Electronic Supplementary Information

Precise and accurate analytical method for determination of osmium isotope ratios at the 1–15 pg level by MC-ICP-MS equipped with sparging introduction and high-sensitivity discrete dynode-type ion-counting detectors

Junichiro Ohta, Tatsuo Nozaki, Honami Sato, Kana Ashida and Yasuhiro Kato

Sample preparation procedure

First, ~0.05 g of JMS-2 (~15 pg Os) and ~1.0 g of JCh-1 (~ 5 pg Os) were weighed for isotopic measurements using CDD detectors, and ~1.0 g of JMS-2 (~300 pg Os) and ~2.0 g of JCh-1 (~10 pg Os) were weighed for isotopic measurements using FC detectors. The weighed samples were spiked with solutions with enriched isotopes of ¹⁹⁰Os and ¹⁸⁵Re, and then 1 mL of the concentrated HCl and 3 mL of the concentrated HNO₃ that had been prepared by boiling at 190 °C for the sample digestion were added to the Carius tubes while the bottoms of the tubes were cooled with dry ice to prevent oxidization of Os and leakage of volatile OsO4. The Carius tubes containing the samples and acid were sealed by melting their necks. The samples were then digested at 220 °C for 24 hours. After cooling, the solutions in the Carius tubes were frozen in dry ice to prevent OsO4 leakage while the tubes were opened. After opening the tubes, the liquid solutions were transferred into 15-mL centrifuge tubes and centrifuged at 3000 rpm for 5 minutes. The supernatant liquids were then transferred into 30-mL PFA vials and diluted with deionized water to bring the total volume of the sample solution to 15 mL. The vials were then used for Os isotope measurements via MC-ICP-MS with sparging introduction. The Os concentrations were calculated by the isotope dilution (ID) method. The Os standards were prepared from the Os standard solution. We oxidized 100 μ L of the 10 ng g⁻¹ Os standard solution (1 ng Os) by heating the solution with 4 mL of inverse aqua regia (HNO3:HCl = 3:1) in Carius tubes at 220 °C for 24 hours. After opening the tubes, aliquots of the solution necessary to prepare standard samples containing 1, 2, 5, 10, 20, 30, 50, and 100 pg of Os were transferred into 22-mL PFA vials and diluted with diluted inverse aqua regia (HNO₃:HCl:deionized water = 3:1:21) to bring the total solution volume to 7 mL. For the Os standard sample containing 1000 pg Os, the oxidized Os standard (1 ng Os) was transferred into 30-mL PFA vials and diluted with deionized water to bring the total solution volume to 15 mL.

After the Os isotope measurements, the sample solutions were heated at 120 °C until the liquid volumes were reduced to ~200 µL. Then 1 mL of 6M HCl was added, and the vials were heated at 80 °C for 30 minutes with their caps closed. The caps were then removed, and the solutions were heated at 120 °C until dryness. The residue was then dissolved with 10 mL of 1M HCl. The Re was purified in a two-step column separation using an anion exchange resin (Muromac AG1-X8 100-200 mesh) as previously described^{1,2}. It should be noted that we added a resin-washing step to minimize Re contamination from the resin. The washing involved addition of 6M HNO₃ twice before conditioning the anion exchange resin. After the second column separation, sample solutions were heated at 120 °C until the liquid volume was reduced to \sim 50 µL and then diluted with deionized water to bring the total volume to 1 mL. Finally, 15 μ L of a 100 ng g⁻¹ iridium (Ir) standard solution traceable to a chemical standard solution (AccuStandard 1000 μ g g⁻¹ Ir ICP standard solution) was added into each sample solution to adjust the Ir concentration to ~1.5 ng g⁻¹. The measured ratio of ¹⁹³Ir/¹⁹¹Ir was used to make an external correction for mass bias effects during the measurement. The Re concentrations were calculated by the ID method. In addition to the sample solutions, Re-Ir mixed standard solutions were prepared from the Re and Ir standard solutions. These standard solutions were mixed and diluted with 2 % m m⁻¹ HNO₃ prepared from the concentrated HNO₃ and deionized water. In this study, we used a Re-Ir mixed-standard solution containing 1.5 ng g⁻¹ of Re and Ir to tune the operating conditions of the MC-ICP-MS and to monitor mass bias effects during the measurement.

Table S1 MC-ICP-MS setup parameters and detector configurations for Os and Re measurements

Component	Experimental settings									
		Os by	CDD		Os by FC	Re by FC				
Sparging chamber	22 or	22 or 30 mL PFA vial with 1/8 inch PFA tubing								
Sparging chamber temperature		~20 °C								
Sparging Ar gas flow		~1.1 L/min								
Sample Ar gas flow										
Sample solution flow						~100 µL/min				
MC-ICP-MS		Neptune Plus (Thermo Fisher Scientific)								
RF-power		1200 W								
Guard electrode		On								
Sampling cone		Ni								
Skimmer cone		Ni	Ni X	Ni X						
Cooling Ar gas		16 L/min								
		0.8 L/min								
Auxiliary Ar gas				0.8	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration	1	2	3	4	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD)	1 190Os ^{a,b}	2	3	0.8 4 ¹⁸⁵ Re ^d	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD)	$\frac{1}{1900s^{a,b}}$	2	3	$\frac{4}{\frac{185}{187}\text{Cs}}$	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c	2 190 Os ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁸ Os ^c	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c	2 ¹⁹⁰ Os ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁷ Os ¹⁸⁸ Os ^c	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c	2	3	0.8 4 ¹⁸⁵ Re ^d 	3 L/min					
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC) L2 (FC)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c	2 190Ōs ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁸ Os ^c	¹⁸³ W ^e ¹⁸⁵ Re ^d ¹⁸⁶ Os	¹⁸⁵ Re ^f ¹⁸⁷ Re ¹⁸⁹ Os				
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC) L1 (FC)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c	2 190Os ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁸ Os ^c	3 L/min 	¹⁸⁵ Re ^f ¹⁸⁷ Re ¹⁸⁷ Re ¹⁸⁹ Os ¹⁹⁰ Os				
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC) L2 (FC) L1 (FC) Axial (FC)	$ \begin{array}{c} 1 \\ 1^{190} Os^{a,b} \\ 1^{92} Os^{c} \\ \end{array} $	2	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁷ Os ¹⁸⁸ Os ^c	$\frac{183}{183}W^{e}$ $\frac{185}{185}Re^{d}$ $\frac{186}{0s}$ $\frac{187}{188}Os^{c}$	¹⁸⁵ Re ^f ¹⁸⁵ Re ^f ¹⁸⁷ Re ¹⁸⁹ Os ¹⁹⁰ Os ¹⁹¹ Ir ^g				
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC) L2 (FC) L1 (FC) Axial (FC) H1 (FC)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c	2 190Ōs ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁸ Os ^c	$\frac{183}{\text{W}^{\text{e}}} = -\frac{183}{185} \frac{183}{\text{Re}^{\text{d}}} = -\frac{183}{185} \frac{186}{\text{Os}} = -\frac{186}{188} \frac{187}{\text{Os}} = -\frac{188}{188} \frac{188}{\text{Os}^{\text{c}}} = -\frac{188}{188} \frac{188}{\text{Os}} = -\frac{189}{188} \frac{189}{\text{Os}} = -\frac{189}{188} \frac{189}{188} \frac$	$ \frac{^{185}\text{Re}^{f}}{^{187}\text{Re}} $ $ \frac{^{189}\text{Os}}{^{190}\text{Os}} $ $ \frac{^{190}\text{Os}}{^{191}\text{Irg}} $ $ \frac{^{192}\text{Os}}{^{192}\text{Os}} $				
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC) L1 (FC) Axial (FC) H1 (FC) H2 (FC)	1 ¹⁹⁰ Os ^{a,b} ¹⁹² Os ^c 	2 190Os ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁸ Os ^c	$\frac{183}{W^{e}}$ $\frac{183}{W^{e}}$ $\frac{185}{Re^{d}}$ $\frac{186}{Os}$ $\frac{186}{Os}$ $\frac{187}{Os}$ $\frac{188}{Os^{c}}$ $\frac{189}{Os}$ $\frac{189}{Os}$ $\frac{190}{Os^{a}}$	¹⁸⁵ Re ^f ¹⁸⁷ Re ¹⁸⁷ Re ¹⁸⁹ Os ¹⁹⁰ Os ¹⁹¹ Ir ^g ¹⁹² Os ¹⁹³ Ir ^g				
Auxiliary Ar gas Detector configurations Sub-configuration IC4 (CDD) IC5 (CDD) IC6 (CDD) L4 (FC) L3 (FC) L2 (FC) L1 (FC) Axial (FC) H1 (FC) H2 (FC) H3 (FC)	1 1990 192	2 ¹⁹⁰ Os ^b	3	4 ¹⁸⁵ Re ^d ¹⁸⁷ Os ¹⁸⁸ Os ^c	8 L/min 183We 183We 185Red 186Os 187Os 188Os ^c 189Os 199Os ^a 192Os ^c	¹⁸⁵ Re ^f ¹⁸⁷ Re ¹⁸⁷ Re ¹⁸⁹ Os ¹⁹⁰ Os ¹⁹¹ Ir ^g ¹⁹² Os ¹⁹³ Ir ^g				

^aOs spike (ID calculation), ^bcounting efficiency calibration, ^cOs mass bias correction, ^dRe monitor, ^eW monitor, ^fRe spike (ID calculation), ^gRe mass bias correction.

Table S2 Analytical results of JMC Os standard samples containing 1, 2, 5, 10, 20, 30, 50, 100, and 1000 pg of

Os measured with CDD and FC detectors

	Me	asured by C	DD	Measured by FC				
Os amount (pg)	¹⁸⁷ Os/ ¹⁸⁸ Os	2 S.D.	2 R.S.D. (%)	¹⁸⁷ Os/ ¹⁸⁸ Os	2 S.D.	2 R.S.D. (%)		
1	0.10461	0.01825	17.44623					
1	0.10722	0.00994	9.26872					
1	0.10303	0.01349	13.09413					
2	0.10596	0.00751	7.08788					
2	0.10545	0.00935	8.86744					
2	0.10488	0.01023	9.75216					
5	0.10524	0.00608	5.77658					
5	0.10561	0.00483	4.57585					
5	0.10657	0.00525	4.92365					
10	0.10693	0.00323	3.02354					
10	0.10717	0.00302	2.82026					
10	0.10557	0.00384	3.63872					
20	0.10661	0.00301	2.82598					
20	0.10676	0.00266	2.49478					
20	0.10609	0.00228	2.14922					
30	0.10680	0.00239	2.24043	0.10784	0.01240	11.49991		
30	0.10672	0.00223	2.09300	0.10746	0.01568	14.58877		
30	0.10612	0.00194	1.83146	0.10981	0.01569	14.28953		
50				0.10818	0.00765	7.07593		
50				0.10546	0.00901	8.53882		
50				0.10671	0.00722	6.76481		
100				0.10735	0.00409	3.81340		
100				0.10702	0.00415	3.87526		
100				0.10737	0.00430	4.00225		
1,000				0.10680	0.00041	0.37983		
1,000				0.10671	0.00050	0.46773		
1,000				0.10680	0.00042	0.39048		

Sample No.	Sample mass (g)	Re (pg g ⁻¹)	2 S.D.	2 S.E.	Os (pg g ⁻¹)	2 S.D.	2 S.E.	¹⁸⁷ Re/ ¹⁸⁸ Os	2 S.D.	2 S.E.	¹⁸⁷ Os/ ¹⁸⁸ Os	2 S.D.	2 S.E.
Measured h	w CDD												
IMS-2-1	0.052	135 71	5 75	1.07	323 71	2 59	0 49	2 195	0 349	0.066	0 794	0.009	0.002
JMS-2-2	0.056	136.14	4.61	0.86	305.79	2.44	0.46	2.344	0.346	0.065	0.840	0.009	0.002
JMS-2-3	0.060	136.90	3.76	0.70	305.77	2.94	0.55	2.358	0.382	0.071	0.844	0.011	0.002
JMS-2-4	0.054	133.89	4.34	0.82	293.62	3.32	0.62	2.405	0.510	0.095	0.856	0.014	0.003
JMS-2-5	0.052	135.06	5.60	1.03	293.85	3.41	0.64	2.432	0.551	0.104	0.883	0.014	0.003
Average		135.54	2.28	1.02	304.55	24.58	10.99	2.347	0.184	0.082	0.843	0.064	0.029
JCh-1-1	1.0	19.37	0.37	0.07	5.06	0.09	0.02	19.612	0.500	0.094	0.613	0.015	0.003
JCh-1-2	1.0	19.08	0.35	0.06	4.93	0.05	0.01	19.899	0.416	0.077	0.644	0.009	0.002
JCh-1-3	1.0	20.09	0.31	0.06	5.40	0.07	0.01	19.036	0.388	0.072	0.601	0.011	0.002
JCh-1-4	1.0	20.87	0.34	0.06	7.03	0.07	0.01	14.984	0.287	0.053	0.491	0.007	0.001
JCh-1-5	1.0	20.24	0.32	0.06	5.78	0.09	0.02	17.909	0.394	0.073	0.598	0.013	0.002
Average		19.93	1.43	0.64	5.64	1.69	0.75	18.288	3.996	1.787	0.589	0.115	0.052
Measured b	y FC												
JMS-2-1	1.0	136.74	0.35	0.06	324.58	0.26	0.05	2.211	0.006	0.001	0.813	0.001	0.000
JMS-2-2	1.1	137.14	0.31	0.06	302.77	0.32	0.06	2.393	0.006	0.001	0.868	0.001	0.000
JMS-2-3	1.0	136.89	0.38	0.07	307.59	0.24	0.05	2.346	0.007	0.001	0.851	0.001	0.000
JMS-2-4	1.0	142.49	0.34	0.06	390.73	0.43	0.08	1.885	0.005	0.001	0.686	0.001	0.000
JMS-2-5	1.0	141.40	0.45	0.08	362.09	0.34	0.06	2.030	0.007	0.001	0.734	0.001	0.000
Average		138.93	5.56	2.49	337.55	75.54	33.78	2.173	0.428	0.192	0.790	0.156	0.070
JCh-1-1	2.0	21.04	0.15	0.03	5.34	0.08	0.02	20.185	0.218	0.041	0.612	0.014	0.003
JCh-1-2	1.9	19.67	0.17	0.03	5.63	0.09	0.02	17.832	0.216	0.041	0.581	0.013	0.003
JCh-1-3	1.9	20.09	0.20	0.04	5.56	0.10	0.02	18.445	0.253	0.048	0.581	0.015	0.003
JCh-1-4	1.9	20.71	0.15	0.03	5.88	0.13	0.02	17.932	0.242	0.045	0.563	0.017	0.003
JCh-1-5	1.9	20.58	0.20	0.04	5.64	0.08	0.02	18.630	0.234	0.043	0.588	0.012	0.002
Average		20.42	1.08	0.48	5.61	0.39	0.17	18.605	1.890	0.845	0.585	0.035	0.016
Blank (mea	sured by CDD)												
Blank-1		0.48	0.22	0.04	0.012	0.015	0.003	196	265	51	0.215	0.017	0.075
Blank-2		0.45	0.19	0.04	0.005	0.017	0.003	445	1,506	295	0.285	0.029	0.266
Blank-3		0.51	0.21	0.04	0.003	0.017	0.003	817	4,665	866	0.297	0.030	0.443
Blank-4		0.51	0.16	0.03	0.003	0.014	0.003	765	3,177	623	0.511	0.055	0.587
Blank-5		0.50	0.13	0.02	0.002	0.018	0.003	977	6,975	1,295	0.172	0.016	0.322
Average		0.49	0.05	0.02	0.005	0.008	0.004	640	629	281	0.296	0.261	0.117

The average rows indicate average values, 2 S.D., and 2 S.E. of data from five samples.

Fig. S1 Exponential decrease of ion intensities of Os isotopes measured with CDD detectors for a single run of 50 cycles for a JMC Os standard sample containing 30 pg of Os.

Fig. S2 ¹⁸⁷Os/¹⁸⁸Os ratios in a single run of 50 cycles for an Os standard sample containing 30 pg of Os. The differences of counting efficiencies between CDD detectors and mass bias effects were corrected in each cycle. The isotope ratio varied in value from cycle to cycle, but there was no obvious drift from the beginning to the end of a single run. The gray line indicates the JMC ¹⁸⁷Os/¹⁸⁸Os reference values of 0.106838 determined by N-TIMS³.

Fig. S3 IC5/IC4, IC6/IC4, and IC6/IC5 values of 450 cycles (nine runs of 50 cycles each) determined by introducing a 238 U ion beam to each CDD detector. The amount of U in solution was adjusted to be equivalent to ~300,000 cps of 238 U.

Fig. S4 Record of amounts of Os in procedural blank samples obtained by our method. The first four samples were analyzed in PFA vials without the further cleaning step by heating with HNO₃ solution at 190 °C. The further cleaning step was applied to the rest of the samples. The error bars indicate 2 S.E. Most of the error bars are smaller than the plot symbols.

Fig. S5 Results of 20 runs of measurement for a Re-Ir mixed standard solution containing 1.5 ng g^{-1} Re and Ir.

Fig. S6 Scatter diagram of β values for ¹⁸⁷Re/¹⁸⁵Re and ¹⁹³Ir/¹⁹¹Ir recorded by 273 runs of the Re-Ir mixed standard solution containing various concentrations of Re and Ir with various instrument settings.

References for the Electronic Supplementary Information

- T. Nozaki, K. Suzuki, G. E. Ravizza, J.-I. Kimura and Q. Chang, *Geostand. Geoanal. Res.*, 2012, 36, 131– 148, DOI: 10.1111/j.1751-908X.2011.00125.x.
- J. W. Morgan, D. W. Golightly and A. F. Dorrzapf Jr., *Talanta*, 1991, **38**, 259–265, DOI: 10.1016/0039-9140(91)80045-2.
- T. Nozaki, K. Suzuki, G. E. Ravizza, J.-I. Kimura and Q. Chang, *Geostand. Geoanal. Res.*, 2012, 36, 131– 148, DOI: 10.1111/j.1751-908X.2011.00125.x.
- J. R. De Laeter, J. K., Böhlke P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, *Pure Appl. Chem.*, 2003, 75, 683–800, DOI: 10.1351/pac200375060683.