Electronic Supplementary Information for

Catalytic hydrodeoxygenation of neat levulinic acid into

2-methyltetrahydrofuran using cobalt phosphine complex

and Sc(OTf)₃ co-catalytic system

Lijin Gan and Jin Deng

CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

Corresponding Author: dengjin@ustc.edu.cn.

Table of Contents

- 1. Literature overview
- 2. Figures of the experimental section
- 3. Research on the reaction pathway
- 4. Hydrodeoxygenation of fructose-derived LA
- 5. References

1. Literature overview

Table S1	Conversion	of GVL into	o 2-MeTHF
----------	------------	-------------	-----------

			Reaction							0	
Entry	Catalyst	Additive	con	ditions		Solvent	H source	Conv.(%)	2-MeTHF yield (%)	STY ^a (mol/(L*h))	Ref.
			H_2 (MPa)	T (°C)	t (h)						
			(IVII a)	()	(11)						
			Noble 1	metal	-bas	ed catalys	ts				
						Solvent					
1	$Ru(acac)_3$ -PBu ₃ (S/C = 420)	NH ₄ PF ₆	8.3	200	46	free	H_2	-	-	-	1
						(100 wt%)					
						Solvent					
2	$Ru(acac)_3$ -triphos (S/C = 1000)	aIL	10	160	18	free	H_2	-	95	0.528	2
						(100 wt%)					
3	$[(T_{\tau}; D_{hos}) D_{T}(C_{hos})(U_{hos})] (S_{\tau}(C_{hos}) = 1000)$	ы	10	160	10	free	Ш.		06	0.522	n
3	$[(111PH0S)Ru(CO)(H)_2](S/C = 1000)$	alL	10	100	10	(100 wt%)	Π_2	-	90	0.333	Z
						Solvent					
4	5%Ru/C (S/C = 427)	_	10	190	24	free	H_2	>99	43	0.179	3
						(100 wt%)	2				
						Solvent					
5	$[Cp*Ir(bpy-OMe)OH_2][OII]_2 (S/C = 5104)$	Sc(OTf) ₃	3	100	16	free	H_2	-	4	0.025	4
	5194)					(100 wt%)					

Non-noble metal-based catalysts												
6	$30 \text{ wt\% } \text{Cu/ZrO}_2\text{-OG} (\text{S/C} = 10.6)$	-	6	240	6	Ethanol (6 wt%) 1,4-	H_2	98	91.1	0.0759	5	
7	Cu/Al_2O_3 (S/C = 12.7)	-	4	200	2	dioxane (1.9 wt%)	H_2	91	73.7	0.0723	6	
8	Ni-Cu/Al ₂ O ₃	-				2-propanol	2- propanol + H ₂	44.1	30.3	-	7	
9	Ni-Cu/Al ₂ O ₃	-	5	230	5	2-butanol	H_2	80	64	0.0558	8	
10	Ni ₂ Cu ₁ /Al ₂ O ₃	-	5	200	5	2-propanol	2- propanol + H ₂	100	88.1	0.0678	9	
11	Ni-MoOx/Al ₂ O ₃ -600 (S/C = 15.3)	-	4	200	4	Mesitylene (5.4 wt%)	H_2	95	29.5	0.0351	10	
12	$Co/ZrO_2 (S/C = 5.9)$	-	4	230	2	1,4- dioxane (0.64 wt%)	H_2	97.0	72.2	0.0239	11	
13	$Co(OAc)_2$ -triphos (S/C = 100)	Sc(OTf) ₃	5	150	24	Solvent free (100 wt%)	H_2	100	97.2	0.405	This work	

^a STY: Space-time yield.

			Reaction conditions					Conv	2-MeTHF	STY b	
Entry	Catalyst	Additive	H ₂ (MPa)	Т (°С)	t (h)	Solvent	H source	(%)	yield ^a (%)	(mol/(L*h))	Ref.
Noble metal-based catalysts											
1	Ru(acac) ₃ -triphos (S/C = 1000)	aIL+NH4PF6	10	160	18	Solvent free (100 wt%)	H ₂	100	92	0.511	12
2	Ru(acac) ₃ -triphos (S/C = 1000)	Al(OTf) ₃	5.5	140	30	THF (3.2 wt%)	H_2	100	88	7.15×10 ⁻³	13
3	$RuH_2(PPh_3) - \{N(CH_2PPh_2)_3 - \kappa^3 P\}$ $(S/C = 200)$	HN(Tf) ₂	6.5	150	25	THF (6 wt%)	H_2	100	87	0.0166	14
4	2% Ru/1.07% FeSBA-15	-	3	250	LHSV 1.5 h ⁻¹	1,4- dioxane (10 wt%)	H_2	93.2	67	-	15
5	5%Ru/GO	-	2.5	265	WHSV 0.512 h ⁻¹	1,4- dioxane (10 wt%)	H_2	100	48	-	16
6	$Pt-Mo/H-\beta (S/C = 50)$	-	5	130	24	Water (3.7 wt%)	H_2	>99	86	0.0116	17
7	5% Pd/C (S/C = 21)	Microwave	-	150	0.5	Formic acid	НСООН	78	72	-	18

Table S2 Conversion of LA into 2-MeTHF

	Non-noble metal-based catalysts										
8	Cu-MINT (S/C = 121)	Microwave	-	150	0.5	Formic acid (11 wt%)	НСООН	>90	67.5	-	18
9	80 wt%Cu/SiO2	-	2.5	265	WHSV 0.513 h ⁻¹	1,4- dioxane (10 wt%)	H_2	100	64	-	19
10	35 wt% Cu/Al ₂ O ₃ (S/C = 16)	-	7	250	24	propanol (5 wt%)	2-propanol+H ₂	100	75	0.0269	20
11	Cu-Ni/Al ₂ O ₃ -ZrO ₂ (9) (S/C = 25)	-	3	220	10	2-butanol (7.6 wt%)	H_2	100	99.8	0.0538	21
12	$Co(BF_4)_2 \cdot 6H_2O$ -triphos (S/C = 10)	-	8	100	22	THF (2 wt%)	H_2	>99	14	9.40×10 ⁻⁴	22
13	$Mn(CO)_5Br(S/C = 40)$	HCl	-	100	24	Toluene (3.2 wt%)	PhSiH ₃	100	99 (95)	9.89×10 ⁻³	23
14	$Co(OAc)_2$ -triphos (S/C = 100)	Sc(OTf) ₃	5	150	24	Solvent free (100 wt%)	H_2	100	97.0	0.404	This work

^a Isolated yield is given in parentheses. ^b STY: Space-time yield.

2. Figures of the experimental section

Fig. S1 The effect of mixing speed on the reaction. Reaction conditions: 6 mmol neat GVL, 1 mol% Co(OAc)₂/triphos, 2 mol% Sc(OTf)₃, 150 °C, 5 MPa H₂, 12 h. Yields were determined by GC analysis.

Fig. S2 A representative GC chromatogram.

3. Research on the reaction pathway

Fig. S3 The ESI-MS of the $Co(OAc)_2$ /triphos = 1/1 mixture.

Scheme S1 The coordination mode of Co(OAc)₂ with triphos.

Fig. S4 FTIR spectroscopy of GVL (A), and the mixture of GVL and Sc(OTf)₃ (B).

Scheme S2 Experiments for the by-product 1-PeOH.

4. Hydrodeoxygenation of fructose-derived LA

Scheme S3 Hydrodeoxygenation of fructose-derived LA with 1 mol% Co(OAc)₂.

5. References

- 1. H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika and I. T. Horváth, *Top. Catal.*, 2008, **48**, 49-54.
- F. M. Geilen, B. Engendahl, M. Holscher, J. Klankermayer and W. Leitner, J. Am. Chem. Soc., 2011, 133, 14349-14358.
- 3. M. G. Al-Shaal, A. Dzierbinski and R. Palkovits, *Green Chem.*, 2014, 16, 1358-1364.
- 4. T. P. Brewster, N. M. Rezayee, Z. Culakova, M. S. Sanford and K. I. Goldberg, *ACS Catal.*, 2016, **6**, 3113-3117.
- 5. X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao, H. Y. He and K. N. Fan, *Green Chem.*, 2012, **14**, 935-939.
- Q. Liu, Z. Zhao, M. Arai, C. Zhang, K. Liu, R. Shi, P. Wu, Z. Wang, W. Lin, H. Cheng and F. Zhao, *Catal. Sci. Technol.*, 2020, **10**, 4412-4423.
- 7. I. Obregon, I. Gandarias, M. G. Al-Shaal, C. Mevissen, P. L. Arias and R. Palkovits, *ChemSusChem*, 2016, **9**, 2488-2495.
- 8. I. Obregon, I. Gandarias, A. Ocio, I. Garcia-Garcia, N. A. de Eulate and P. L. Arias, *Appl. Catal., B*, 2017, **210**, 328-341.
- X. Wang, Z. Yu, L. Ye, M. Zhang, J. Xiong, R. Zhang, X. Li, N. Ji and X. Lu, *ChemCatChem*, 2021, 14, DOI: 10.1002/cctc.202101441.
- 10. G. Zhang, W. Li, G. Fan, L. Yang and F. Li, *J. Catal.*, 2019, **379**, 100-111.
- Y. L. Cen, S. H. Zhu, J. Guo, J. C. Chai, W. Y. Jiao, J. G. Wang and W. B. Fan, *RSC Advances*, 2018, 8, 9152-9160.
- 12. F. M. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer and W. Leitner, *Angew Chem Int Ed Engl*, 2010, **49**, 5510-5514.
- 13. Y. Li, C. Topf, X. Cui, K. Junge and M. Beller, *Angew. Chem., Int. Ed.*, 2015, **54**, 5196-5200.
- 14. A. Phanopoulos, A. J. P. White, N. J. Long and P. W. Miller, ACS Catal., 2015, 5, 2500-2512.
- 15. W. J. Li, L. M. Ye, J. Chen, X. P. Duan, H. Q. Lin and Y. Z. Yuan, *Catal. Today*, 2015, **251**, 53-59.
- 16. P. P. Upare, M. Lee, S. K. Lee, J. W. Yoon, J. Bae, D. W. Hwang, U. H. Lee, J. S. Chang and Y. K. Hwang, *Catal. Today*, 2016, **265**, 174-183.
- 17. T. Mizugaki, K. Togo, Z. Maeno, T. Mitsudome, K. Jitsukawa and K. Kaneda, ACS Sustainable Chem. Eng., 2016, 4, 682-685.
- 18. J. M. Bermudez, J. A. Menendez, A. A. Romero, E. Serrano, J. Garcia-Martinez and R. Luque, *Green Chem.*, 2013, **15**, 2786-2792.
- 19. P. P. Upare, J. M. Lee, Y. K. Hwang, D. W. Hwang, J. H. Lee, S. B. Halligudi, J. S. Hwang and J. S. Chang, *ChemSusChem*, 2011, **4**, 1749-1752.
- 20. I. Obregon, I. Gandarias, N. Miletic, A. Ocio and P. L. Arias, *ChemSusChem*, 2015, **8**, 3483-3488.
- 21. Z. Xie, B. Chen, H. Wu, M. Liu, H. Liu, J. Zhang, G. Yang and B. Han, *Green Chem.*, 2019, **21**, 606-613.
- 22. T. J. Korstanje, J. I. van der Vlugt, C. J. Elsevier and B. de Bruin, *Science*, 2015, **350**, 298-302.
- 23. D. A. Roa and J. J. Garcia, *Inorganica Chimica Acta*, 2021, **516**.