Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

ToF-SIMS Characterization of Surface Chemical Evolution on

Electrode Surfaces Educed by Electrochemical Activation

Jilin Tang^{a,b}, Zhigang Ni^c, Yanyan Zhang^{a,*}, Yao Zhao^a, Qun Luo^{a,b}, Fuyi Wang^{a,b,d*}

^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical

Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences,

Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

° College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University,

Hangzhou 311121, China

^d National Centre for Mass Spectrometry in Beijing

*Correspondence: zhangyy0816@iccas.ac.cn; fujiwang@iccas.ac.cn; fujiwang@iccas.ac.cn; fujiwang@iccas.ac.cn; fujiwang@iccas.ac.cn; fujiwang@iccas.ac.cn; fujiwang@iccas.ac.cn; <a href="mailto:fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn; <a href="mailto:fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn; <a href="mailto:fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn; <a href="mailto:fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn"/fujiwang@iccas.ac.cn; <a href="mailto:fujiwang@f

Experimental Details

Density functional theory (DFT) calculations

We conducted DFT calculations to optimize the binding geometries of ascorbate on the gold surfaces without or with Cl⁻ (abbreviated as Cl_{ads}) and to estimate the binding energies (BEs). A two-layer cluster model with 42 and 30 Au atoms on the first and second layers was constructed to simulate the Au surface. Geometry optimizations were performed using the TPSSh functional in combination with the ma-def2-SVP basis set. Grimme's D3 correction augmented with Becke-Johnson (BJ) damping was employed to properly describe the dispersion interactions. The outermost cycle of the Au atoms on the first layer and all Au atoms on the second layer were fixed during the optimization. Electronic energies at the TPSSh-D3BJ/def2-QZVP level were used to obtain more accurate binding energies. Since the def2-QZVP basis set is quite large for DFT methods, basis set superposition error correction is not considered in this work. The solvent effect of water is treated with the CPCM implicit solvation model. All calculations were performed using the ORCA 5.0 program package. The binding energy (BE) was calculated as

$$BE = E_{ascorbate} + E_{Au w/o Clads} - E_{complex}$$

in which the geometries of ascorbate and gold cluster (with or without Cl_{ads}) were directly taken from the complex without further optimization.

Figure S1. CV curves of pretreatment procedure of gold electrode: (a) 5 segments cycling in HCl; (b) 15 segments cycling in HCl; (c) 25 segments cycling in HCl.

Figure S2. The electrochemical oxidation potential of ascorbic acid (5 mM) in 50 mM NaNO₃ solution measured at freshly polished gold electrode before (0 seg) and after being electrochemically treated in 0.37 M HCl solution for 5, 15 or 25 segments. Each group contains three independently prepared gold electrodes.

Figure S3. The representative ToF-SIMS spectra in the mass range of 20-100 obtained at surfaces of the freshly polished gold electrodes before (a) and after (b-d) being electrochemically treated in 0.37 M HCl for 5 (b), 15 (c), and 25 (d) segments. The signal intensities of ions from surface contaminants including C_2H^- (*m/z* 25.01), CN^- (*m/z* 26.01), S^- (*m/z* 31.97), HS^- (*m/z* 32.98), HCN_2^- (*m/z* 41.02), CNO^- (*m/z* 42.00), CHO_2^- (*m/z* 45.00), CNS^- (*m/z* 57.98), SO_2^- (*m/z* 63.96), SO_3^- (*m/z* 79.96), and HSO_4^- (*m/z* 96.96) decreased after activation. In comparison, those of ${}^{35}Cl^-$ (*m/z* 34.97) and ${}^{37}Cl^-$ (*m/z* 36.97) ions significantly increased after activation.

Figure S4. The representative ToF-SIMS spectra in the mass range of 190-280 obtained at surfaces of the freshly polished gold electrodes before (a) and after (b-d) being electrochemically treated in 0.37 M HCl for 5 (b), 15 (c), and 25 (d) segments. The signal intensities of Au⁻ (m/z 196.97) ion and ions from surface contaminants including AuCN⁻ (m/z 222.97), AuC₂H₃⁻ (m/z 223.97), AuS⁻ (m/z 228.94), Au(CN)₂⁻ (m/z 248.98), and AuCNS⁻ (m/z 254.94) decreased after activation. In comparison, those of Au³⁵Cl⁻ (m/z 231.94), AuH³⁵Cl⁻ (m/z 232.94), Au³⁵Cl₂⁻ (m/z 266.91) and Au³⁵Cl³⁷Cl⁻ (m/z 268.91) ions increased after activation.

Figure S5. The representative ToF-SIMS spectra in the mass range of 580-670 obtained at surfaces of the freshly polished gold electrodes before (a) and after (b-d) being electrochemically treated in 0.37 M HCl for 5 (b), 15 (c), and 25 (d) segments. The signal intensities of Au_3^- (*m*/*z* 590.85) ion and Au_3S^- (*m*/*z* 622.86) decreased after activation. In comparison, those of $Au_3^{35}Cl^-$ (*m*/*z* 660.83) and $Au_3^{35}Cl^{37}Cl^-$ (*m*/*z* 662.84) ions increased after activation.

Figure S6. The representative ToF-SIMS spectra in the mass range of 780-880 obtained at surfaces of the freshly polished gold electrodes before (a) and after (b-d) being electrochemically treated in 0.37 M HCl for 5 (b), 15 (c), and 25 (d) segments. The signal intensities of Au_4^- (m/z 787.85) ion and ions from surface contaminants including Au_4H^- (m/z 788.86), Au_4CN^- (m/z 813.87), Au_4S^- (m/z 819.83), Au_4HS^- (m/z 820.85), Au_4CNS^- (m/z 845.84), $Au_4SO_2^-$ (m/z 851.80) and $Au_4HSO_2^-$ (m/z 852.83) decreased after activation. In comparison, those of $Au_4^{-35}Cl^-$ (m/z 822.82) and $Au_4^{-37}Cl^-$ (m/z 824.84) ions significantly increased after activation.

Figure S7. A representative group of XPS spectra of the freshly polished gold electrodes before (blue lines) and after being activated in 0.37 M HCl solution (red lines) for 25 segments: (a) Cl_{2p} peak; (b) S_{2p} peak; (c) Au_{4f} peak; (d) C_{1s} peak; (e) N_{1s} peak; (f) O_{1s} peak. We conducted XPS analysis on three independently prepared electrode surfaces to check the data repeatability and the average values of the XPS quantitative analysis data were listed in Table S1.

Figure S8. Optimized geometries of ascorbate on gold surfaces with (a) or without (b) absorbed Cl⁻. Top view (left column) and side view (right column). Yellow, Au; grey, C; white, H; red, O; green, Cl⁻. (c) Schematic diagram of the electrochemical oxidation reaction pathway of ascorbate in the 50 mM NaNO₃ solution on the Cl modified gold electrode surface. The BEs in the corresponding optimized geometries are calculated to be 40.79 kcal/mol in the absence of Cl_{ads} (Figure S7a) and 39.46 kcal/mol in the presence of Cl_{ads} (Figure S7b), respectively, indicating a slight difference in the BE caused by the adsorbed Cl. However, in the presence of Cl_{ads} on the gold cluster surface, one can surprisingly see a hydrogen bonding between -O-H of ascorbate and the adsorbed chloride in the optimized structure (as highlighted in the dotted box in Figure S7b). The hydrogen bonding stabilizes the ascorbate on the Cl-adsorbed gold surface. The distance between the reactive $-O^-$ of ascorbate (as pointed by the arrow in Figures S7a-b and highlighted in the reaction pathway in Figure S7c) and the plane of the first layer of gold atoms was shortened from 2.96 Å without Cl_{ads} (Figure S7a) to 2.65 Å with Cl_{ads} (Figure S7b), which most likely facilitated the electron transfer between ascorbate and the Cl_{ads} modified gold electrode surface during the electro-oxidation reaction of ascorbate as shown in Figure S7c.

	Cl_{2p}	\mathbf{S}_{2p}	Au _{4f}	C_{Is}	N _{1s}	O _{ls}
0.500	/	$2.16\% \pm$	$59.54\% \pm$	$25.58\% \pm$	$1.82\%\pm$	$10.89\% \pm$
0 Seg		0.10%	4.23%	3.26%	0.35%	0.74%
25 500	$1.40\% \pm$	$0.57\% \pm$	$41.16\% \pm$	$35.40\% \pm$	$2.10\% \pm$	$19.37\% \pm$
25 Seg	0.18%	0.06%	2.39%	1.20%	0.13%	2.69%

 Table S1. XPS quantitative analysis results (n=3) on the polished gold electrode surfaces before (0-Seg)

 and after activation (25 Seg) by HCl

m/z (observed)	m/z (calculated)	dev (ppm)	Possible Assignment
25.0096	25.0073	91.97	C ₂ H ⁻
26.0061	26.0025	138.45	CN^-
31.9736	31.9715	65.68	S [−]
32.9804	32.9794	30.32	HS [−]
34.9728	34.9683	128.69	³⁵ Cl ⁻
36.9687	36.9654	89.27	³⁷ Cl ⁻
41.0157	41.0134	56.08	HCN ₂ ⁻
41.9986	41.9974	28.57	CNO ⁻
45.0012	44.9971	91.12	CHO ₂ ⁻
57.9767	57.9746	36.22	CNS ⁻
63.9586	63.9614	43.78	SO_2^-
66.0147	66.0087	90.90	$C_2 N_3^-$
78.9206	78.9178	35.48	⁷⁹ Br ⁻
79.9583	79.9563	25.01	SO_3^-
80.9163	80.9157	7.415	⁸¹ Br ⁻
96.9635	96.9590	46.41	HSO_4^-
196.9673	196.966	6.600	Au ⁻
222.9707	222.9691	7.176	AuCN ⁻
223.9745	223.9765	8.930	AuHCN ⁻
228.9384	228.9381	1.310	AuS ⁻
231.9363	231.9349	6.036	Au ³⁵ Cl ⁻
232.9421	232.9427	2.576	Au ³⁷ Cl ⁻
248.9753	248.9722	12.45	$AuC_2N_2^-$
254.9404	254.9411	2.746	AuCNS ⁻
257.9425	257.9379	17.83	AuCN ³⁵ Cl ⁻
259.9330	259.9355	9.618	AuCN ³⁷ Cl ⁻
266.9119	266.9037	30.72	$Au^{35}Cl_2^-$
268.9077	268.9008	25.66 S12	Au ³⁵ Cl ³⁷ Cl ⁻

Table S2. Ion peaks detected on the polished gold electrode surfaces before and after activation by HCl

310.8618	310.8532	27.67	$Au^{35}Cl^{79}Br^{-}$
312.8584	312.8511	24.29	Au ³⁷ Cl ⁷⁹ Br ⁻
393.9218	393.9326	27.42	Au_2^-
394.9396	394.9409	3.292	Au_2H^-
419.9291	419.9356	15.48	Au ₂ CN ⁻
425.9010	425.9046	8.452	Au_2S^-
426.9106	426.9125	4.450	Au_2HS^-
428.8992	428.9014	5.129	Au2 ³⁵ Cl ⁻
430.8900	430.8985	19.73	Au2 ³⁷ Cl ⁻
451.8994	451.9077	18.37	Au ₂ CNS ⁻
590.8524	590.8991	79.03	Au ₃ ⁻
622.8573	622.8712	22.32	Au_3S^-
660.8349	660.8339	1.81	$Au_{3}{}^{35}Cl_{2}{}^{-}$
662.8351	662.8339	15.86	Au3 ³⁵ Cl ³⁷ Cl ⁻
787.8532	787.8657	15.86	Au ₄ ⁻
788.8621	788.8740	15.08	Au ₄ H ⁻
813.8736	813.8687	6.021	Au_4CN^-
819.8332	819.8377	5.489	Au_4S^-
820.8455	820.8456	0.122	Au_4HS^-
822.8200	822.8345	17.62	Au ₄ ³⁵ Cl ⁻
824.8400	824.8316	10.18	Au ₄ ³⁷ Cl ⁻
845.8411	845.8408	0.3547	Au ₄ CNS ⁻
851.7961	851.8276	36.98	$Au_4SO_2^-$
852.8279	852.8354	8.794	$Au_4HSO_2^-$
866.8029	866.7840	21.80	$Au_4^{79}Br^-$
868.7637	868.7820	21.06	$Au_4^{81}Br^-$