1	Supplementary information
2	Preparation and characterization of new sulfate reference
3	materials for Δ^{17} O analysis
4	Guangming Su ^a , Qichao Yang ^b , Yourong Tian ^c , Tianming Ma ^a , Lei Geng ^{a,d*}
5	^a School of Earth and Space Sciences, University of Science and Technology of China, Hefei,
6	Anhui, 230026, China
7 8	^b School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China
9	^c ThermoFisher Scientific (China) Co., Ltd, Beijing, 100043, China
10 11	^d CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China
12	* Correspondence to: <u>genglei@ustc.edu.cn</u>
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Supplementary Information Text

27 Text 1 The details of Δ^{17} O (SO₄²⁻) measurement using pyrolysis system

For sample analysis, sliver sulfate samples in home-made quartz or platinum capsules are loaded 28 in the zero-blank autosampler sitting on top of TC/EA. The sample is then delivered to the 29 30 pyrolysis tube inside TC/EA, where Ag₂SO₄ is heated at 1000 °C to produce O₂ and byproducts (e.g., SO₂). The gas products are carried by He to a LN₂ trap where condensable gases are 31 scrubbed while O2 passes through. For samples with micromole levels of SO42-, O2 from the LN2 32 trap is introduced directly to the high-flow peripheral of ConFlo IV after further purified by a 60 33 34 cm gas chromatography (GC) column (1/4") packed with 5 Å molecular sieve held at 30 °C, and 35 then to the IRMS for m/z 32, 33, and 34 measurements. This is the TC/EA-IRMS mode as indicated in Figure 2. 36

37 For samples with sub-micromole levels of SO42-, the produced O2 has to be first concentrated 38 by the home-made pre-concentration system prior to entering IRMS, otherwise the sample peak 39 would be too small to be precisely quantified.¹ This is the TC/EA-Precon-IRMS mode as shown in Figure 2, where O_2 after the LN₂ trap is first trapped in a 60 cm stainless steel 1/16" tubing 40 packed with silica gel (Trap A) at LN2 temperature through an eight-way valco valve at the load 41 position. After 5 minutes of trapping, the valco valve is switched to inject position. Then 'Trap A' 42 43 is thawed and O₂ is transferred to a second cold trap (Trap B) which is a 60 cm capillary tubing packed with silica gel. After O2 is transferred to 'Trap B', it is then thawed and O2 is carried to a 44 45 capillary GC (5 Å molecular sieve, $30 \text{ m} \times 0.32 \text{ mm}$ i.d., Agilent Technologies Inc., USA) at 30 46 °C where O₂ is further purified before entering IRMS through the low-flow peripheral of ConFlo 47 IV.

48

49

- 50
- 51

52

53

54

- 55 **Table S1.** The raw Δ^{17} O values of sulfate measured in quartz capsules from all experiments. The
- 56 Na₂SO₃ mass indicates the starting amount of sulfide in solution; amount of O₃ trapped was
- 57 indicated by total trapping time (total trapping time = trapping times \times 20 minutes each time);
- 58 Total reaction time indicates the total duration of O₃ thawing in an experiment; Yield is referred
- 59 to the fraction of sulfate in solution after an experiment.

Number	Mass of	Total tranning time	Total reaction time	V:-11 (0/)	Raw					
Number	$Na_2SO_3(g)$	(minuto)	(minuto)	1 leiu (70)	Δ ¹⁷ Ο (‰)					
(IIIIIute) (IIIIIute) Sulf A										
S1-H ₂ O ₂ 1.8 NA NA 100 0.0										
S1-11202 S21-O2	0.63	$100(5 \times 20)$	220	70	1.2					
S39-O2	1.26	$160(3 \times 20)$ 160(8 × 20)	220 440	100	1.2					
Sulf-R										
S2-H ₂ O ₂	0.7	NA	NA	100	0.0					
S13-O ₃	0.0252	$20(1 \times 20)$	40	100	3.0					
S14-O ₃	0.063	$40(2 \times 20)$	90	100	2.8					
S15-03	0.063	$40(2 \times 20)$	60	50	2.0					
S17-O ₃	0.189	$60(3 \times 20)$	110	100	1.8					
S22-O ₃	0.063	$60(3 \times 20)$	80	100	1.8					
S24-O ₃	1.26	$200(10 \times 20)$	420	100	1.5					
S25-O ₃	0.63	$160(8 \times 20)$	390	100	1.8					
S30-O ₃	0.063	$60(3 \times 20)$	100	100	3.0					
S31-O ₃	0.063	$60(3 \times 20)$	90	100	2.5					
S33-O ₃	0.063	$60(3 \times 20)$	110	100	3.6					
S34-O ₃	0.063	$60(3 \times 20)$	100	100	2.5					
S35-O ₃	0.063	60 (3 × 20)	110	100	3.0					
S36-O ₃	0.063	60 (3 × 20)	140	100	3.3					
S37-O ₃	0.063	60 (3 × 20)	120	100	2.8					
S38-O ₃	0.063	60 (3 × 20)	120	100	2.6					
S40-O ₃	0.063	60 (3 × 20)	110	100	2.3					
S41-O ₃	0.063	60 (3 × 20)	120	100	2.6					
S42-O ₃	0.063	60 (3 × 20)	120	100	3.0					
Sulf-C										
S16-O ₃	0.063	60 (3 × 20)	150	100	4.1					
S19-O ₃	0.063	60 (3 × 20)	200	100	5.7					
S26-O ₃	0.063	60 (3 × 20)	180	100	5.0					
S28-O ₃	0.063	60 (3 × 20)	160	100	4.6					
S29-O ₃	0.063	60 (3 × 20)	160	100	5.0					
S32-O ₃	0.063	60 (3 × 20)	150	100	4.2					
S43-O ₃	0.063	60 (3 × 20)	130	100	4.7					
S44-O ₃	0.063	60 (3 × 20)	180	100	4.7					
S45-O ₃	0.063	60 (3 × 20)	180	100	4.5					
S46-O ₃	0.063	60 (3 × 20)	200	100	5.0					
S47-O ₃	0.063	60 (3 × 20)	260	100	6.7					
S48-O ₃	0.063	60 (3 × 20)	265	100	7.3					
S49-O ₃	0.063	60 (3 × 20)	265	100	7.3					
S50-O ₃	0.063	$60(3 \times 20)$	260	100	6.5					

S51-O ₃	0.063	60 (3 × 20)	255	100	6.7				
S52-O ₃	0.063	60 (3 × 20)	265	100	7.2				
S53-O ₃	0.063	60 (3 × 20)	270	100	6.7				
S54-O ₃	0.063	60 (3 × 20)	235	100	6.2				
S55-O ₃	0.063	60 (3 × 20)	255	100	5.9				
S56-O ₃	0.063	60 (3 × 20)	250	100	5.7				
S57-O ₃	0.063	60 (3 × 20)	200	100	5.4				
S58-O ₃	0.063	60 (3 × 20)	200	100	5.3				
S59-O ₃	0.126	100 (5 × 20)	360	100	5.2				
S60-O ₃	0.063	60 (3 × 20)	180	100	4.0				
S61-O ₃	0.063	60 (3 × 20)	190	100	4.3				
S62-O ₃	0.063	60 (3 × 20)	205	100	4.8				
Silica gel									
S18-O ₃	0.063	60 (3 × 20)	110	20	0.4				
S10-O ₃	0.063	100 (5 × 20)	240	30	0.6				
S11-O ₃	0.0063	20 (1 × 20)	40	20	1.0				
N-O ₃									
	Number Mass of NaNO2(g)ª	Total	Total		Raw				
Number		trapping time	reaction time	Yield	Δ ¹⁷ O (‰)				
		(minute)	(minute)		(n=4, 1σ)				
N1-O ₃	0.0069	40 (2 × 20)	80	100	14.3 ± 0.1				
N2-O ₃	0.0138	80 (4 × 20)	150	100	14.2 ± 0.1				

60 a. Measured in silver capsules.

65

66 Figure S1. Mean Δ^{17} O values of Sulf-A, Sulf-B and Sulf-C measured in platinum capsules versus

67 in quartz capsules. Results of similar phenomena (i.e., oxygen isotope exchange with quartz)

68 from UW² and UCSD³ were also plotted for comparison.

69

70

71 References

L. Geng, A. J. Schauer, S. A. Kunasek, E. D. Sofen, J. Erbland, J. Savarino, D. J. Allman, R. S.
Sletten and B. Alexander, *Rapid Commun Mass Sp*, 2013, **27**, 2411-2419.

A. J. Schauer, S. A. Kunasek, E. D. Sofen, J. Erbland, J. Savarino, B. W. Johnson, H. M. Amos, R.
Shaheen, M. Abaunza, T. L. Jackson, M. H. Thiemens and B. Alexander, *Rapid Commun*

76 Mass Sp, 2012, **26**, 2151-2157.

77 3 G. Michalski, J. Savarino, J. K. Bohlke and M. Thiemens, *Anal Chem*, 2002, **74**, 4989-4993.

78