Supplementary Fig. 1 Total energy loss spectrum, obtained from GIC of the 1MV AMS system, for 2.53 MeV ²⁴²Pu⁵⁺ (for IAEA 410 sediment sample, green circles) and ²⁴⁴Pu⁵⁺ ions (for ColPuS Pu standard, red triangles). The isotopes are used to set the region of interest

Supplementary Fig. 2 Two dimensional Eres – dE and Total energy (minimized) spectrums, obtained from GIC of the 3MV AMS system, for 14.37 MeV ²⁴²Pu⁵⁺ (for IAEA 410 sediment sample) and ²⁴⁴Pu⁵⁺ ions (for ColPuS Pu standard)

Supplementary Table 1 Radiochemical recoveries of Pu (ED – Electrodeposition, MP – Microprecipitation)

Sample	Measurement time	Measured Activity [Bq]	Chemical yield [%]
AS2 ED, only ²⁴² Pu	6.9h	0.016 ± 0.003	76.6
AS7 MP, only ²⁴² Pu	6.9h	0.021 ± 0.004	94.9
AS10 MP, IAEA 410 spiked with ²⁴² Pu and TEVA separation	30.3h	0.018 ± 0.001	85.7
AS16 MP, only ²⁴² Pu and TEVA separation	6.9h	0.054 ± 0.006	94.3

Sample/ Code	$^{244}Pu/^{239}Pu$ (\cdot 10 $^{-4}$)	²⁴⁰ Pu/ ²³⁹ Pu
IAEA 410.1 IFIN-HH, this work	3.38 ± 0.65	0.250 ± 0.024
IAEA 410.2 IFIN-HH, this work	3.42 ^{+ 1.87} - 1.36	0.265 ± 0.026
IAEA 410.3 IFIN-HH, this work	4.98 ± 0.98	0.259 ± 0.024
IAEA 410.4 IFIN-HH, this work	4.50 ^{+ 2.79} - 2.02	0.218 ± 0.023
IAEA 410.5 IFIN-HH, this work	$2.50 \begin{array}{c} + 1.89 \\ - 1.33 \end{array}$	0.226 ± 0.022
IAEA 410.6 IFIN-HH, this work	3.38 ^{+ 2.29} - 1.63	0.290 ± 0.069
IAEA 410.7 IFIN-HH, this work	$1.97 \begin{array}{c} +1.91 \\ -1.24 \end{array}$	0.265 ± 0.064
Bikini Atoll, Island, BL5 ^[2]	$3.1 \stackrel{+5.4}{_{-2.0}}$	0.319 ± 0.026
Bikini Atoll, Island, BL6 ^[2]	5.4 ± 1.6	0.323 ± 0.011
IAEA 410, CNA Seville, Spain ^[3]	/	$0.257 \pm 0.0_{23}$
IAEA 412.1 IFIN-HH, this work	$1.22 \begin{array}{c} +1.11 \\ -0.77 \end{array}$	$0.194 \pm 0.02_{1}$
IAEA 412.2 IFIN-HH, this work	$1.34 \begin{array}{c} + 1.22 \\ - 0.85 \end{array}$	0.191 ± 0.018
IAEA 412.3 IFIN-HH, this work	$2.65 \begin{array}{c} + 1.69 \\ - 1.17 \end{array}$	0.156 ± 0.016
IAEA 412.4 IFIN-HH, this work	$1.23 \begin{array}{c} +1.20 \\ -0.78 \end{array}$	0.168 ± 0.017
IAEA 412, CNA Seville, Spain ^[3]	/	$0.182 \pm 0.0_{15}$
Pacific Ocean, deep-sea manganese crust [4]	1.0 ± 0.3	/

Supplementary Table 2 The isotopic ratios for 244 Pu/ 239 Pu with 2 σ uncertainties (using the confidence level given in ^[1]) and 240 Pu/ 239 Pu with 1 σ uncertainties

References

1. G. J. Feldman, R. D. Cousins, Phys. Rev., 1998, Volume D 57, 3873, <u>https://doi.org/10.1103/PhysRevD.57.3873</u>

2. J. Lachner, M. Christl, T. Bisinger, R. Michel, H.-A. Synal, Applied Radiation and Isotopes, 2010 Volume 68, Pages 979-983, <u>https://doi.org/10.1016/j.apradiso.2010.01.043</u>

3. E. Chamizo, M. López-Lora, M. Villa, N. Casacuberta, J. M. López-Gutiérrez, M. Khanh Pham, Nucl. Instr. Meth. B, 2015, Volume 361, Pages 535-540, <u>http://dx.doi.org/10.1016/j.nimb.2015.02.066</u>

4. A. Wallner, T. Faestermann, J. Feige, C. Feldstein, K. Knie, G. Korschinek, W. Kutschera, A. Ofan, M. Paul, F. Quinto, G. Rugel., P. Steier, Nature Communications, 2015, Volume 6, 5956, <u>https://doi.org/10.1038/ncomms6956</u>