-1, Iso- Octen	4.58- 4.74	1.3434	
b-2 , b-Nonanal	10.4	0.8928	
I-2 , l-Nonanal	11.25	0.8928	
Nonanol	12.4	0.9516	
b-4 , b-amine	12.56	0.9603	
b-3 , b-enamine	14.65	0.9603	
<i>I-4,</i> I-amine	15.92	0.9603	
<i>I-3,</i> l-enamine	16.79	0.9603	
7, aldol condensate	20.0-21.5	0.6377	

Table S2. Detention	times and re	senoneo factore	for the CC	EID anal	voic
able 33. Reletition	unies and re			- FID allal	y 515.