Supplementary information

Batch and continuous flow asymmetric synthesis of anabolicandrogenic steroids via single-cell biocatalytic Δ^{1}-dehydrogenation and $C 17 \beta$-carbonyl reduction cascade

Yajiao Zhang, ${ }^{\text {a }}$ Minjie Liu, ${ }^{\text {a }}$ Zixin Yang, ${ }^{\text {b }}$ Juan Lin, ${ }^{* a}$ Zedu Huang ${ }^{* c, ~ d}$ and Fener Chen*a, b, c, d
a. College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China.
b. Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
c. Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
d. Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, China.

* Corresponding author: Prof. Fener Chen (Email: rfchen@fudan.edu.cn), Prof. Zedu

Huang (Email: huangzedu@fudan.edu.cn), and Prof. Juan Lin (Email:
Ijuan@fzu.edu.cn).

Content

Scheme S1. Chemical approaches for the synthesis of (+)-boldenone. 3
Scheme S2 The stepwise biotransformations from PS to BD 4
Tab. S1 Primers for mutagenesis of ReKstD5
Tab. S2 Construction of each E. coli cells based on different plasmid compositions. 7
Tab. S3 Continuous flow synthesis of (+)-boldenone 8
Tab.S4 Continuous flow synthesis of (+)-boldenone undecylenate 9
Tab. S5 NMR information of steroid compounds 10
Fig. S1 A Time course studies for E. coli-PmCR- and E. coli-17 β-CR-catalyzed conversion of 4- 11AD to TS with different substrate concentrations
Fig. S2 HPLC analysis of 4-AD, ADD, TS and BD equipped with chiral column. 12
Fig. S3 Protein expression of the selected $\Delta^{1}-$ KstDs, carbonyl reductases. 13
Fig. S4 Optimization of the reaction parameters of the developed biocatalytic cascade 14
Fig. S5 Protein expression and co-expression of ReM2 and 17ß-CR. 15
Fig. S6 Reaction condition optimization for the enzymatic cascade synthesis of BD 16
Fig. S7 HPLC standard curve of 4-AD, ADD, TS and BD. 18
Fig. S8 HPLC analysis of 4-AD, ADD, TS and BD standards. 19
Fig. S9 A plot of the reaction velocity as a function of the substrate concentration as described by the Michaelis-Menten equation. 20

route I

route II

(ADD, 2a)
S2
S3
\downarrow aq. $\mathrm{H}_{3} \mathrm{O}^{+}$

(+)-boldenone
(BD, 3)

Scheme S1. Chemical approaches for the synthesis of (+)-boldenone.

Scheme S2 The stepwise transformations from PS to (+)-boldenone.

Tab. S1 Primers for mutagenesis of ReKstD

Primer	5' to 3' Sequence
ReKstD-F	CATATGCAGGATTGGACGAGTGAA (Nde I)
ReKstD-R	AAGCTTTTATTTAGCCATATCCTGA (Hind III)
G48/A49-F	ACAAGTGCGTATAGCNDTNDTAGTATTTGGTTACCGGGCACACAGGT
G48/A49-R	CGGTAACCAAATACTAHNAHNGCTATACGCACTTGTACCGCCAAA
S50/I51-F	GCGTATAGCGGTGCGNDTNDTTGGTTACCGGGCACACAGGTTCAG
S50/I51-R	TGTGCCCGGTAACCAAHNAHNCGCACCGCTATACGCACTTGTACC
P488-F	AGGTTTTATCCAGGCNDTGGTGTTCCGTTAGGTACAGCGATGGTG
P488-R	ACCTAACGGAACACCAHNGCCTGGATAAAACCTCCCCGACAGTGA
F114-F	TTTGAATTTCGTGCCNDTCCGGATTATTATAAAGCAGAAGGTCGC
F114-R	TTTATAATAATCCGGAHNGGCACGAAATTCAAATTCGATATTTGG
L445-F	ATTGTGCTGAGCGATNDTGGGACAAAAGGTGGTTTAGTGACCGAT
L445-R	ACCACCTTTTGTCCCAHNATCGCTCAGCACAATGCGTGCAGCATA
F416-F	CCTTACGATGCCTTTNDTTGTCCTCCTAATGGCGGTCCTAATGC
F416-R	GCCATTAGGAGGACAAHNAAAGGCATCGTAAGGATCTTCACCGCG
F292/V294-F	GATGGCTCTGCTGCCNDTATGNDTGGTGTTCGTGGTGGCTTAGTT
F292/V294-R	GCCACCACGAACACCAHNCATAHNGGCAGCAGAGCCATCTGGCTG
I350/I352-F	GGCGGCTTACCAGCCNDTTGTNDTCCAAATACAGCTCCTGCCAAA
1350/1352-R	AGGAGCTGTATTTGGAHNACAAHNGGCTGGTAAGCCGCCACCTTC
151G-F	GCGAGTGGCTGGTTACCGGGCAC
151G-R	TAACCAGCCACTCGCACCGCTAT
151A-F	GCGAGTGCGTGGTTACCGGGCAC
151A-R	TAACCACGCACTCGCACCGCTAT
I51L-F	GCGAGTCTGTGGTTACCGGGCAC
151L-R	TAACCACAGACTCGCACCGCTAT
151V-F	GCGAGTGTTTGGTTACCGGGCAC
I51V-R	TAACCAAACACTCGCACCGCTAT
151P-F	GCGAGTCCATGGTTACCGGGCAC
151P-R	TAACCATGGACTCGCACCGCTAT
151F-F	GCGAGTTTTTGGTTACCGGGCAC
151F-R	TAACCAAAAACTCGCACCGCTAT
151M-F	GCGAGTATGTGGTTACCGGGCAC
151M-R	TAACCACATACTCGCACCGCTAT
I51W-F	GCGAGTTGGTGGTTACCGGGCAC
151W-R	TAACCACCAACTCGCACCGCTAT
151S-F	GCGAGTAGCTGGTTACCGGGCAC
151S-R	TAACCAGCTACTCGCACCGCTAT
151Q-F	GCGAGTCAGTGGTTACCGGGCAC
151Q-R	TAACCACTGACTCGCACCGCTAT
151T-F	GCGAGTACCTGGTTACCGGGCAC
151T-R	TAACCAGGTACTCGCACCGCTAT
151C-F	GCGAGTTGTTGGTTACCGGGCAC
151C-R	TAACCAACAACTCGCACCGCTAT
151N-F	GCGAGTAATTGGTTACCGGGCAC
151N-R	TAACCAATTACTCGCACCGCTAT
151Y-F	GCGAGTTATTGGTTACCGGGCAC
151Y-R	TAACCAATAACTCGCACCGCTAT
151D-F	GCGAGTGATTGGTTACCGGGCAC
151D-R	TAACCAATCACTCGCACCGCTAT
151E-F	GCGAGTGAATGGTTACCGGGCAC
151E-R	TAACCATTCACTCGCACCGCTAT
151K-F	GCGAGTAAATGGTTACCGGGCAC

151K-R	TAACCATTTACTCGCACCGCTAT
151R-F	GCGAGTAGGTGGTTACCGGGCAC
151R-R	TAACCACCTACTCGCACCGCTAT
151H-F	GCGAGTCATTGGTTACCGGGCAC
151H-R	TAACCAATGACTCGCACCGCTAT
I350G-F	CCAGCCGGCTGTATCCCAAATACAGC
I350G-R	GATACAGCCGGCTGGTAAGCCGCC
I350A-F	CCAGCCGCCTGTATCCCAAATACAGC
I350A-R	GATACAGGCGGCTGGTAAGCCGCC
I350L-F	CCAGCCGCGTGTATCCCAAATACAGC
1350L-R	GATACACGCGGCTGGTAAGCCGCC
I350V-F	CCAGCCGTTTGTATCCCAAATACAGC
I350V-R	GATACAAACGGCTGGTAAGCCGCC
I350P-F	CCAGCCCCGTGTATCCCAAATACAGC
I350P-R	GATACACGGGGCTGGTAAGCCGCC
1350F-F	CCAGCCTTTTGTATCCCAAATACAGC
I350F-R	GATACAAAAGGCTGGTAAGCCGCC
I350M-F	CCAGCCATGTGTATCCCAAATACAGC
I350M-R	GATACACATGGCTGGTAAGCCGCC
I350W-F	CCAGCCTGGTGTATCCCAAATACAGC
I350W-R	GATACACCAGGCTGGTAAGCCGCC
I350S-F	CCAGCCAGCTGTATCCCAAATACAGC
I350S-R	GATACAGCTGGCTGGTAAGCCGCC
I350Q-F	CCAGCCCAGTGTATCCCAAATACAGC
1350Q-R	GATACACTGGGCTGGTAAGCCGCC
I350T-F	CCAGCCACCTGTATCCCAAATACAGC
I350T-R	GATACAGGTGGCTGGTAAGCCGCC
I350C-F	CCAGCCTGTTGTATCCCAAATACAGC
I350C-R	GATACAACAGGCTGGTAAGCCGCC
I350N-F	CCAGCCAATTGTATCCCAAATACAGC
I350N-R	GATACAATTGGCTGGTAAGCCGCC
I350Y-F	CCAGCCTATTGTATCCCAAATACAGC
I350Y-R	GATACAATAGGCTGGTAAGCCGCC
I350D-F	CCAGCCGATTGTATCCCAAATACAGC
I350D-R	GATACAATCGGCTGGTAAGCCGCC
I350E-F	CCAGCCGAATGTATCCCAAATACAGC
I350E-R	GATACATTCGGCTGGTAAGCCGCC
I350K-F	CCAGCCAAATGTATCCCAAATACAGC
I350K-R	GATACATTTGGCTGGTAAGCCGCC
I350R-F	CCAGCCAGGTGTATCCCAAATACAGC
I350R-R	GATACACCTGGCTGGTAAGCCGCC
I350H-F	CCAGCCCATTGTATCC CAAATACAGC
I350H-R	GATACAATGGGCTGGTAAGCCGCC
*The sequences in this table were designed based on wild type ReKstD. The primer sequence was adjusted when the template is variant.	

Tab. S2 Construction of each E. coli cells based on different plasmid compositions.

Entry	E. coli strains	Plasmids ${ }^{\text {a }}$	Entry	E. coli strains	Plasmids ${ }^{\text {a }}$
1	E. coli (Re-21a)	${ }_{\text {pET-21a }} \Gamma_{\text {ReKstD- }}$	7	E. coli (ReM2)	
2	E. coli (Re-RSF)	$\text { RSF } \Gamma_{\text {ReKstD. }} .$	8	E. coli (Re-21a+CR-RSF)	${ }_{\text {PET-21a }} \mathrm{C}_{\text {Reksto- }}-$ RSF $\Gamma_{\text {17P-CR }-}$
3	E. coli (CR-30a)		9	E. coli (Re-RSF+CR-30a)	$\text { RSF }^{\Gamma_{\text {Reksto }}-\quad \text { pet-30a }} \Gamma_{17 \beta-C R}$
4	E. coli (CR-RSF)	$\mathrm{RSF}_{17 \beta-\mathrm{CR}}-$	10	E. coli (RSF-ReM2_CR)	
5	E. coli (Re-I51L)	$\mathrm{pET-21a}_{\text {ReKstD//51L- }}$	11	E. coli (RSF-CR_ReM2)	$\mathrm{RSF}_{17 \beta-\mathrm{CR}} \boldsymbol{\Gamma}_{\text {ReKstD/[51//350T - }}$
6	E. coli (Re-I350T)	${ }_{\text {pet-21a }} \longrightarrow_{\text {Reksto/1350T }}$			

Tab. S3 Continuous flow synthesis of (+)-boldenone (3) through biocatalytic Δ^{1}-dehydrogenation and C17ßcarbonyl reduction cascade in a PTFE coil reactor.

Tab.S4 Continuous flow synthesis of (+)-boldenone undecylenate (4) starting from purified (+)-boldenone.

Fig. S1 A Time course for E. coli-PmCR catalyzed conversion of $\mathbf{1}$ to $\mathbf{2 b}$ with different substrate concentrations. Reaction conditions: the reaction mixtures performed with substrate $1(10,50$ and 100 mM$), 100 \mathrm{mg} / \mathrm{mL}$ expressed E. coli-PmCR wet cells, $20 \mathrm{mg} / \mathrm{mL}$ lytic cells expressing BstFDH, $10.2 \mathrm{mg} / \mathrm{mL}$ sodium formate, $0.3 \mathrm{mM} \mathrm{NADP}^{+}, 4 \%$ (v/v) Tween 80, PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) until the total system was $1 \mathrm{~mL}, 37^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for $0-24 \mathrm{~h}$. B Time course for E. coli-17 β-CR catalyzed conversion of 1 to $\mathbf{2 b}$ with different substrate concentrations. Reaction conditions: the reaction mixtures performed with $10 \%(v / v)$ IPA, substrate 1 (10,50 and 100 mM), $100 \mathrm{mg} / \mathrm{mL}$ expressed E. coli$17 \beta-C R$ wet cells, $\mathrm{PBS}(50 \mathrm{mM}, \mathrm{pH} 7.5)$ until the total system was $1 \mathrm{~mL}, 37^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for $0-24 \mathrm{~h}$.

Fig. S2 HPLC analysis of 4-AD (1), ADD (2a), TS (2b), and BD (3) equipped with chiral OD-H column. A, B and C The standard samples were dissolved in isopropanol, and used for diastereomeric excess (de) determination with highperformance liquid chromatography (HPLC) equipped with a Chiralcel OD-H column. HPLC was performed at 254 nm and $30^{\circ} \mathrm{C}$, hexane/isopropanol ($80: 20, \mathrm{v} / \mathrm{v}$) as the mobile phase at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. The retention times of 4-AD, ADD, TS, 17α-testosterone ($17 \alpha-T S$), $B D$ and 17α-boldenone ($17 \alpha-B D$) were $14.70,22.01,7.63,6.23$, 8.84 and 7.21 min , respectively. D Time course for E. coli $(17 \beta-C R)$-catalyzed conversion of $\mathbf{1}$ to $\mathbf{2 b}$. E Time course for E. coli ($17 \beta-C R$)-catalyzed conversion of $\mathbf{2 a}$ to $\mathbf{3}$. Reaction conditions: $25 \mathrm{mM} \mathbf{1}$ or $\mathbf{2 a}, 50 \mathrm{mg}$ wet cells expressing $17 \beta-C R, 10 \%(v / v)$ IPA, PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) , $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}, 2,4$ and 10 h , respectively. The reaction mixtures were extracted with ethyl acetate, evaporated under vacuum, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and used for diastereomeric excess value (de value) determination with the test method of standards.

Fig. S3 A, B Protein expression of the selected Δ^{1}-KstDs. After ultrasonic crushing centrifugal, SDS-PAGE analysis of different Δ^{1}-KstDs in supernatant. SDS-PAGE analysis of different Δ^{1}-KstDs in precipitation. Lane M, molecular weight standards; lane 1 and 9, E. coli-MsKstD1 supernatant and precipitation; lane 2 and 10, E. coli-ReKstD supernatant and precipitation; lane 3 and 11, E. coli-RgKstD supernatant and precipitation; lane 4 and 12, E. coliNocKstD supernatant and precipitation; lane 5 and 13, E. coli-SQ1KstD supernatant and precipitation; lane 6 and 14, E. coli-LnKstD supernatant and precipitation; lane 7 and 15, E. coli-MtKstD supernatant and precipitation; lane 8 and 16, E. coli-MrKstD supernatant and precipitation. SDS-PAGE analysis illustrated that most of protein mainly existed in the supernatant, indicating a soluble expression, with an exception, LnKstD protein was expressed in form of inclusion bodies (IB) entirely with no activity. C Protein expression of the selected carbonyl reductases. Lane M, molecular weight standards; lane 1, E. coli-pET-30a; lane 2, E. coli-PmCR; lane 3, E. coli-17ß-CR. D Protein expression and purification of ReKstD and its variants. SDS-PAGE analysis of the supernatant of the lysates and the purified proteins. Lane \mathbf{M}, molecular weight standards; Lane 1, 3, 5, $\mathbf{7}$ and 9 are respectively the supernatants of the E. coli strains expressing ReKstD, Re-I51L, Re-I350T, ReM2 and empty vector pET-21a; Lane 2, 4, 6 and 8 are respectively the purified protein of ReKstD, Re-I51L, Re-I350T and ReM2.

Fig. S4 A Ribbon diagram of ReKstD assembled with FAD and 4-AD. Green, yellow, and red sticks were FAD, 4-AD, and Tyr316, respectively, and FAD-binding domain was slate blue, the catalytic domain was in cyan. B Reaction scheme of Δ^{1}-dehydrogenation of 4-AD. The substrate is marked in red, and dashed lines represent hydrogen bond interactions. The first step corresponds to the abstraction of the 2β proton at the $C 2$ position of 3 -ketosteroid by tyrosine anion Tyr316 and the second step is the 1α hydride transfer from the C1 position of the 3-ketosteroid to the N5 of the FAD. C Comparison of binding modes and hydrogen bonding of Re-TS and ReM2-TS in free-state simulation. The amino acid residues are shown in sticks, the four key residues which involved in Δ^{1} dehydrogenation reaction are shown red sticks. TS and FAD are depicted with green and orange carbon atoms, respectively. Hydrogen bonds are shown in yellow dashed lines, and the distances are shown with black dashes and value (\AA). D Conformation maps of Re-4AD (blue) and ReM2-4AD (orange). The limits of "catalytic distances" colored by red dashes were $d\left(\mathrm{OH}_{\mathrm{Y} 316}-\mathrm{C} 2_{\text {sub }}\right) \leq 3.0 \AA, d\left(\mathrm{~N}_{\mathrm{FAD}}-\mathrm{C1}_{\text {sub }}\right) \leq 2.6 \AA, d\left(\mathrm{O}_{\text {sub }}-\mathrm{OH} \mathrm{Y}_{\mathrm{Y} 85}\right) \leq 2.4 \AA$, and $d\left(\mathrm{O}_{\text {sub }}-\right.$ $\left.\mathrm{OH}_{\mathrm{G} 489}\right) \leq 3.0 \AA$.

Fig. S5 Protein expression and co-expression of ReM2 and 17ß-CR. After ultrasonic crushing centrifugal, SDS-PAGE analysis of different samples in supernatant. Lane M, molecular weight standards; lane 1, E. coli-pET-30a; lane 2, E. coli-pET-30a-17ß-CR; lane 3, E. coli-pRSFDuet-1; lane 4, E. coli-pRSFDuet-1-17ß-CR; lane 5, E. coli (pRSFDuet-1$17 \beta-C R+p E T-21 a-R e M 2)$; lane 6, E. coli-pRSFDuet-1-17ß-CR-ReM2; lane 7, E. coli-pET-21a; lane 8, E. coli-pET-21aReM2; lane 9, E. coli-pRSFDuet-1; lane 10, E. coli-pRSFDuet-1-ReM2; lane 11, E. coli-pRSFDuet-1-ReM2-17 $3-C R$; lane 12, E. coli (pRSFDuet-1-ReM2+ pET-30a-17 $\beta-C R$); lane 13, E. coli-pRSFDuet-1-17 $\beta-C R$; lane 14, E. coli-pET-30a$17 \beta-C R$.

Fig. S6 Reaction condition optimization for the enzymatic cascade synthesis of 3. A Cofactor regeneration system. Reaction conditions (1 mL): the reaction mixtures performed with 4-AD (20 mM), $100 \mathrm{mg} / \mathrm{mL}$ co-expressed E. coli wet cells, 1 mM PMS, $10 \%(\mathrm{v} / \mathrm{v})$ DMSO, $\mathrm{PBS}(50 \mathrm{mM}, \mathrm{pH} 7.5), 30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for $2 \mathrm{~h} . \mathrm{I}: 35 \mathrm{mM}$ sodium formate, and $0.2 \mathrm{mM} \mathrm{NAD}^{+}, 50 \mu \mathrm{~L}$ cbFDH ($100 \mathrm{mg} / \mathrm{mL}$ wet cells) for $c b$ FDH regeneration system; II: 35 mM glucose, and 0.2 mM $\mathrm{NAD}^{+}, 50 \mu \mathrm{~L}$ BtGDH ($100 \mathrm{mg} / \mathrm{mL}$ wet cells) for GDH regeneration system; III: $0.2 \mathrm{mM} \mathrm{NAD}^{+}, 10 \%(\mathrm{v} / \mathrm{v}$) IPA for IPA regeneration system,). B IPA concentration. The reaction mixtures (1 mL) performed with 0-50\% (v/v) IPA, 20 mM 4-AD, $100 \mathrm{mg} / \mathrm{mL}$ co-expressed E. coli wet cells, 1 mM PMS , and PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 2 h . C

Cosolvents. The reaction mixtures (1 mL) contained $0.5 \%(\mathrm{v} / \mathrm{v}) \mathrm{IPA}, 20 \%(\mathrm{v} / \mathrm{v})$ cosolvents, $20 \mathrm{mM} 4-\mathrm{AD}, 100 \mathrm{~g} / \mathrm{L}$ coexpressed E. coli wet cells, 1 mM PMS, and PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 2 h . D Electron acceptors. The reaction mixtures (1 mL) performed with $0.5 \%(\mathrm{v} / \mathrm{v}) \mathrm{IPA}, 20 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMSO}, 20 \mathrm{mM} 4-\mathrm{AD}, 100 \mathrm{~g} / \mathrm{L}$ co-expressed E. coli wet cells, 6 mM electron acceptor, and PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 2 h . E PMS concentration. The reaction mixtures (1 mL) performed with $0.5 \%(\mathrm{v} / \mathrm{v}) \mathrm{IPA}, 20 \%(\mathrm{v} / \mathrm{v})$ DMSO, $20 \mathrm{mM} 4-\mathrm{AD}, 100 \mathrm{~g} / \mathrm{L}$ co-expressed E. coli wet cells, $0-8 \mathrm{mM}$ PMS, and PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) at $30^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for $2 \mathrm{~h} . \mathrm{F} \mathrm{NAD}^{+}$concentration. The reaction mixtures (1 mL) performed with $0.5 \%(\mathrm{v} / \mathrm{v}) \mathrm{IPA}, 20 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMSO}, 20 \mathrm{mM} 4-\mathrm{AD}, 100 \mathrm{~g} / \mathrm{L}$ co-expressed E. coli wet cells, 2 mM PMS, and PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) at $30^{\circ} \mathrm{C}$, 200 rpm for 2 h . G Temperature effect. The reaction mixtures (1 mL) performed with $0.5 \%(\mathrm{v} / \mathrm{v})$ IPA, $20 \%(\mathrm{v} / \mathrm{v}) \mathrm{DMSO}, 20 \mathrm{mM} 4-\mathrm{AD}, 100 \mathrm{~g} / \mathrm{L}$ co-expressed E. coli wet cells, 2 mM PMS, and PBS ($50 \mathrm{mM}, \mathrm{pH} 7.5$) at $25-45^{\circ} \mathrm{C}$, 200 rpm for $2 \mathrm{~h} . \mathrm{H} \mathrm{pH}$ effect. The reaction mixtures (1 mL) performed with $0.5 \%(\mathrm{v} / \mathrm{v})$ IPA, $20 \%(\mathrm{v} / \mathrm{v})$ DMSO, $20 \mathrm{mM} 4-\mathrm{AD}, 100 \mathrm{~g} / \mathrm{L}$ co-expressed E. coli wet cells, 2 mM PMS, and 50 mM PBS pH 5.5-8.5, 50 mM Gly-NaOH buffer pH 8.0-9.5, 50 mM Tris-HCl buffer $\mathrm{pH} 9.0-11.0$, at $37^{\circ} \mathrm{C}, 200$ rpm for 2 h .

Fig. S7 HPLC standard curve of 4-AD (A), ADD (B), TS (C) and BD (D). The sample was dissolved in isopropanol alcohol (IPA), and was analyzed by high-performance liquid chromatography (HPLC) equipped with C18 column (SHIMADZU Shimpack, $5 \mu \mathrm{~m}$ particles, $150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$), and 35% acetonitrile and 65% water (v / v) as the mobile phase at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$. The column oven temperature was set as $35{ }^{\circ} \mathrm{C}$. The UV absorbance was determined at 254 nm . The retention time of 4-AD, ADD, TS and BD were $28.95 \mathrm{~min}, 18.56 \mathrm{~min}, 20.72 \mathrm{~min}$ and 13.65 min , respectively.

Fig. S8 HPLC analysis of 4-AD, ADD, TS and BD standards. The sample was dissolved in isopropanol alcohol (IPA), and was analyzed by high-performance liquid chromatography (HPLC) equipped with C18 column (SHIMADZU Shimpack, $5 \mu \mathrm{~m}$ particles, $150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$), and 35% acetonitrile and 65% water $(\mathrm{v} / \mathrm{v})$ as the mobile phase at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$. The column oven temperature was set as $35^{\circ} \mathrm{C}$. The UV absorbance was determined at 254 nm . The retention time of $4-\mathrm{AD}, \mathrm{ADD}, \mathrm{TS}$ and BD were $28.95 \mathrm{~min}, 18.56 \mathrm{~min}, 20.72 \mathrm{~min}$ and 13.65 min , respectively.

Fig. S9 A plot of the reaction velocity as a function of the substrate concentration as described by the Michaelis-
Menten equation. A-D, the reaction velocity toward various concentration of 4-AD catalyzed by ReKstD, Re-I51L, Re-I350T, and ReM2, respectively. E-H, the reaction velocity toward various concentration of TS catalyzed by ReKstD, Re-I51L, Re-I350T, and ReM2, respectively. The rate of reaction was experimentally measured at several steroid substrate concentration values (4-AD: $0.025-0.60 \mathrm{mM}$; TS: $0.025-0.60 \mathrm{mM}$). Vmax is the maximum reaction rate that is observed at saturating substrate concentrations, $K \mathrm{~m}$ is referred to as the Michaelis constant and is the substrate concentration at which the reaction rate is exactly half of Vmax. Reaction conditions: The reaction mixtures $(200 \mu \mathrm{~L})$ contained 1.5 mM PMS, $40 \mu \mathrm{M}$ DCPIP, $20 \mu \mathrm{~L}$ of purified enzyme with an appropriate concentration, and 0-600 $\mu \mathrm{M}$ steroidal substrate ($20 \mu \mathrm{~L}$ solution in DMSO) in Tris- HCl buffer ($50 \mathrm{mM}, \mathrm{pH} 8.0$). The reaction rates were determined by measuring the absorption of DCPIP at $600 \mathrm{~nm}\left(\varepsilon_{600 \mathrm{~nm}}=18.7 \times 10^{3} / \mathrm{cm} / \mathrm{M}\right)$ with microplate reader at $30^{\circ} \mathrm{C}$. One unit of enzyme activity (U) is defined as the reduction of $1 \mu \mathrm{~mol}$ DCPIP per minute.

