Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2022

Supplementary Table 1.

Elemental abundances in reference materials as obtained using LA-ICP-TOF-MS mapping (LOD: limit of detection; n.d.: not determined; <LOD: below the LOD).

			BHV	'O-2G			GOR	128-G		Dui	ango apa	tite (in-house	e)
Samples	LOD	This work	c (n=4)	Preferred	values ¹	This work ((n=4)	Preferred	values ²	This work	(n=3)	Reference	values ^{3,4}
(% m/m))												
Na	0.04	$1.9 \pm$	0.2	$1.8 \pm$	0.1	$0.63 \pm$	0.09	$0.426 \pm$	0.019				
Mg	0.01	$4.1 \pm$	0.6	$4.30~\pm$	0.01	$14 \pm$	1	$15.7 \pm$	0.2	<lo]< td=""><td>D</td><td>$0.00622~\pm$</td><td>0.00025</td></lo]<>	D	$0.00622~\pm$	0.00025
Al	0.007	$6.5 \pm$	0.6	$7.20 \pm$	0.05	$4.5 \pm$	0.7	$5.24 \pm$	0.09				
Si	0.4	$25 \pm$	1	$23.0~\pm$	0.0	$24 \pm$	2	$21.5 \pm$	0.2	<lo]< td=""><td>D</td><td>$0.219~\pm$</td><td>0.008</td></lo]<>	D	$0.219~\pm$	0.008
Р	0.06	$0.12 \pm$	0.01	$0.13~\pm$	0.01	<lod< td=""><td></td><td>$0.011~\pm$</td><td>0.002</td><td>$20 \pm$</td><td>1</td><td>$18.7 \pm$</td><td>0.1</td></lod<>		$0.011~\pm$	0.002	$20 \pm$	1	$18.7 \pm$	0.1
Κ	0.01	$0.33~\pm$	0.09	$0.42~\pm$	0.02	$0.13~\pm$	0.04	$0.030~\pm$	0.004				
Ca	0.8	$6.8 \pm$	0.6	$8.15~\pm$	0.07	$3.7 \pm$	0.3	$4.46~\pm$	0.09	$34 \pm$	2	$40.1 \pm$	0.3
Ti	0.003	$1.5 \pm$	0.1	$1.67~\pm$	0.01	$0.15 \pm$	0.02	$0.173~\pm$	0.007				
Cr	0.002	$0.031~\pm$	0.008	$0.0293~\pm$	0.0012	$0.22 \pm$	0.03	$0.227~\pm$	0.017				
Mn	0.0008	$0.13~\pm$	0.01	$0.13~\pm$	0.02	$0.13 \pm$	0.01	$0.136~\pm$	0.007	$0.0074~\pm$	0.0006	$0.00718~\pm$	0.00027
Fe	0.03	$7.7 \pm$	0.5	$8.78~\pm$	0.08	$7.1 \pm$	0.3	$7.63~\pm$	0.09	<lo< td=""><td>D</td><td>$0.0270~\pm$</td><td>0.0010</td></lo<>	D	$0.0270~\pm$	0.0010
(µg/g)													
Sc	10	$29 \pm$	3	$33 \pm$	2	$29 \pm$	4	$32.1 \pm$	1.4				
V	1	$320 \pm$	10	$308~\pm$	19	$180 \pm$	10	$189~\pm$	13	$29 \pm$	3	$20.2 \pm$	0.7
Co	4	$43 \pm$	5	$116 \pm$	7	$85 \pm$	6	$92.4 \pm$	6.2				
Ni	15	$120 \pm$	30	$116 \pm$	7	$1100 \pm$	100	$1074~\pm$	61				
Cu	1	$120 \pm$	10	$127 \pm$	11	$86 \pm$	24	$63.8 \pm$	12.5				
Zn	2	$97 \pm$	10	$102 \pm$	6	$120 \pm$	30	74.7 \pm	6.7				
Rb	0.9	$9.0 \pm$	1.6	$9.2 \pm$	0.0	<2.0		$0.406~\pm$	0.025	n.d.		$0.04 \pm$	0.01
Sr	0.4	$340 \pm$	30	$396 \pm$	1	$29 \pm$	5	$30 \pm$	1	$490 \pm$	60	516 ±	6
Y	0.4	$18 \pm$	2	$26 \pm$	2	$8.7 \pm$	0.7	$11.8 \pm$	0.5	$1300 \pm$	100	$1057 \pm$	6
Zr	0.8	$160 \pm$	30	$170 \pm$	7	$12 \pm$	2	$10.0 \pm$	0.5				
Nb	0.4	15 ±	1	$18.3 \pm$	0.8	<lod< td=""><td></td><td>$0.099 \pm$</td><td>0.007</td><td></td><td></td><td></td><td></td></lod<>		$0.099 \pm$	0.007				
Ba	2	$120 \pm$	10	131 ±	2	$8.6 \pm$	4.6	$1.06 \pm$	0.03	n.d.		$1.8 \pm$	0.2
La	0.5	$12 \pm$	1	$15.2 \pm$	0.2	<lod< td=""><td></td><td>$0.121 \pm$</td><td>0.004</td><td>$5300 \pm$</td><td>300</td><td>$4443 \pm$</td><td>22</td></lod<>		$0.121 \pm$	0.004	$5300 \pm$	300	$4443 \pm$	22
Ce	0.4	$33 \pm$	2	$37.6 \pm$	0.2	$1.4 \pm$	0.5	$0.450 \pm$	0.016	$7000 \pm$	500	$6066 \pm$	31
Pr	0.2	$4.0 \pm$	0.2	$5.35 \pm$	0.22	<lod< td=""><td></td><td>$0.100 \pm$</td><td>0.004</td><td>$580 \pm$</td><td>40</td><td>524 ±</td><td>3</td></lod<>		$0.100 \pm$	0.004	$580 \pm$	40	524 ±	3
Nd	0.4	19 ±	1	$24.5 \pm$	0.2	$0.70 \pm$	0.06	$0.784 \pm$	0.047	$2000 \pm$	100	$1770 \pm$	12
Sm	0.2	$4.6 \pm$	0.5	$6.10 \pm$	0.03	$0.46 \pm$	0.19	$0.525 \pm$	0.02	$290 \pm$	20	$256 \pm$	3
Eu	0.2	$1.4 \pm$	0.1	$2.07 \pm$	0.01	$0.27 \pm$	0.07	$0.264 \pm$	0.008	24 ±	1	$22.8 \pm$	0.4
Gd	0.3	$4.2 \pm$	0.3	6.16 ±	0.05	$0.81 \pm$	0.04	1.17 ±	0.04	$270 \pm$	30	239 ±	2
Tb	0.06	$0.61 \pm$	0.06	$0.92 \pm$	0.04	$0.21 \pm$	0.04	$0.248 \pm$	0.012	$36 \pm$	3	$30.4 \pm$	0.2
Dy	0.3	3.7 ±	0.5	5.28 ±	0.05	1.5 ±	0.2	1.98 ±	0.07	210 ±	10	$178 \pm$	2
Ho	0.03	$0.64 \pm$	0.09	$0.98 \pm$	0.04	$0.36 \pm$	0.04	$0.443 \pm$	0.019	42 ±	3	$35.1 \pm$	0.4
Er	0.09	1.9 ±	0.4	2.56 ±	0.02	1.2 ±	0.2	1.40 ±	0.06	$120 \pm$	10	99.2 ±	1.1
Tm	0.08	$0.25 \pm$	0.05	$0.34 \pm$	0.02	$0.18 \pm$	0.02	$0.204 \pm$	0.009	$14 \pm$	1	$12.2 \pm$	0.2
Yb	0.2	$1.4 \pm$	0.1	$2.01 \pm$	0.02	1.1 ±	0.4	1.41 ±	0.06	$73 \pm$	5	$63.2 \pm$	0.9
Lu	0.04	$0.20 \pm$	0.01	$0.279 \pm$	0.003	$0.19 \pm$	0.05	$0.206 \pm$	0.009	7.4 ±	0.4	6.44 ±	0.14
Hf	0.1	3.4 ±	0.4	4.32 ±	0.18	0.29 ±	0.03	0.349 ±	0.017	n.d.	•••	$0.04 \pm$	0.01
Ta	0.04	0.81 ±	0.09	$1.15 \pm$	0.10	<lod< td=""><td></td><td>0.019 ±</td><td>0.001</td><td></td><td></td><td></td><td>0.01</td></lod<>		0.019 ±	0.001				0.01
Pb	0.3	2.4 ±	0.3	1.7 ±	0.2	2.0 ±	0.9	0.345 ±	0.043	n.d.		$0.7 \pm$	0.1
Th	0.05	$0.94 \pm$	0.17	1.22 +	0.05	$0.15 \pm$	0.07	0.008 +	0.001	490 ±	20	412 +	4
U	0.04	0.41 ±	0.04	$0.403 \pm$	0.003	<lod< td=""><td></td><td>$0.0123 \pm$</td><td>0.0012</td><td>21 ±</td><td>1</td><td>17.8 ±</td><td>0.1</td></lod<>		$0.0123 \pm$	0.0012	21 ±	1	17.8 ±	0.1

The uncertainties reported represent 1SD. LOD values for each analysis point are calculated from the blank intensities in the same analytical session based on the IUPAC approximation formula.⁵ The reference values for Mg, Si, P, Ca, V, Mn, and Fe in in-house Durango apatite were obtained using ICP-AES, and those for Sr, Y, REEs, Th, and U were obtained using ICP-Q-MS combined with the isotope dilution method. The reference values for Rb, Ba, and Pb in in-house Durango apatite are from Marks *et al.* (2012),³ and that for Hf is from Sha and Chappell (1999).⁴

Supplementary Table 2.

Elemental abundances (µg/g) in reference samples obtained using LA-ICP-SF-MS spot drilling analysis (LOD: limit of detection).

	for phosphate analysis				for pyr	oxene ana	alysis			for feldspa	r and olivi	ne analysis				Preferre	d values ²		
Samples	LOD	ATHO-	G		GOR12	8-G	GOR13	82-G		GOR12	28-G	GOR13	82-G	ATHO	G	COP12	° C	COD12	26
	LOD	This work (n=10)	LOD	This work	c (n=6)	This work	(n=6)	LOD	This worl	ĸ (n=7)	This worl	ĸ (n=7)	AIIIO	-0	GORIZ	0-0	GORIS	2-0
Sc				0.06	$38 \pm$	2	$43 \pm$	2								$32.1 \pm$	1.4	$36.5 \pm$	1.2
V	0.009	$4.4 \pm$	0.8											$3.91\ \pm$	0.34	$189 \pm$	13	$214 \pm$	17
Zn				0.06	$72 \pm$	7	$67 \pm$	5	0.06	$69 \pm$	9	$68 \pm$	5			74.7 \pm	6.7	$76.8~\pm$	12.5
Mn	0.09	$590 \pm$	40						0.03	$1400~\pm$	100	$1200~\pm$	100	$821~\pm$	39	$1363~\pm$	70	$1193~\pm$	54
Rb	0.02	$68~\pm$	5	0.007	$0.35~\pm$	0.05	$1.9 \pm$	0.1	0.005	$0.42~\pm$	0.03	$2.2 \pm$	0.2	$65.3~\pm$	3	$0.406~\pm$	0.025	$2.10~\pm$	0.10
Sr	0.006	$99~\pm$	8	0.002	$31 \pm$	2	$15 \pm$	1	0.002	$33 \pm$	2	$16 \pm$	1	$94.1~\pm$	2.7	$30.0~\pm$	1.0	$15.3 \pm$	0.6
Y	0.002	$100 \pm$	10	0.0009	$15 \pm$	1	$16 \pm$	1	0.001	$15 \pm$	2	$16 \pm$	2	$94.5~\pm$	3.5	$11.8~\pm$	0.5	$12.9~\pm$	0.5
Ba	0.008	$510 \pm$	60	0.002	$1.0 \pm$	0.1	$0.78~\pm$	0.14	0.002	$1.1 \pm$	0.1	$0.76~\pm$	0.08	547 \pm	16	$1.06 \pm$	0.03	$0.815~\pm$	0.062
La	0.0007	$62 \pm$	7	0.0002	$0.13~\pm$	0.01	$0.085~\pm$	0.012	0.0003	$0.15~\pm$	0.03	$0.091~\pm$	0.009	$55.6~\pm$	1.5	$0.121~\pm$	0.004	$0.0842~\pm$	0.0029
Ce	0.0005	$130 \pm$	10	0.0002	$0.41~\pm$	0.04	$0.31~\pm$	0.05	0.0003	$0.46~\pm$	0.06	$0.36~\pm$	0.02	$121 \pm$	4	$0.450~\pm$	0.016	$0.393~\pm$	0.018
Pr	0.0006	$16 \pm$	2	0.0002	$0.10~\pm$	0.01	$0.082~\pm$	0.012	0.0003	$0.11~\pm$	0.01	$0.091~\pm$	0.008	$14.6~\pm$	0.4	$0.100~\pm$	0.004	$0.089~\pm$	0.004
Nd	0.003	$71 \pm$	9	0.0007	$0.77~\pm$	0.10	$0.72~\pm$	0.08	0.0009	$0.85~\pm$	0.05	$0.74~\pm$	0.04	$60.9~\pm$	2.0	$0.784~\pm$	0.047	$0.689~\pm$	0.017
Sm	0.007	$16 \pm$	2	0.004	$0.51~\pm$	0.10	$0.50~\pm$	0.11	0.002	$0.59~\pm$	0.06	$0.58~\pm$	0.06	$14.2~\pm$	0.4	$0.525~\pm$	0.02	$0.508~\pm$	0.015
Eu	0.001	$3.0 \pm$	0.3	0.0006	$0.26~\pm$	0.04	$0.25~\pm$	0.03	0.0007	$0.28~\pm$	0.02	$0.26~\pm$	0.02	$2.76~\pm$	0.1	$0.264~\pm$	0.008	$0.255~\pm$	0.007
Gd	0.006	$18 \pm$	2	0.003	$1.3 \pm$	0.2	$1.3 \pm$	0.2	0.002	$1.4 \pm$	0.1	$1.4 \pm$	0.1	$15.3~\pm$	0.7	$1.17 \pm$	0.04	$1.19~\pm$	0.04
Tb	0.001	$2.9 \pm$	0.4	0.0005	$0.28~\pm$	0.04	$0.30~\pm$	0.04	0.0004	$0.29~\pm$	0.02	$0.30~\pm$	0.03	$2.51 \pm$	0.08	$0.248~\pm$	0.012	$0.269~\pm$	0.011
Dy	0.01	$18 \pm$	3	0.004	$2.3 \pm$	0.4	$2.5 \pm$	0.3	0.0009	$2.4 \pm$	0.2	$2.5 \pm$	0.3	$16.2 \pm$	0.7	$1.98~\pm$	0.07	$2.15 \pm$	0.06
Ho	0.0009	$3.9 \pm$	0.6	0.0004	$0.55~\pm$	0.10	$0.56~\pm$	0.08	0.0005	$0.52~\pm$	0.04	$0.57~\pm$	0.06	$3.43~\pm$	0.11	$0.443~\pm$	0.019	$0.507~\pm$	0.019
Er	0.002	$12 \pm$	2	0.0005	$1.7 \pm$	0.2	$1.8~\pm$	0.3	0.0009	$1.7 \pm$	0.2	$1.9 \pm$	0.2	$10.3~\pm$	0.5	$1.40 \pm$	0.06	$1.56 \pm$	0.05
Tm	0.004	$1.7 \pm$	0.2	0.002	$0.23~\pm$	0.05	$0.27~\pm$	0.05	0.001	$0.22~\pm$	0.04	$0.25~\pm$	0.05	$1.52 \pm$	0.07	$0.204~\pm$	0.009	$0.234~\pm$	0.009
Yb	0.002	$12 \pm$	2	0.0006	$1.5 \pm$	0.3	$1.8~\pm$	0.3	0.001	$1.6 \pm$	0.1	$1.8 \pm$	0.2	$10.5~\pm$	0.4	$1.41 \pm$	0.06	$1.61 \pm$	0.04
Lu	0.0009	$1.8 \pm$	0.3	0.0003	$0.24~\pm$	0.04	$0.26~\pm$	0.04	0.0004	$0.24~\pm$	0.03	$0.26~\pm$	0.03	$1.54 \pm$	0.05	$0.206~\pm$	0.009	$0.237~\pm$	0.009
Hf	0.003	$15 \pm$	1	0.0008	$0.38~\pm$	0.08	$0.38~\pm$	0.08	0.001	$0.41~\pm$	0.04	$0.42~\pm$	0.06	$13.7 \pm$	0.5	$0.349~\pm$	0.017	$0.357~\pm$	0.018
Pb	0.0008	$2.7 \pm$	0.5	0.002	$0.25~\pm$	0.06	$18 \pm$	2	0.002	$0.27~\pm$	0.06	$18 \pm$	3	$5.67~\pm$	0.62	$0.345~\pm$	0.043	$19.5 \pm$	1.7
Th	0.0007	$9.6 \pm$	1.0	0.0004	$0.0060~\pm$	0.0020	$0.005~\pm$	0.003	0.0005	$0.0092~\pm$	0.0025	$0.0080~\pm$	0.0070	$7.4~\pm$	0.27	$0.008~\pm$	0.001	$0.009~\pm$	0.003
U	0.001	$2.8~\pm$	0.5	0.0001	$0.013~\pm$	0.003	$0.031~\pm$	0.006	0.0002	$0.011~\pm$	0.004	$0.034~\pm$	0.013	$2.37~\pm$	0.12	$0.0123~\pm$	0.0012	$0.048~\pm$	0.005

The uncertainties reported represent 1SD. LOD values are calculated from 3SD of the blank intensities in the same analytical session. Where the abundance of an element

was	below	the	LOD,	the	LOD	value	is	substituted	instead	of	the	abundance	for	the	average.
-----	-------	-----	------	-----	-----	-------	----	-------------	---------	----	-----	-----------	-----	-----	----------

Supplementary Table 3.

Elemental abundances in whole areas as obtained using LA-ICP-TOF-MS mapping (<LOD: below the LOD).

~ 1		A 0961	8 (H5)			Y-79096	50 (H7)			67
Samples	Whole	area	Bulk ro	\mathbf{ck}^{6}	Whole a	area	Bulk ro	\mathbf{ck}^{6}	H chondrite	e mean ^{0,7}
(% m/m)			Duarre	•••			Duarre			
Na	$0.65 \pm$	0.20	$0.59 \pm$	0.02	$0.57 \pm$	0.17	$0.64 \pm$	0.03	$0.638 \pm$	0.012
Mg	13 ±	4	13 ±	0	12 ±	4	15 ±	0	14.0 ±	0.1
Al	$1.0 \pm$	0.3	$0.88 \pm$	0.00	$0.37 \pm$	0.11	$1.0 \pm$	0.0	$1.13 \pm$	0.03
Si	16 ±	5			17 ±	5			17.1 ±	0.26
Р	0.091 ±	0.027	$0.097 \pm$	0.001	$0.33 \pm$	0.10	$0.10 \pm$	0.00	0.118 ±	0.005
K	0.11 ±	0.03	$0.068 \pm$	0.001	$0.090 \pm$	0.027	$0.071 \pm$	0.001	$0.0747 \pm$	0.0033
Са	1.3 ±	0.4	1.1 ±	0.0	$0.92 \pm$	0.28	$0.99 \pm$	0.01	1.24 ±	0.03
Ti	0.054 ±	0.016	$0.057 \pm$	0.002	$0.059 \pm$	0.018	$0.058 \pm$	0.002	0.0719 ±	0.0024
Cr	0.17 ±	0.05	$0.37 \pm$	0.00	$0.20 \pm$	0.06	$0.42 \pm$	0.00	$0.356 \pm$	0.008
Mn	$0.25 \pm$	0.07	$0.23 \pm$	0.00	$0.24 \pm$	0.07	$0.24 \pm$	0.00	$0.240 \pm$	0.006
Fe	29 ±	9	24 ±	0	29 ±	9	$26 \pm$	0	$27.5 \pm$	0.3
Ni	$1.6 \pm$	0.5	$1.5 \pm$	0.0	$\frac{-2}{2.3 \pm}$	0.7	1.7 ±	0.1	1.74 ±	0.04
(µø/ø)	1.0 -	0.2	1.0 -	0.0	2.5 -	0.7	1.7 -	0.1	1.7.1 -	0.01
(ress) Sc	<l0< td=""><td>D</td><td></td><td></td><td>12 +</td><td>3</td><td></td><td></td><td>79</td><td></td></l0<>	D			12 +	3			79	
V	54 +	- 16			53 +	16			74	
Ċo	740 +	200	750 +	10	1100 +	300	760 +	0	810	
Cu	$160 \pm$	50	$79.0 \pm$	0.0	300 +	90	845 +	19	82	
Zu Zn	$130 \pm$	40	48.4 +	0.0	110 +	30	$64.5 \pm$	1.7	02 47	
Rb	$130 \pm 22 \pm$	0.7	$10.4 \pm$	0.02	28 +	0.9	261 +	0.18	29	
Sr.	2.2 ± 7.5 ±	23	$1.74 \pm 8.06 \pm$	0.02	2.0 ±	17	$2.01 \pm$ 8 72 +	0.15	10	
V	$1.3 \pm 1.2 \pm$	2.3	$0.00 \pm 1.67 \pm$	0.02	$3.3 \pm 1.2 \pm$	0.4	$0.72 \pm 1.86 \pm$	0.13	220	
1 7r	$1.2 \pm 8.3 \pm$	2.5	$1.07 \pm 4.42 \pm$	0.02	$1.2 \pm 1.4 \pm 1.4$	0.4	$1.00 \pm 1.63 \pm$	0.04	6.30	
Nh	$0.5 \pm$	0.16	0.356 ±	0.01	$17 \pm$	0.26	$-1.03 \pm$	0.13	0.30	
Ro Ro	$0.55 \pm 2.7 \pm$	1 1	$0.330 \pm 2.00 \pm$	0.003	$0.07 \pm$	1.20	$0.307 \pm 3.07 \pm$	0.017	4.2	
Da (na/a)	5.7 ±	1.1	2.90 ±	0.03	4.4 <i>⊥</i>	1.5	5.07 ±	0.20	4.2	
(ng/g)	1400 +	400	278 +	4	<10	C	207 +	15	200 +	26
La	$1400 \pm 2100 \pm$	400 600	$270 \pm$ $707 \pm$	4 0	5500 ⊥	1700	$307 \pm 777 \pm$	20	$309 \pm 816 \pm$	20
Dr.	$2100 \pm 240 \pm$	70	$101 \pm 101 \pm 101$	0 2	2200 ±		/// ⊥ 115 ⊥	20	010 ±	08
ri Nd	$240 \pm$	260	$104 \pm 527 \pm$	2	<loi 500 ⊥</loi 	150	113 ± 558 ⊥	27	588 L	37
Sm	<i o<="" td=""><td>200 D</td><td>$168 \pm$</td><td>5</td><td>200 ±</td><td>150</td><td>183 ±</td><td>27</td><td>180 ±</td><td>11</td></i>	200 D	$168 \pm$	5	200 ±	150	183 ±	27	180 ±	11
5III Eu	<lo:< td=""><td>D</td><td>$100 \pm 67.6 \pm$</td><td>11</td><td></td><td></td><td>$103 \pm 67.2 \pm$</td><td>4.2</td><td>$109 \pm 71.5 \pm$</td><td>2.4</td></lo:<>	D	$100 \pm 67.6 \pm$	11			$103 \pm 67.2 \pm$	4.2	$109 \pm 71.5 \pm$	2.4
Cd	<lo:< td=""><td>D</td><td>$07.0 \pm 242 \pm$</td><td>1.1</td><td></td><td></td><td>$07.5 \pm 257 \pm$</td><td>4.5</td><td>$71.5 \pm 255 \pm$</td><td>2.4</td></lo:<>	D	$07.0 \pm 242 \pm$	1.1			$07.5 \pm 257 \pm$	4.5	$71.5 \pm 255 \pm$	2.4
Uu Тh	<lo.< td=""><td>D</td><td>$242 \pm 42.0 \pm 12.0 \pm 1$</td><td>0.3</td><td></td><td></td><td>$257 \pm 16.7 \pm$</td><td>22</td><td>235 ±</td><td>14</td></lo.<>	D	$242 \pm 42.0 \pm 12.0 \pm 1$	0.3			$257 \pm 16.7 \pm$	22	235 ±	14
10 Du	<lo:< td=""><td>D</td><td>$43.9 \pm 204 \pm$</td><td>0.3</td><td></td><td></td><td>$40.7 \pm 206 \pm$</td><td>2.5</td><td>220 +</td><td>17</td></lo:<>	D	$43.9 \pm 204 \pm$	0.3			$40.7 \pm 206 \pm$	2.5	220 +	17
Dy Цо	<lo. 51 ⊥</lo. 	15	294 ±	0 4	<lui 52 ⊥</lui 	16	$500 \pm$	24	$320 \pm$	17
П0 Ен	$31 \pm 160 \pm$	13 50	$00.2 \pm 200 \pm$	0.4	$32 \pm 140 \pm$	10	$00.9 \pm 208 \pm$	2.4	210 +	11
LI Tm	$100 \pm$	50 D	$200 \pm$	02	140 ±	- 40 -	$200 \pm$	14	$210 \pm$	11
1 III Vh	<lo:< td=""><td>D</td><td>$50.5 \pm 107 \pm$</td><td>0.2</td><td></td><td></td><td>$31.1 \pm 205 \pm$</td><td>1.1</td><td>207 +</td><td>11</td></lo:<>	D	$50.5 \pm 107 \pm$	0.2			$31.1 \pm 205 \pm$	1.1	207 +	11
10	<lo.< td=""><td>D</td><td>$19/\pm$</td><td>4</td><td></td><td></td><td>$203 \pm 20.7 \pm$</td><td>06</td><td>$207 \pm 22.0 \pm$</td><td>11</td></lo.<>	D	$19/\pm$	4			$203 \pm 20.7 \pm$	06	$207 \pm 22.0 \pm$	11
	220 LU	70	$50.0 \pm 126 \pm$	0.7	220 1	70	29./ ± 125 ⊥	0.0	52.0 ± 180	1.5
ПI Ta	$220 \pm$	/U	$130 \pm 27.5 \pm$	12.6	220 ±	70	$133 \pm 14.4 \pm$	1.4	22.0	
1a Dh	_LO.	1200	$37.3 \pm$	15.0	2400 I	700	14.4 ±	1.4	22.0	
ru Th	$4300 \pm 61 \pm$	1300	97.3 ± 40.0 ⊥	4.4	∠400 ± 56 ⊥	17	$71.0 \pm 22.4 \pm$	13.4	∠40 /1.5 J	17 /
TT TT	01 ± 170 ⊥	10	+0.0 ± 13 0 ⊥	0.0	_0 ± ∠I ∩I) I/	33.4 ± 8 /7 ⊥	0.20	+1.3 ± 11 Q ⊥	1/.4 6 1
U	1/U I	50	$IJ.U \equiv$	0.9	~L01	,	0.+/ I	0.20	$11.0 \pm$	0.1

The uncertainties reported represent 30% relative uncertainty for whole area. The bulk rock abundances of Ta and Pb in the meteorite samples were determined using the same aliquots and the same analytical procedure for ICP-Q-MS as those used in Maeda *et al.* (2021).⁶ The abundances of Sc, V, Ta, and Pb for H chondrite mean are from Wasson and Kallemeyn (1988).⁷

Supplementary Table 4.

Elemental abundances in **merrillite** (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m and LA-ICP-SF-MS spot analysis in μ g/g; Min: the minimum abundances for Spot; Max: the maximum abundances for Spot; n: number of analyses and samples used for calculating the average in this study and literature values, respectively; <LOD: below the LOD).

Mataanita			A 09618	(H5)						Y-7909	60 (H7)				Literatur	e values ⁸	
Meteorite	TOF	U	Spot	U	Min	Max	n	TOF	U	Spot	U	Min	Max	n	Mean	U	n
(% m/m)			-							-							
F			<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<>	<lod< td=""><td>8</td><td></td><td></td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<></td></lod<>	8			<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>12</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>12</td><td></td><td></td><td></td></lod<>	12			
Na ₂ O	$2.9 \pm$	0.6	$2.74~\pm$	0.14	2.52	2.91	8			$2.84~\pm$	0.15	2.62	3.09	12	$2.76~\pm$	0.07	7
MgO	$4.2 \pm$	0.8	$3.14 \pm$	0.09	2.97	3.24	8	$0.53 \pm$	0.11	$3.17 \pm$	0.11	2.98	3.31	12	$3.52 \pm$	0.07	7
Al ₂ O ₃	$0.62 \pm$	0.12													$0.04 \pm$	0.01	7
SiO ₂	$3.6 \pm$	0.7	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>8</td><td>4.3 ±</td><td>0.9</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.17 \pm$</td><td>0.13</td><td>6</td></lod<></td></lod<></td></lo<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>8</td><td>4.3 ±</td><td>0.9</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.17 \pm$</td><td>0.13</td><td>6</td></lod<></td></lod<></td></lo<></td></lod<></td></lod<>	<lod< td=""><td>8</td><td>4.3 ±</td><td>0.9</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.17 \pm$</td><td>0.13</td><td>6</td></lod<></td></lod<></td></lo<></td></lod<>	8	4.3 ±	0.9	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.17 \pm$</td><td>0.13</td><td>6</td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>12</td><td>$0.17 \pm$</td><td>0.13</td><td>6</td></lod<></td></lod<>	<lod< td=""><td>12</td><td>$0.17 \pm$</td><td>0.13</td><td>6</td></lod<>	12	$0.17 \pm$	0.13	6
P_2O_5	36 ±	7	46.4 ±	1.2	44.2	48.3	8	45 ±	9	$46.0 \pm$	0.7	45.1	46.8	12	$46.4 \pm$	0.5	7
Cl	20 -	,	0.03 +	0.02	<lod< td=""><td>0.06</td><td>8</td><td></td><td>-</td><td>= 0.0.1</td><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>0.06</td><td>0.0</td><td>2</td></lod<></td></lod<></td></lod<>	0.06	8		-	= 0.0.1	D	<lod< td=""><td><lod< td=""><td>12</td><td>0.06</td><td>0.0</td><td>2</td></lod<></td></lod<>	<lod< td=""><td>12</td><td>0.06</td><td>0.0</td><td>2</td></lod<>	12	0.06	0.0	2
K ₂ O	0.15 +	0.03	0.05 ±	0.02	-200	0.00	0					100	LOD	12	0.06 +	0.01	7
CaO	33 +	0.05	473+	0.5	46.4	47.8	8	30 +	6	477+	0.2	473	47 9	12	$46.5 \pm$	0.01	7
TiO	0 0092 +	0.0018	47.5 ±	0.5	-10.4	47.0	0	50 ±	0	1/./ -	0.2	-17.5	17.7	12	0.0292 +	0.0128	6
CraOa	$0.0072 \pm$	0.0010													$0.0272 \pm$	0.0120	5
Cr ₂ O ₃	0.087 ± 17	0.017	0.60	0.67	0.22	2 20	0	14 +	2	0.52	0.21	0.20	1 09	12	$0.0033 \pm$	0.0024	3 7
NO	1/±	0.2	$0.09 \pm$	0.07	0.25	2.29	0	14 ±	5	$0.32 \pm$	0.21	0.50	1.08	12	$0.37 \pm$	0.15	/
NIO	$1.5 \pm$	0.5															
Total	$99.7~\pm$	10.5	$100.3~\pm$	1.4				$94.8~\pm$	11.3	100.2 \pm	0.8				$100.0~\pm$	0.7	
$(u \alpha / \alpha)$																	
(µg/g) Sc	<101	D													03+	3.0	7
V	78+	2	31+	0.9	2.0	44	5	68 +	14	17+	0.0	17	17	2	9.5 ±	0.8	6
v Mn	$350 \pm$	70	$215 \pm$	67	124	277	5	680 +	140	$1.7 \pm 112 \pm$	0.0	106	117	2	$271 \pm$	84	6
Co	$590 \pm$	120	210 ±	07	124	211	5	000 ±	140	112 -	5	100	117	2	271 ±	12	6
Cu	$270 \pm$	50													17 ±	12	Ū
Zn	$150 \pm$	30															
Rb	$2.2 \pm$	0.4	$1.3 \pm$	0.3	0.9	1.6	5			1.9 ±	0.3	1.6	2.2	2	1.2 ±	0.7	5
Sr	$30 \pm$	6	33 ±	1	31	34	5	$30 \pm$	6	32 ±	2	30	34	2	54 ±	21	7
Y	230 ±	50	322 ±	12	308	336	5	160 ±	30	378 ±	32	349	424	4	270 ±	142	7
Zr	2.4 ±	0.5													$2.8 \pm$	3.3	5
Nb	<lo]< td=""><td>D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$0.30 \pm$</td><td>0.18</td><td>6</td></lo]<>	D													$0.30 \pm$	0.18	6
Ba	$7.3 \pm$	1.5	$0.78~\pm$	0.06	0.71	0.87	5			$0.24 \pm$	0.06	0.18	0.30	2	$7.0 \pm$	10.3	5
La	$60 \pm$	12	$61 \pm$	3	58	66	5	$29 \pm$	6	$66 \pm$	5	64	73	4	$56.8~\pm$	26.9	7
Ce	$150 \pm$	30	$174 \pm$	4	171	181	5	$100 \pm$	20	$189~\pm$	8	180	199	4	$157 \pm$	74	7
Pr	$19 \pm$	4	$24 \pm$	0	24	25	5	$11 \pm$	2	$27 \pm$	1	26	28	4	$22.4~\pm$	11.4	7
Nd	$82 \pm$	16	$119 \pm$	3	115	121	5	$57 \pm$	11	$135~\pm$	9	129	149	4	$104 \pm$	55	7
Sm	$25 \pm$	5	$36 \pm$	1	34	37	5	$17 \pm$	3	$41 \pm$	4	38	47	4	$31.5~\pm$	17.2	7
Eu	$1.2 \pm$	0.2	$1.6 \pm$	0.0	1.5	1.6	5	$0.70~\pm$	0.14	$1.6 \pm$	0.2	1.4	1.7	4	$2.0 \pm$	0.4	7
Gd	$30 \pm$	6	$49~\pm$	2	46	50	5	$23 \pm$	5	$57 \pm$	6	53	65	4	$39.7 \pm$	23.6	7
Tb	$5.7 \pm$	1.1	$8.2 \pm$	0.3	7.7	8.5	5	$4.0 \pm$	0.8	$9.8~\pm$	0.7	9.1	11	4	$7.08~\pm$	3.98	7
Dy	$37 \pm$	7	$56 \pm$	2	52	58	5	$29 \pm$	6	$67 \pm$	5	63	75	4	$46.1 \pm$	25.4	7
Ho	$8.1 \pm$	1.6	$12 \pm$	0	11	12	5	$5.9 \pm$	1.2	$14 \pm$	1	13	16	4	$9.89 \pm$	5.40	7
Er	$27 \pm$	5	$35 \pm$	1	33	36	5	$18 \pm$	4	$42 \pm$	4	39	48	4	$27.8 \pm$	14.7	7
Tm	$3.2 \pm$	0.6	4.7 ±	0.1	4.5	4.9	5	$2.5 \pm$	0.5	$5.7 \pm$	0.5	5.2	6.4	4	$3.75 \pm$	1.78	7
Yb	19 ±	4	29 ±	1	28	30	5	$15 \pm$	3	$34 \pm$	3	32	38	4	$23.0 \pm$	10.2	7
Lu	2.9 ±	0.6	4.0 ±	0.1	3.8	4.1	5	$2.1 \pm$	0.4	4.8 ±	0.3	4.4	5.1	4	3.20 ±	1.29	7
Hf	<loi< td=""><td>U 0.012</td><td>$0.005 \pm$</td><td>0.002</td><td>0.003</td><td>0.006</td><td>5</td><td></td><td></td><td>$0.005 \pm$</td><td>0.002</td><td><lod< td=""><td>0.008</td><td>2</td><td>$0.083 \pm$</td><td>0.101</td><td>5</td></lod<></td></loi<>	U 0.012	$0.005 \pm$	0.002	0.003	0.006	5			$0.005 \pm$	0.002	<lod< td=""><td>0.008</td><td>2</td><td>$0.083 \pm$</td><td>0.101</td><td>5</td></lod<>	0.008	2	$0.083 \pm$	0.101	5
Ta Di	$0.059 \pm$	0.012	0.52	0.00	0.42	0.65	-			0.72	0.00	0.55	0.05	4	$0.010 \pm$	0.008	5
Pb Tl	$34 \pm$		$0.53 \pm$	0.08	0.42	0.65	5	0.04 ·	0.17	0.72 ± 2.8	0.08	0.66	0.85	4	$1.62 \pm$	0.89	4
1h TI	$0.36 \pm$	0.07	$3.6 \pm$	3.0	1.4	/.0	5	$0.84 \pm$	0.17	$2.8 \pm$	0.4	2.3	3.3	4	$1.91 \pm$	1.43	7
U	$0.049 \pm$	0.010	$0.16 \pm$	0.07	0.09	0.27	2	$0.084 \pm$	0.017	$0.12 \pm$	0.09	0.02	0.23	4	$0.27 \pm$	0.14	/

The uncertainties reported represent 20% relative uncertainty and 1SD for TOF and Spot, respectively. Where the number of analyses used for the average is two, the uncertainties reflect the range of the two values used for the average. Literature values and their uncertainties represent the mean values of merrillite in ordinary chondrites and the 95% confidence interval, respectively, calculated excluding anomalously high abundances.⁸ Values with more than 100% relative

uncertainty are shown in red. LOD values for EPMA are 3SD of the blank intensities in % m/m: 0.12 for F, 0.07 for Na₂O, 0.05 for MgO, 0.05 for SiO₂, 0.12 for P₂O₅, 0.02 for Cl, 0.02 for CaO, and 0.08 for FeO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted instead of the abundance for the average unless every analysis is below the LOD.

Supplementary Table 5.

Elemental abundances in **apatite** (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m and LA-ICP-SF-MS spot analysis in μ g/g; Min: the minimum abundances for Spot; Max: the maximum abundances for Spot; n: number of analyses and samples used for calculating the average in this study and literature values, respectively; <LOD: below the LOD).

M			A 09618 (H5)						Y-7909	60 (H7)				Literatur	e values ⁸	
Meteorite	TOF	U	Spot	U	Min	Max	n	TOF	U	Spot	U	Min	Max	n	Mean	U	n
(% m/m)			*														_
F			$0.62~\pm$	0.13	0.48	0.82	7			$0.32~\pm$	0.14	<lod< td=""><td>0.47</td><td>12</td><td>$0.44~\pm$</td><td>0.19</td><td>6</td></lod<>	0.47	12	$0.44~\pm$	0.19	6
Na ₂ O	$0.78~\pm$	0.16	$0.35 \pm$	0.06	0.28	0.45	7			$0.35~\pm$	0.06	0.23	0.44	12	$0.35~\pm$	0.09	6
MgO	$0.51 \pm$	0.10	<lod< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>7</td><td>$0.21 \pm$</td><td>0.04</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.06 \pm$</td><td>0.02</td><td>6</td></lod<></td></lod<></td></lo<></td></lod<></td></lod<></td></lod<>)	<lod< td=""><td><lod< td=""><td>7</td><td>$0.21 \pm$</td><td>0.04</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.06 \pm$</td><td>0.02</td><td>6</td></lod<></td></lod<></td></lo<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>$0.21 \pm$</td><td>0.04</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.06 \pm$</td><td>0.02</td><td>6</td></lod<></td></lod<></td></lo<></td></lod<>	7	$0.21 \pm$	0.04	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>12</td><td>$0.06 \pm$</td><td>0.02</td><td>6</td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>12</td><td>$0.06 \pm$</td><td>0.02</td><td>6</td></lod<></td></lod<>	<lod< td=""><td>12</td><td>$0.06 \pm$</td><td>0.02</td><td>6</td></lod<>	12	$0.06 \pm$	0.02	6
Al ₂ O ₃	$0.36 \pm$	0.07													$0.04 \pm$	0.02	6
SiO ₂	$2.1 \pm$	0.4	$0.09 \pm$	0.01	0.07	0.11	7	$2.7 \pm$	0.5	$0.09 \pm$	0.03	<lod< td=""><td>0.14</td><td>12</td><td>$0.15 \pm$</td><td>0.18</td><td>5</td></lod<>	0.14	12	$0.15 \pm$	0.18	5
P_2O_5	36 ±	7	$40.8 \pm$	1.3	38.3	41.9	7	$40 \pm$	8	41.2 ±	0.9	39.9	42.7	12	41.1 ±	0.8	6
Cl			4.92 ±	0.38	4.25	5.30	7		, in the second s	5.74 ±	0.36	5.20	6.24	12	5.45 ±	0.42	6
K ₂ O	$0.065 \pm$	0.013		0.00		0.00	,			5171 =	0.00	0.20	0.2.		0.03	02	6
CaO	41 +	8	54 5 +	0.8	53 3	55.4	7	39 +	8	545+	0.7	52.9	55.6	12	53.1.+	0.6	6
TiO	0.0095 +	0.0019	5 1.5 ±	0.0	00.0	55.1	,	<i>57</i> ±	0	5115 ±	0.7	52.9	22.0	12	0.0423 +	0.0405	5
Cr_2O_2	$0.0050 \pm$	0.0010													$0.0123 \pm 0.0241 +$	0.0256	6
E ₂ O ₃	18 ±	0.0010	0.73 +	0.57	0.27	1.84	7	12 +	3	0.56 +	0.54	0.20	1.04	12	$0.0241 \pm$	0.0250	6
NiO	$10 \pm 11 \pm 11 \pm 11$	02	0.75 ±	0.57	0.27	1.04	/	15 ±	5	0.50 ±	0.54	0.20	1.94	12	0.40 ±	0.55	0
1410	1.1 -	0.2															
Total	99.8 \pm	11.5	$101.9 \pm$	1.7				94.9 ±	11.5	102.8 \pm	1.3				$101.2 \pm$	1.1	
X-site																	
X_F			$0.17 \pm$	0.04	0.13	0.22	7			$0.09~\pm$	0.04	0.03	0.12	11			
X_{Cl}			$0.72~\pm$	0.06	0.61	0.80	7			$0.84~\pm$	0.06	0.76	0.92	11			
Xother			$0.11~\pm$	0.06	0.03	0.17	7			$0.08~\pm$	0.04	0.03	0.18	11			
(µg/g)																	
Sc	<lo< td=""><td>D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$5.0 \pm$</td><td>2.4</td><td>6</td></lo<>	D													$5.0 \pm$	2.4	6
V	$1.5 \pm$	0.3	$0.22 \pm$	0.03	0.22	0.22	1	$33 \pm$	7	$0.36~\pm$	0.48	0.05	0.92	3	$16.1 \pm$	19.6	6
Mn	$470~\pm$	90	$138~\pm$	21	138	138	1	$560~\pm$	110	$160 \pm$	51	130	219	3	$531~\pm$	518	6
Co	$530~\pm$	100													$11.0~\pm$	8.0	5
Cu	$61 \pm$	12															
Zn	$140 \pm$	30															
Rb	$1.4 \pm$	0.3	$0.12 \pm$	0.09	0.07	0.22	3			$0.08~\pm$	0.08	0.03	0.17	3	$0.8 \pm$	0.5	5
Sr	$79 \pm$	16	$94 \pm$	5	90	100	4	$80 \pm$	16	$107 \pm$	4	102	110	3	$145 \pm$	87	5
Y	14 ±	3	$21 \pm$	14	14	42	4	$6.0 \pm$	1.2	$18 \pm$	1	17	19	3	21 ±	11	6
Zr	4.5 ±	0.9													5.2 ±	2.6	5
Nb	<lo< td=""><td>D</td><td></td><td></td><td>0.0</td><td></td><td>•</td><td></td><td></td><td>0.52</td><td></td><td></td><td>0 0 -</td><td></td><td>$0.30 \pm$</td><td>0.43</td><td>5</td></lo<>	D			0.0		•			0.52			0 0 -		$0.30 \pm$	0.43	5
Ba	$4.3 \pm$	0.9	1.1 ±	0.4	0.8	1.6	3	1.6	0.0	0.73 ± 12	0.14	0.58	0.85	3	$3.6 \pm$	4.9	5
La C-	$10 \pm 22 \pm 10$	3	$15 \pm 20 \pm$	2	12	22	4	4.6 ± 17	0.9	13 ± 24	1	12	14	3	$15.0 \pm$	8.0	6
Ce De	$32 \pm 2.0 \pm 100$	0 6	29 ±	10	23	44 5 2	4	1/±	0.2	$24 \pm 2.0 \pm$	1	23	24	2	$30.2 \pm 2.50 \pm$	14.0	6
PT Nd	2.9 ±	0.0	$5.5 \pm 14 \pm$	1.5	2.7	3.3 23	4	$1.1 \pm 4.5 \pm$	0.2	$3.0 \pm 13 \pm$	0.1	2.9	5.1	2	$3.39 \pm 14.3 \pm$	1.78	6
Sm	15+	03	$34 \pm$	16	2.5	57	4	4.5 ±	0.9	$13 \pm 31 \pm 31 \pm 31$	03	2.9	3 5	3	$14.3 \pm 3.31 \pm 3.31 \pm 3.31$	1.75	6
Fu	$0.70 \pm$	0.14	$0.93 \pm$	0.09	0.85	11	4	0.48 +	0.2	$3.1 \pm 1.1 \pm 1.1$	0.5	1.0	11	3	1.13 +	0.42	6
Gd	$28 \pm 28 \pm 100$	0.14	41 +	2 1	2.8	7.1	4	12 +	0.10	$3.6 \pm$	0.1	33	3.7	3	$3.75 \pm$	2 10	6
Th	$0.41 \pm$	0.08	$0.63 \pm$	0.35	0.43	1.2	4	$0.18 \pm$	0.04	$0.55 \pm$	0.02	0.53	0.57	3	$0.56 \pm$	0.33	6
Dv	$2.2 \pm$	0.4	$4.0 \pm$	2.3	2.5	7.4	4	1.1 ±	0.2	$3.4 \pm$	0.1	3.4	3.5	3	$3.56 \pm$	2.10	6
Ho	$0.48 \pm$	0.10	$0.79 \pm$	0.45	0.52	1.5	4	0.24 ±	0.05	0.73 ±	0.07	0.68	0.80	3	$0.77 \pm$	0.41	6
Er	$1.2 \pm$	0.2	2.4 ±	1.4	1.6	4.5	4	$0.77 \pm$	0.15	2.1 ±	0.2	2.0	2.3	3	$2.13 \pm$	1.13	6
Tm	$0.14 \pm$	0.03	$0.33 \pm$	0.21	0.21	0.64	4	0.11 ±	0.02	$0.27 \pm$	0.00	0.26	0.27	3	0.28 ±	0.15	6
Yb	$0.76 \pm$	0.15	$2.1 \pm$	1.3	1.3	4.0	4	$0.56 \pm$	0.11	$1.7 \pm$	0.1	1.5	1.8	3	$1.80 \pm$	0.86	6
Lu	0.19 \pm	0.04	$0.29 \pm$	0.15	0.20	0.51	4	$0.079~\pm$	0.016	$0.25 \pm$	0.04	0.21	0.29	3	$0.24 \pm$	0.11	6
Hf	<lo< td=""><td>D</td><td>$0.025~\pm$</td><td>0.018</td><td>0.004</td><td>0.046</td><td>4</td><td></td><td></td><td>$0.004~\pm$</td><td>0.001</td><td><lod< td=""><td>0.004</td><td>2</td><td>$0.085~\pm$</td><td>0.050</td><td>5</td></lod<></td></lo<>	D	$0.025~\pm$	0.018	0.004	0.046	4			$0.004~\pm$	0.001	<lod< td=""><td>0.004</td><td>2</td><td>$0.085~\pm$</td><td>0.050</td><td>5</td></lod<>	0.004	2	$0.085~\pm$	0.050	5
Та	<lo< td=""><td>D</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$0.014~\pm$</td><td>0.019</td><td>5</td></lo<>	D													$0.014~\pm$	0.019	5
Pb	$38 \pm$	8	$1.4 \pm$	0.7	0.9	2.4	4			$1.3 \pm$	0.1	1.2	1.4	3	$2.83~\pm$	2.25	4
Th	$1.6 \pm$	0.3	$2.7~\pm$	0.2	2.4	2.9	4	$1.6 \pm$	0.3	$5.7 \pm$	0.1	5.6	5.9	3	$3.74~\pm$	3.20	6
U	$3.8 \pm$	0.8	$4.0 \pm$	0.2	3.7	4.2	4	$2.6 \pm$	0.5	$4.3 \pm$	0.1	4.1	4.4	3	$2.93~\pm$	2.30	6

The uncertainties reported represent 20% relative uncertainty and 1SD for TOF and Spot, respectively. Where the number

of analyses used for the average is two or one, the uncertainties reflect the range of the two values used for the average or 15% relative uncertainty, respectively. Literature values and their uncertainties represent the mean values of apatite in ordinary chondrites and the 95% confidence interval, respectively, calculated excluding anomalously high abundances.⁸ Values with more than 100% relative uncertainty are shown in red. LOD values for EPMA are 3SD of the blank intensities in % m/m: 0.12 for F, 0.07 for Na₂O, 0.05 for MgO, 0.05 for SiO₂, 0.12 for P₂O₅, 0.02 for Cl, 0.02 for CaO, and 0.08 for FeO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted instead of the for the abundance average unless every analysis is below the LOD.

Supplementary Table 6.

Elemental abundances in **Ca-rich pyroxene** (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m and LA-ICP-SF-MS spot analysis in $\mu g/g$; Min: the minimum abundances for Spot; Max: the maximum abundances for Spot; n: number of analyses and samples used for calculating the average in this study and literature values, respectively; <LOD: below the LOD).

Mataorita			A 09618	(H5)						Y-790960) (H7)				Literature	values ⁹⁻¹	2
Meteorite	TO	F	Spot		Min	Max	n	TOF		Spo	t	Min	Max	n	Mea	n	n
(% m/m)																	
Na ₂ O	$1.6 \pm$	0.5	$0.53 \pm$	0.06	0.46	0.63	5	$1.1 \pm$	0.3	$0.56 \pm$	0.02	0.51	0.59	11	$0.60~\pm$	0.17	3
MgO	$16 \pm$	5	$16.9 \pm$	0.0	16.9	17.0	5	$17 \pm$	5	$17.2 \pm$	0.2	16.7	17.6	11	$16.7 \pm$	0.4	3
Al ₂ O ₃	$3.0 \pm$	0.9	$0.65 \pm$	0.15	0.53	0.85	5	$1.0 \pm$	0.3	$0.58 \pm$	0.10	0.51	0.87	11	$0.54 \pm$	0.15	3
SiO ₂	51 ±	15	55.1 ±	0.5	54.7	55.9	5	54 ±	16	54.3 ±	0.6	53.4	55.2	11	54.1 ±	1.4	3
P2O5	0.18 +	0.05	0.04 +	0.01	<lod< td=""><td>0.05</td><td>5</td><td>0.44 +</td><td>0.13</td><td>0.04 +</td><td>0.00</td><td><lod< td=""><td>0.05</td><td>11</td><td>•</td><td></td><td>-</td></lod<></td></lod<>	0.05	5	0.44 +	0.13	0.04 +	0.00	<lod< td=""><td>0.05</td><td>11</td><td>•</td><td></td><td>-</td></lod<>	0.05	11	•		-
K ₂ O	0.10 ±	0.05	0.01 ±	0.01	-200	0.05	5	$0.11 \pm$	0.03	0.01 ±	0.00	LOD	0.05				
K20	0.18 ±	0.05	<u>,,,,</u> ,	0.2	22.1	22.6	5	0.10 ±	0.05	22.1 +	0.2	21.6	22.4	11	22.0 +	0.2	2
TiO.	$19 \pm$	0 10	$22.2 \pm$	0.2	22.1	22.0	5	$17 \pm$	0.09	$22.1 \pm$	0.2	21.0	0.51	11	$22.0 \pm$	0.3	5
1102	$0.35 \pm$	0.10	$0.44 \pm$	0.05	0.40	0.47	5	$0.20 \pm$	0.08	$0.49 \pm$	0.01	0.47	0.51	11	$0.45 \pm$	0.05	2
V2O5	0.040 ±	0.012	$0.06 \pm$	0.02	0.05	0.10	5	0.033 ±	0.010	$0.05 \pm$	0.01		0.07	11	$0.040 \pm$	0.058	3
Cr_2O_3	$0.57 \pm$	0.17	$0.75 \pm$	0.08	0.68	0.84	5	$0.50 \pm$	0.15	$0.84 \pm$	0.04	0.76	0.91	11	$0.76 \pm$	0.15	6
MnO	$0.24 \pm$	0.07	$0.21 \pm$	0.01	0.19	0.22	5	$0.27 \pm$	0.08	$0.24 \pm$	0.02	0.21	0.27	11	$0.24 \pm$	0.01	6
FeO	7.4 ±	2.2	3.71 ±	0.23	3.45	3.95	5	8.5 ±	2.6	4.40 ±	0.42	3.99	5.21	11	4.93 ±	0.37	3
NiO	$0.34 \pm$	0.10	$0.04 \pm$	0.01	<lod< td=""><td>0.06</td><td>5</td><td>0.46 ±</td><td>0.14</td><td>$0.05 \pm$</td><td>0.04</td><td><lod< td=""><td>0.16</td><td>11</td><td>$0.0025 \pm$</td><td>0.0017</td><td>3</td></lod<></td></lod<>	0.06	5	0.46 ±	0.14	$0.05 \pm$	0.04	<lod< td=""><td>0.16</td><td>11</td><td>$0.0025 \pm$</td><td>0.0017</td><td>3</td></lod<>	0.16	11	$0.0025 \pm$	0.0017	3
ZnO	$0.0099 \pm$	0.0030	<lol< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>5</td><td>$0.0085 \pm$</td><td>0.0025</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<></td></lol<>)	<lod< td=""><td><lod< td=""><td>5</td><td>$0.0085 \pm$</td><td>0.0025</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<>	<lod< td=""><td>5</td><td>$0.0085 \pm$</td><td>0.0025</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<></td></lod<>	5	$0.0085 \pm$	0.0025	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>11</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>11</td><td></td><td></td><td></td></lod<>	11			
Total	100.0 \pm	17.2	100.7 \pm	0.6				100.1 \pm	17.9	100.8 \pm	0.8				100.4 \pm	1.6	
Fs			$0.06~\pm$	0.00	0.06	0.06	5			$0.07~\pm$	0.01	0.06	0.08	11			
Es			$0.48~\pm$	0.00	0.48	0.49	5			$0.48~\pm$	0.00	0.48	0.49	11			
Wo			$0.46~\pm$	0.00	0.45	0.46	5			$0.45~\pm$	0.01	0.43	0.46	11			
$(\mu g/g)$																	
Sc	$71 \pm$	21	$112 \pm$	11	101	124	2	$59 \pm$	18	$132 \pm$	5	126	138	4	$101 \pm$	65	4
Co	$100 \pm$	30						$180~\pm$	50						$3 \pm$	1	3
Cu	$49~\pm$	15						$76 \pm$	23								
Zn	$80~\pm$	24	$21 \pm$	5	16	26	2	$68~\pm$	20	$23 \pm$	4	19	29	4	$17 \pm$	6	4
Rb	$3.7 \pm$	1.1	$1.5 \pm$	0.2	1.5	1.5	1	$2.8~\pm$	0.8	$1.1 \pm$	0.1	1.0	1.2	4	0.5		2
Sr	$14 \pm$	4	$10 \pm$	2	10	10	1	$7.1 \pm$	2.1	$6.4 \pm$	0.7	5.6	7.0	4	$17 \pm$	5	2
Y	$4.5 \pm$	1.4	$8.3 \pm$	0.9	7.5	9.2	2	$4.6 \pm$	1.4	$10 \pm$	1	9	12	4	$5.1 \pm$	0.3	2
Zr	$55 \pm$	16						$57 \pm$	17						$80~\pm$	30	2
Nb	$1.0 \pm$	0.3						$1.3 \pm$	0.4								
Ba	$4.9~\pm$	1.5	$2.3 \pm$	0.3	2.3	2.3	1	$4.7 \pm$	1.4	$0.89~\pm$	0.21	0.70	1.1	4	$8 \pm$	2	2
La	$0.61 \pm$	0.18	$0.27~\pm$	0.02	0.26	0.29	2	$0.54 \pm$	0.16	$0.23~\pm$	0.03	0.22	0.27	4	$0.35~\pm$	0.32	3
Ce	$1.7 \pm$	0.5	$0.93~\pm$	0.04	0.89	0.97	2	$7.5 \pm$	2.2	$0.89~\pm$	0.07	0.85	1.0	4	$1.1 \pm$	0.4	3
Pr	$0.22 \pm$	0.07	$0.19~\pm$	0.01	0.18	0.20	2	$0.26 \pm$	0.08	$0.20 \pm$	0.01	0.19	0.21	4	$0.3 \pm$	0.0	2
Nd	$1.0 \pm$	0.3	$1.2 \pm$	0.1	1.1	1.2	2	$1.3 \pm$	0.4	$1.1 \pm$	0.1	1.1	1.3	4	$1.4 \pm$	0.2	2
Sm	$0.38 \pm$	0.11	$0.53 \pm$	0.00	0.53	0.53	2	0.40 ±	0.12	$0.61 \pm$	0.07	0.55	0.68	4	$0.62 \pm$	0.49	3
Eu	<lo< td=""><td>D</td><td>$0.091 \pm$</td><td>0.014</td><td>0.091</td><td>0.091</td><td>1</td><td><lod< td=""><td></td><td>$0.051 \pm$</td><td>0.002</td><td>0.049</td><td>0.053</td><td>4</td><td>$0.08~\pm$</td><td>0.11</td><td>3</td></lod<></td></lo<>	D	$0.091 \pm$	0.014	0.091	0.091	1	<lod< td=""><td></td><td>$0.051 \pm$</td><td>0.002</td><td>0.049</td><td>0.053</td><td>4</td><td>$0.08~\pm$</td><td>0.11</td><td>3</td></lod<>		$0.051 \pm$	0.002	0.049	0.053	4	$0.08~\pm$	0.11	3
Gd	$0.54 \pm$	0.16	$0.81 \pm$	0.05	0.76	0.87	2	$0.74 \pm$	0.22	$0.90 \pm$	0.14	0.79	1.11	4	1.30		1
Tb	$0.11 \pm$	0.03	$0.18 \pm$	0.02	0.16	0.20	2	$0.10 \pm$	0.03	$0.19 \pm$	0.02	0.17	0.21	4	$0.23 \pm$	0.20	3
Dy	$0.84 \pm$	0.25	$1.4 \pm$	0.2	1.2	1.5	2	$0.76 \pm$	0.23	$1.5 \pm$	0.1	1.4	1.5	4			
Но	$0.18 \pm$	0.05	$0.32 \pm$	0.03	0.28	0.35	2	$0.16 \pm$	0.05	$0.33 \pm$	0.05	0.29	0.40	4			
Er	$0.60 \pm$	0.18	$1.0 \pm$	0.1	0.9	1.1	2	$0.44 \pm$	0.13	$1.0 \pm$	0.1	1.0	1.2	4			
Tm	$0.089 \pm$	0.027	$0.16 \pm$	0.02	0.14	0.18	2	$0.080 \pm$	0.024	$0.16 \pm$	0.00	0.16	0.17	4	$0.31 \pm$	0.02	1
Yb	$0.66 \pm$	0.20	$1.2 \pm$	0.1	1.1	1.3	2	$0.52 \pm$	0.16	1.1 ±	0.1	0.9	1.2	4	$0.98 \pm$	0.97	3
Lu	$0.10 \pm$	0.03	0.19 ±	0.02	0.17	0.21	2	$0.088 \pm$	0.026	0.17 ±	0.01	0.16	0.18	4	$0.21 \pm$	0.07	3
Hf	1.5 ±	0.5	$2.5 \pm$	0.2	2.2	2.7	2	1.4 ±	0.4	$2.3 \pm$	0.1	2.1	2.4	4			
Та	$0.063 \pm$	0.019						$0.050 \pm$	0.015								
Pb	2.5 ±	0.7	$0.094 \pm$	0.014	0.094	0.094	1	3.2 ±	1.0	$0.073 \pm$	0.056	0.036	0.16	4			
Th	$0.090 \pm$	0.027	$0.046 \pm$	0.005	0.042	0.051	2	0.11 ±	0.03	0.033 ±	0.019	0.020	0.061	4			
U	<lod 0.0013="" 0.0065="" 0.0077="" 0.0090="" 2="" <lod<="" td="" ±=""><td>$0.0048 \pm$</td><td>0.0041</td><td>0.0023</td><td>0.011</td><td>4</td><td></td><td></td><td></td></lod>			$0.0048 \pm$	0.0041	0.0023	0.011	4									

The uncertainties reported represent 30% relative uncertainty and 1SD for TOF and Spot, respectively. Where the number of analyses used for the average is two or one, the uncertainties reflect the range of the two values used for the average or 15% relative uncertainty, respectively. Literature values and their uncertainties represent the mean values of Ca-rich pyroxene in type 6 ordinary chondrites and the 95% confidence interval, respectively.⁹⁻¹² Where the number of analyses

used for the literature value is two or one, the uncertainties reflect the range of the two values used for the average or 1SD of the value, respectively. Values with more than 100% relative uncertainty are shown in red. LOD values for EPMA are 3SD of the blank intensities in % m/m: 0.01 for Na₂O, 0.01 for MgO, 0.01 for Al₂O₃, 0.02 for SiO₂, 0.04 for P₂O₅, 0.01 for CaO, 0.03 for TiO₂, 0.03 for V₂O₅, 0.02 for Cr₂O₃, 0.02 for MnO, 0.02 for FeO, 0.03 for NiO, and 0.04 for ZnO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted instead of the abundance for the average unless every analysis is below the LOD.

Supplementary Table 7.

Elemental abundances in **feldspar** (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m and LA-ICP-SF-MS spot analysis in μ g/g or ng/g; Min: the minimum abundances for Spot; Max: the maximum abundances for Spot; n: number of analyses and samples used for calculating the average in this study and literature values, respectively; <LOD: below the LOD).

Mataorita			A 0961	18 (H5)						Y-79096	0 (H7)				Literature v	alues9-	12
Wieteonite	TOF	Min	Max	n	TOF	7	Spot		Min	Max	n	Mean		n			
(% m/m)																	
Na ₂ O	$6.7 \pm$	2.0	$9.53~\pm$	0.53	8.41	10.1	13	$9.6 \pm$	2.9	$9.63~\pm$	0.42	8.92	10.2	24	$9.7 \pm$	1.0	3
MgO	$7.4 \pm$	2.2	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>13</td><td>$4.6 \pm$</td><td>1.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>24</td><td>0.1</td><td></td><td>1</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>13</td><td>$4.6 \pm$</td><td>1.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>24</td><td>0.1</td><td></td><td>1</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td>$4.6 \pm$</td><td>1.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>24</td><td>0.1</td><td></td><td>1</td></lod<></td></lod<></td></loi<></td></lod<>	13	$4.6 \pm$	1.4	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>24</td><td>0.1</td><td></td><td>1</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>24</td><td>0.1</td><td></td><td>1</td></lod<></td></lod<>	<lod< td=""><td>24</td><td>0.1</td><td></td><td>1</td></lod<>	24	0.1		1
Al ₂ O ₃	$13 \pm$	4	$22.3~\pm$	0.9	21.6	24.3	13	$8.3 \pm$	2.5	$21.8~\pm$	0.4	20.9	22.5	24	$21.0 \pm$	0.5	3
SiO ₂	$57 \pm$	17	$64.7 \pm$	1.7	62.4	66.4	13	$59 \pm$	18	$65.7 \pm$	0.7	64.5	66.7	24	$65.3 \pm$	0.4	2
P2O5	$0.20 \pm$	0.06	$0.07 \pm$	0.01	<lod< td=""><td>0.09</td><td>13</td><td>$0.29 \pm$</td><td>0.09</td><td>$0.06 \pm$</td><td>0.00</td><td><lod< td=""><td>0.08</td><td>24</td><td></td><td></td><td></td></lod<></td></lod<>	0.09	13	$0.29 \pm$	0.09	$0.06 \pm$	0.00	<lod< td=""><td>0.08</td><td>24</td><td></td><td></td><td></td></lod<>	0.08	24			
K20	0.20 =	0.24	0.83 +	0.29	0.37	1.09	13	0.89 +	0.27	0.96 +	0.30	0.49	1 46	24	0.99 +	0.20	
C20	$3.1 \pm$	0.21	$2.60 \pm$	1.06	2 22	5.28	13	<loi< td=""><td>0.27</td><td>$0.90 \pm$ 2.53 ±</td><td>0.13</td><td>2 20</td><td>2.66</td><td>24</td><td>$21 \pm$</td><td>0.20</td><td>3</td></loi<>	0.27	$0.90 \pm$ 2.53 ±	0.13	2 20	2.66	24	$21 \pm$	0.20	3
TiO	$0.15 \pm$	0.9	$2.09 \pm$	0.02	<1.0D	0.08	13	0.070 +	0.021	$2.55 \pm$	0.13	<1.0D	2.00	24	2.1 ±	0.0	3
110 <u>2</u> Cr. O	0.15 ±	0.05	$0.05 \pm$	0.02		0.00	12	0.070 ±	0.021	0.05 ±	0.02			24	0.0520		5
Cr_2O_3	$0.59 \pm$	0.18	$0.06 \pm$	0.03	<lod< td=""><td>0.13</td><td>13</td><td>$0.28 \pm$</td><td>0.09</td><td></td><td>,</td><td><lod< td=""><td><lod< td=""><td>24</td><td>0.120</td><td></td><td>5</td></lod<></td></lod<></td></lod<>	0.13	13	$0.28 \pm$	0.09		,	<lod< td=""><td><lod< td=""><td>24</td><td>0.120</td><td></td><td>5</td></lod<></td></lod<>	<lod< td=""><td>24</td><td>0.120</td><td></td><td>5</td></lod<>	24	0.120		5
MnO	$0.13 \pm$	0.04	$0.05 \pm$	0.00	<lod< td=""><td>0.06</td><td>13</td><td>$0.10 \pm$</td><td>0.03</td><td>$0.05 \pm$</td><td>0.00</td><td><lod< td=""><td>0.06</td><td>24</td><td>0.0</td><td>0.0</td><td>6</td></lod<></td></lod<>	0.06	13	$0.10 \pm$	0.03	$0.05 \pm$	0.00	<lod< td=""><td>0.06</td><td>24</td><td>0.0</td><td>0.0</td><td>6</td></lod<>	0.06	24	0.0	0.0	6
FeO	$10 \pm$	3	$0.68 \pm$	0.33	0.34	1.13	13	14 ±	4	$0.39 \pm$	0.24	0.19	0.97	24	$0.7 \pm$	0.2	2
NiO	1.1 ±	0.3						2.2 ±	0.7						0.0049		6
Total	$99.9~\pm$	18.0	101.0 \pm	2.3				$99.7~\pm$	18.7	101.2 \pm	1.0				$99.7~\pm$	1.2	
An			$0.11~\pm$	0.04	0.09	0.19	13			$0.09~\pm$	0.01	0.06	0.11	24			
Ab			$0.84~\pm$	0.03	0.79	0.86	13			$0.85~\pm$	0.02	0.83	0.88	24			
Or			$0.05~\pm$	0.02	0.02	0.06	13			$0.06~\pm$	0.02	0.03	0.09	24			
$(\mu g/g)$																	
Sc	19 ±	6						$18 \pm$	5						$4.0 \pm$	2.3	4
V	$110 \pm$	30						59 ±	18						22 ±	13	4
Mn	$1000 \pm$	300	$53 \pm$	8	53	53	1	790 ±	240	$13 \pm$	6	8	19	2	262		6
Со	290 ±	90						710 ±	210	-					2.6 ±	2.5	6
Cu	$90 \pm$	27						$220 \pm$	70						5 ±	11	3
Zn	$140 \pm$	40	$4.1 \pm$	0.6	4.1	4.1	1	$120 \pm$	40	$5.4 \pm$	4.9	0.5	10	2	$7 \pm$	6	6
Rb	$16 \pm$	5	19 ±	3	19	19	1	$36 \pm$	11	$24 \pm$	1	23	26	2	$25 \pm$	3	5
Sr	$50 \pm$	15	$104 \pm$	16	104	104	1	$42 \pm$	13	$91 \pm$	1	90	91	2	$76 \pm$	9	3
Y	$1.6 \pm$	0.5	$0.11 \pm$	0.02	0.11	0.11	1	$0.68 \pm$	0.20	$0.47 \pm$	0.45	0.03	0.92	2	1		3
Zr	$21 \pm$	6						$24 \pm$	7						$7 \pm$	4	3
Nb	$1.0 \pm$	0.3						$1.2 \pm$	0.4								
Ba	$15 \pm$	5	$38~\pm$	6	38	38	1	$17 \pm$	5	$29 \pm$	1	29	30	2	$41 \pm$	3	3
(ng/g)																	
La	$840~\pm$	250	$100~\pm$	15	100	100	1	<loi< td=""><td>D</td><td>$170 \pm$</td><td>70</td><td>100</td><td>250</td><td>2</td><td>$189~\pm$</td><td>38</td><td>2</td></loi<>	D	$170 \pm$	70	100	250	2	$189~\pm$	38	2
Ce	$1500~\pm$	500	$130 \pm$	20	130	130	1	$8100~\pm$	2400	$290~\pm$	190	110	480	2	$258~\pm$	26	2
Pr	<lod< td=""><td>)</td><td>$10 \pm$</td><td>2</td><td>10</td><td>10</td><td>1</td><td><loi< td=""><td>D</td><td>$39 \pm$</td><td>29</td><td>9</td><td>68</td><td>2</td><td></td><td></td><td></td></loi<></td></lod<>)	$10 \pm$	2	10	10	1	<loi< td=""><td>D</td><td>$39 \pm$</td><td>29</td><td>9</td><td>68</td><td>2</td><td></td><td></td><td></td></loi<>	D	$39 \pm$	29	9	68	2			
Nd	$600~\pm$	180	$42~\pm$	6	42	42	1	<loi< td=""><td>D</td><td>$210~\pm$</td><td>150</td><td>60</td><td>360</td><td>2</td><td>$263~\pm$</td><td>32</td><td>2</td></loi<>	D	$210~\pm$	150	60	360	2	$263~\pm$	32	2
Sm	<loe< td=""><td>)</td><td>$8 \pm$</td><td>1</td><td>8</td><td>8</td><td>1</td><td><loi< td=""><td>D</td><td>$38 \pm$</td><td>35</td><td>14</td><td>73</td><td>2</td><td>$100 \pm$</td><td>20</td><td>2</td></loi<></td></loe<>)	$8 \pm$	1	8	8	1	<loi< td=""><td>D</td><td>$38 \pm$</td><td>35</td><td>14</td><td>73</td><td>2</td><td>$100 \pm$</td><td>20</td><td>2</td></loi<>	D	$38 \pm$	35	14	73	2	$100 \pm$	20	2
Eu	$310 \pm$	90	740 \pm	110	740	740	1	$260 \pm$	80	$630 \pm$	20	610	660	2	541 \pm	87	3
Gd	<loe< td=""><td>)</td><td>$11 \pm$</td><td>2</td><td>11</td><td>11</td><td>1</td><td><loi< td=""><td>D</td><td>$90 \pm$</td><td>80</td><td>10</td><td>170</td><td>2</td><td></td><td></td><td></td></loi<></td></loe<>)	$11 \pm$	2	11	11	1	<loi< td=""><td>D</td><td>$90 \pm$</td><td>80</td><td>10</td><td>170</td><td>2</td><td></td><td></td><td></td></loi<>	D	$90 \pm$	80	10	170	2			
Tb	<loe< td=""><td>)</td><td>$2.2 \pm$</td><td>0.3</td><td>2.2</td><td>2.2</td><td>1</td><td><loi< td=""><td>D</td><td>$14 \pm$</td><td>13</td><td>1</td><td>27</td><td>2</td><td>$23 \pm$</td><td>11</td><td>2</td></loi<></td></loe<>)	$2.2 \pm$	0.3	2.2	2.2	1	<loi< td=""><td>D</td><td>$14 \pm$</td><td>13</td><td>1</td><td>27</td><td>2</td><td>$23 \pm$</td><td>11</td><td>2</td></loi<>	D	$14 \pm$	13	1	27	2	$23 \pm$	11	2
Dy	$300 \pm$	90	$19 \pm$	3	19	19	1	<loi< td=""><td>D</td><td>$71 \pm$</td><td>68</td><td>3</td><td>140</td><td>2</td><td></td><td></td><td></td></loi<>	D	$71 \pm$	68	3	140	2			
Но	$72 \pm$	22	$2.1 \pm$	0.3	2.1	2.1	1	<loi< td=""><td>D</td><td>$16 \pm$</td><td>16</td><td>0</td><td>32</td><td>2</td><td></td><td></td><td></td></loi<>	D	$16 \pm$	16	0	32	2			
Er	$230 \pm$	70	$14 \pm$	2	14	14	1	<loi< td=""><td>D</td><td>$56 \pm$</td><td>51</td><td>5</td><td>110</td><td>2</td><td></td><td></td><td></td></loi<>	D	$56 \pm$	51	5	110	2			
Tm	<loe< td=""><td>)</td><td>$2 \pm$</td><td>0</td><td>2</td><td>2</td><td>1</td><td><loi< td=""><td>D</td><td>$8 \pm$</td><td>6</td><td>2</td><td>14</td><td>2</td><td>$14 \pm$</td><td>1</td><td>1</td></loi<></td></loe<>)	$2 \pm$	0	2	2	1	<loi< td=""><td>D</td><td>$8 \pm$</td><td>6</td><td>2</td><td>14</td><td>2</td><td>$14 \pm$</td><td>1</td><td>1</td></loi<>	D	$8 \pm$	6	2	14	2	$14 \pm$	1	1
Yb	$230 \pm$	70	$22 \pm$	3	22	22	1	<loi< td=""><td>D</td><td>41 ±</td><td>36</td><td>5</td><td>77</td><td>2</td><td>$63 \pm$</td><td>13</td><td>2</td></loi<>	D	41 ±	36	5	77	2	$63 \pm$	13	2
Lu	$46 \pm$	14	$1.8 \pm$	0.3	1.8	1.8	1	<loi< td=""><td>D</td><td>$4.4 \pm$</td><td>3.0</td><td>1.4</td><td>7.5</td><td>2</td><td>$13 \pm$</td><td>0</td><td>2</td></loi<>	D	$4.4 \pm$	3.0	1.4	7.5	2	$13 \pm$	0	2
Hf	$350 \pm$	110	$18 \pm$	3	18	18	1	$180~\pm$	50	$11 \pm$	1	10	12	2			
Та	$80 \pm$	24						46 ±	14								
Pb	$4400~\pm$	100	83 ±	12	83	83	1	$5700 \pm$	1700	35 ±	2	33	37	2			
Th	73 ±	8	4.0 ±	0.6	4.0	4.0	1	$110 \pm$	30	$3.8 \pm$	2.1	1.8	5.9	2			
U	<loe< td=""><td>)</td><td>2.4 ±</td><td>0.4</td><td>2.4</td><td>2.4</td><td>1</td><td><loi< td=""><td>J</td><td>$1.8 \pm$</td><td>1.0</td><td>0.8</td><td>2.8</td><td>2</td><td></td><td></td><td></td></loi<></td></loe<>)	2.4 ±	0.4	2.4	2.4	1	<loi< td=""><td>J</td><td>$1.8 \pm$</td><td>1.0</td><td>0.8</td><td>2.8</td><td>2</td><td></td><td></td><td></td></loi<>	J	$1.8 \pm$	1.0	0.8	2.8	2			

The uncertainties reported represent 30% relative uncertainty and 1SD for TOF and Spot, respectively. Where the number

of analyses used for the average is two or one, the uncertainties reflect the range of the two values used for the average or 15% relative uncertainty, respectively. Literature values and their uncertainties represent the mean values of feldspar in type 6 ordinary chondrites and the 95% confidence interval, respectively, calculated excluding anomalously high or low abundances.9-12 Where the number of analyses used for the literature value is two or one, the uncertainties reflect the range of the two values used for the average or 1SD of the value, respectively. Values with more than 100% relative uncertainty are shown in red. LOD values for EPMA analysis are 3SD of the blank intensities in % m/m: 0.03 for Na₂O, 0.02 for MgO, 0.02 for Al₂O₃, 0.03 for SiO₂, 0.06 for P₂O₅, 0.01 for K₂O, 0.01 for CaO, 0.04 for TiO₂, 0.04 for Cr₂O₃, 0.05 for MnO, and 0.04 for FeO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted instead of abundance for analysis LOD. the the average unless every is below the

Supplementary Table 8.

Elemental abundances in **low-Ca pyroxene** (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m and LA-ICP-SF-MS spot analysis in μ g/g or ng/g; Min: the minimum abundances for Spot; Max: the maximum abundances for Spot; n number of analyses and samples used for calculating the average in this study and literature values, respectively; n.d.: not determined; <LOD: below the LOD).

Matanita			A 09618	(H5)						Y-79090	50 (H7)				Literature	values ⁹⁻¹	2
Meteorite	TOI	F	Spot		Min	Max	n	TOF	7	Spo	t	Min	Max	n	Mear	1	n
(% m/m)																	
Na ₂ O	$0.58~\pm$	0.17	$0.01~\pm$	0.01	<lod< td=""><td>0.02</td><td>7</td><td>$0.26~\pm$</td><td>0.08</td><td>$0.01~\pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>14</td><td>< 0.04</td><td></td><td>3</td></lod<></td></lod<>	0.02	7	$0.26~\pm$	0.08	$0.01~\pm$	0.00	<lod< td=""><td>0.02</td><td>14</td><td>< 0.04</td><td></td><td>3</td></lod<>	0.02	14	< 0.04		3
MgO	$27 \pm$	8	$31.6~\pm$	0.2	31.2	31.8	7	$25 \pm$	7	$31.6 \pm$	0.1	31.3	31.8	14	$29.3~\pm$	0.2	3
Al ₂ O ₃	$1.3 \pm$	0.4	$0.15 \pm$	0.01	0.12	0.16	7	$0.32~\pm$	0.10	$0.18~\pm$	0.02	0.15	0.24	14	$0.11 \pm$	0.09	3
SiO ₂	$56 \pm$	17	$56.6 \pm$	0.3	56.0	56.8	7	$60 \pm$	18	$56.6 \pm$	0.2	56.3	56.9	14	$55.6 \pm$	0.9	3
P ₂ O ₅	<lo]< td=""><td>D</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>7</td><td>$0.12 \pm$</td><td>0.03</td><td><lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>14</td><td></td><td></td><td></td></lod<></td></lod<></td></lo]<></td></lod<></td></lod<></td></loi<></td></lo]<>	D	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>7</td><td>$0.12 \pm$</td><td>0.03</td><td><lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>14</td><td></td><td></td><td></td></lod<></td></lod<></td></lo]<></td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>7</td><td>$0.12 \pm$</td><td>0.03</td><td><lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>14</td><td></td><td></td><td></td></lod<></td></lod<></td></lo]<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>$0.12 \pm$</td><td>0.03</td><td><lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>14</td><td></td><td></td><td></td></lod<></td></lod<></td></lo]<></td></lod<>	7	$0.12 \pm$	0.03	<lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>14</td><td></td><td></td><td></td></lod<></td></lod<></td></lo]<>	D	<lod< td=""><td><lod< td=""><td>14</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>14</td><td></td><td></td><td></td></lod<>	14			
K ₂ O	$0.11 \pm$	0.03						$0.058 \pm$	0.017								
CaO	1.3 ±	0.4	$0.53 \pm$	0.04	0.50	0.61	7	<lo]< td=""><td>D</td><td>$0.68 \pm$</td><td>0.10</td><td>0.48</td><td>0.80</td><td>14</td><td>$0.80 \pm$</td><td>0.22</td><td>3</td></lo]<>	D	$0.68 \pm$	0.10	0.48	0.80	14	$0.80 \pm$	0.22	3
TiO ₂	$0.17 \pm$	0.05	$0.16 \pm$	0.02	0.13	0.18	7	$0.14 \pm$	0.04	$0.18 \pm$	0.02	0.16	0.23	14	$0.17 \pm$	0.01	6
Cr2O2	0.22 +	0.06	0.19 +	0.16	0.08	0.43	7	0.15 +	0.05	0.12 +	0.01	0.10	0.15	14	0.17 +	0.06	6
MnO	$0.22 \pm$ 0.50 +	0.00	$0.19 \pm 0.40 \pm$	0.03	0.00	0.45	7	$0.13 \pm 0.47 \pm$	0.03	$0.12 \pm 0.39 \pm$	0.01	0.10	0.13	14	$0.17 \pm 0.46 \pm$	0.05	6
FeO	12 + 12 + 12	0.15	$11.6 \pm$	0.05	11.5	11.6	7	0.47 ±	0.14	$0.39 \pm 11.5 \pm$	0.02	11.3	11.8	14	$13.9 \pm$	0.05	3
NiO	0.21 +	0.06	0.04 +	0.01	<lod< td=""><td>0.05</td><td>7</td><td>0.29 +</td><td>0.09</td><td>0.04 +</td><td>0.01</td><td><lod< td=""><td>0.06</td><td>14</td><td>0.011 +</td><td>0.009</td><td>6</td></lod<></td></lod<>	0.05	7	0.29 +	0.09	0.04 +	0.01	<lod< td=""><td>0.06</td><td>14</td><td>0.011 +</td><td>0.009</td><td>6</td></lod<>	0.06	14	0.011 +	0.009	6
ZnO	$0.013 \pm$	0.004	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>7</td><td>$0.011 \pm$</td><td>0.003</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.04</td><td>14</td><td>0.011 ±</td><td>0.009</td><td>U</td></lod<></td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>7</td><td>$0.011 \pm$</td><td>0.003</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.04</td><td>14</td><td>0.011 ±</td><td>0.009</td><td>U</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>7</td><td>$0.011 \pm$</td><td>0.003</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.04</td><td>14</td><td>0.011 ±</td><td>0.009</td><td>U</td></lod<></td></lod<>	7	$0.011 \pm$	0.003	$0.01 \pm$	0.00	<lod< td=""><td>0.04</td><td>14</td><td>0.011 ±</td><td>0.009</td><td>U</td></lod<>	0.04	14	0.011 ±	0.009	U
Line	01010 -	01001			202	202	,	01011 -	0.000	0101 -	0.00	202	0101				
Total	$99.9 \pm$	19.0	$101.2 \pm$	0.4				99.4 ±	19.8	$101.3 \pm$	0.3				$100.5 \pm$	1.3	
Fs			$0.17 \pm$	0.00	0.17	0.17	7			$0.17 \pm$	0.00	0.16	0.17	14			
Es			$0.82 \pm$	0.00	0.82	0.82	7			$0.82 \pm$	0.00	0.82	0.82	14			
Wo			$0.01 \pm$	0.00	0.01	0.01	7			$0.01 \pm$	0.00	0.01	0.01	14			
(
(μg/g)	10	4	4.0	0.2	2.7		2	10	-	11 .	2	11	11	1	10	2	~
SC	$12 \pm$	4	$4.0 \pm$	0.3	3.7	4.4	2	18 ± 54	5	$11 \pm$	2	11	11	1	$10 \pm$	20	5
V Ca	$03 \pm 62 \pm$	19						34 ±	10						00 ± 11	29	5
Cu	$05 \pm 25 \pm$	19						$120 \pm 52 \pm$	40						$11 \pm 10 \pm$	2	6
Cu 7n	$33 \pm 100 \pm$	30	16 +	2	13	18	2	$32 \pm 00 \pm$	27	00 +	15	00	00	1	$10 \pm 38 \pm$	26	6
Rh	$100 \pm 1.6 \pm$	0.5	n d	2	nd	n d	2	$0.99 \pm$	0.30	$0.050 \pm$	0.008	0.050	0.050	1	$0.09 \pm$	0.1	3
Sr	42 +	13	n.d.		n d	n d	2	22 +	0.50	$0.050 \pm$ 0.053 +	0.000	0.053	0.053	1	45+	0.1	2
Y	0.61 +	0.18	0.23 +	0.02	0.21	0.25	2	0.40 +	0.12	$0.035 \pm 0.36 \pm$	0.000	0.035	0.035	1	$0.9 \pm$	0.1	2
Zr	$8.4 \pm$	2.5	0120 -	0.02	0.21	0.20	-	$16 \pm$	5	0.00 -	0.00	0.00	0.00		5 ±	1	2
Nb	$0.60 \pm$	0.18						$0.60 \pm$	0.18								
Ba	$2.6 \pm$	0.8	n.d.		n.d.	n.d.	2	$3.4 \pm$	1.0	$0.035 \pm$	0.005	0.035	0.035	1	$2 \pm$	0	2
(ng/g)																	
La	<lo]< td=""><td>D</td><td>$14 \pm$</td><td>3</td><td>10</td><td>17</td><td>2</td><td><lo]< td=""><td>D</td><td>$6.3 \pm$</td><td>0.9</td><td>6.3</td><td>6.3</td><td>1</td><td>$26 \pm$</td><td>3</td><td>2</td></lo]<></td></lo]<>	D	$14 \pm$	3	10	17	2	<lo]< td=""><td>D</td><td>$6.3 \pm$</td><td>0.9</td><td>6.3</td><td>6.3</td><td>1</td><td>$26 \pm$</td><td>3</td><td>2</td></lo]<>	D	$6.3 \pm$	0.9	6.3	6.3	1	$26 \pm$	3	2
Ce	$560~\pm$	170	$36 \pm$	7	29	43	2	$6300~\pm$	1900	$33 \pm$	5	33	33	1	$99~\pm$	39	2
Pr	<lo]< td=""><td>D</td><td>$5.3 \pm$</td><td>1.0</td><td>4.2</td><td>6.3</td><td>2</td><td><lo]< td=""><td>D</td><td>$1.1 \pm$</td><td>0.2</td><td>1.1</td><td>1.1</td><td>1</td><td></td><td></td><td></td></lo]<></td></lo]<>	D	$5.3 \pm$	1.0	4.2	6.3	2	<lo]< td=""><td>D</td><td>$1.1 \pm$</td><td>0.2</td><td>1.1</td><td>1.1</td><td>1</td><td></td><td></td><td></td></lo]<>	D	$1.1 \pm$	0.2	1.1	1.1	1			
Nd	<lo< td=""><td>D</td><td>$27 \pm$</td><td>3</td><td>24</td><td>30</td><td>2</td><td><lo< td=""><td>D</td><td>$2.5 \pm$</td><td>0.4</td><td>2.5</td><td>2.5</td><td>1</td><td>$30 \pm$</td><td>3</td><td>1</td></lo<></td></lo<>	D	$27 \pm$	3	24	30	2	<lo< td=""><td>D</td><td>$2.5 \pm$</td><td>0.4</td><td>2.5</td><td>2.5</td><td>1</td><td>$30 \pm$</td><td>3</td><td>1</td></lo<>	D	$2.5 \pm$	0.4	2.5	2.5	1	$30 \pm$	3	1
Sm	<lo< td=""><td>D</td><td>$13 \pm$</td><td>1</td><td>12</td><td>14</td><td>2</td><td><lo]< td=""><td>D</td><td>$12 \pm$</td><td>2</td><td>12</td><td>12</td><td>1</td><td>$18 \pm$</td><td>4</td><td>2</td></lo]<></td></lo<>	D	$13 \pm$	1	12	14	2	<lo]< td=""><td>D</td><td>$12 \pm$</td><td>2</td><td>12</td><td>12</td><td>1</td><td>$18 \pm$</td><td>4</td><td>2</td></lo]<>	D	$12 \pm$	2	12	12	1	$18 \pm$	4	2
Eu	<lo]< td=""><td>D</td><td>n.d.</td><td></td><td>n.d.</td><td>n.d.</td><td>2</td><td><lo]< td=""><td>D</td><td><lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>1</td><td>$3 \pm$</td><td>2</td><td>3</td></lod<></td></lod<></td></lo]<></td></lo]<></td></lo]<>	D	n.d.		n.d.	n.d.	2	<lo]< td=""><td>D</td><td><lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>1</td><td>$3 \pm$</td><td>2</td><td>3</td></lod<></td></lod<></td></lo]<></td></lo]<>	D	<lo]< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>1</td><td>$3 \pm$</td><td>2</td><td>3</td></lod<></td></lod<></td></lo]<>	D	<lod< td=""><td><lod< td=""><td>1</td><td>$3 \pm$</td><td>2</td><td>3</td></lod<></td></lod<>	<lod< td=""><td>1</td><td>$3 \pm$</td><td>2</td><td>3</td></lod<>	1	$3 \pm$	2	3
Gd	<lo]< td=""><td>D</td><td>17 ±</td><td>1</td><td>16</td><td>17</td><td>2</td><td><lo]< td=""><td>D</td><td>$10 \pm$</td><td>2</td><td>10</td><td>10</td><td>1</td><td></td><td></td><td></td></lo]<></td></lo]<>	D	17 ±	1	16	17	2	<lo]< td=""><td>D</td><td>$10 \pm$</td><td>2</td><td>10</td><td>10</td><td>1</td><td></td><td></td><td></td></lo]<>	D	$10 \pm$	2	10	10	1			
Tb	<lo]< td=""><td>D</td><td>$4.0 \pm$</td><td>0.3</td><td>3.7</td><td>4.3</td><td>2</td><td><lo]< td=""><td>D</td><td>$2.9 \pm$</td><td>0.4</td><td>2.9</td><td>2.9</td><td>1</td><td>$6 \pm$</td><td>2</td><td>2</td></lo]<></td></lo]<>	D	$4.0 \pm$	0.3	3.7	4.3	2	<lo]< td=""><td>D</td><td>$2.9 \pm$</td><td>0.4</td><td>2.9</td><td>2.9</td><td>1</td><td>$6 \pm$</td><td>2</td><td>2</td></lo]<>	D	$2.9 \pm$	0.4	2.9	2.9	1	$6 \pm$	2	2
Dy	<lo]< td=""><td>D</td><td>$33 \pm$</td><td>6</td><td>27</td><td>40</td><td>2</td><td><loi< td=""><td>D</td><td>$44 \pm$</td><td>7</td><td>44</td><td>44</td><td>1</td><td></td><td></td><td></td></loi<></td></lo]<>	D	$33 \pm$	6	27	40	2	<loi< td=""><td>D</td><td>$44 \pm$</td><td>7</td><td>44</td><td>44</td><td>1</td><td></td><td></td><td></td></loi<>	D	$44 \pm$	7	44	44	1			
Ho	<l0]< td=""><td>D</td><td>$8.2 \pm$</td><td>0.6</td><td>7.6</td><td>8.7</td><td>2</td><td><loi< td=""><td>D</td><td>11 ±</td><td>2</td><td>11</td><td>11</td><td>1</td><td></td><td></td><td></td></loi<></td></l0]<>	D	$8.2 \pm$	0.6	7.6	8.7	2	<loi< td=""><td>D</td><td>11 ±</td><td>2</td><td>11</td><td>11</td><td>1</td><td></td><td></td><td></td></loi<>	D	11 ±	2	11	11	1			
Er	93 ±	28	$29 \pm$	3	26	31	2	<lo< td=""><td>D</td><td>$45 \pm$</td><td>7</td><td>45</td><td>45</td><td>1</td><td></td><td></td><td></td></lo<>	D	$45 \pm$	7	45	45	1			
Tm	<lo< td=""><td>D</td><td>6 ±</td><td>1</td><td>5</td><td>7</td><td>2</td><td colspan="2">2 <lod< td=""><td>12 ±</td><td>2</td><td>12</td><td>12</td><td>1</td><td>6 ±</td><td>0</td><td>1</td></lod<></td></lo<>	D	6 ±	1	5	7	2	2 <lod< td=""><td>12 ±</td><td>2</td><td>12</td><td>12</td><td>1</td><td>6 ±</td><td>0</td><td>1</td></lod<>		12 ±	2	12	12	1	6 ±	0	1
Yb	<lo< td=""><td>D</td><td>46 ±</td><td>8</td><td>38</td><td>53</td><td>2</td><td><loi< td=""><td>D</td><td>$120 \pm$</td><td>20</td><td>120</td><td>120</td><td>1</td><td>93 ±</td><td>2</td><td>2</td></loi<></td></lo<>	D	46 ±	8	38	53	2	<loi< td=""><td>D</td><td>$120 \pm$</td><td>20</td><td>120</td><td>120</td><td>1</td><td>93 ±</td><td>2</td><td>2</td></loi<>	D	$120 \pm$	20	120	120	1	93 ±	2	2
Lu	<l0]< td=""><td>D</td><td>8.5 ±</td><td>1.2</td><td>7.2</td><td>9.7</td><td>2</td><td><lo]< td=""><td>U ar</td><td>19 ±</td><td>3</td><td>19</td><td>19</td><td>1</td><td>31 ±</td><td>7</td><td>5</td></lo]<></td></l0]<>	D	8.5 ±	1.2	7.2	9.7	2	<lo]< td=""><td>U ar</td><td>19 ±</td><td>3</td><td>19</td><td>19</td><td>1</td><td>31 ±</td><td>7</td><td>5</td></lo]<>	U ar	19 ±	3	19	19	1	31 ±	7	5
Ht	$1'/0 \pm$	50	$88 \pm$	12	77	100	2	$2 270 \pm 80$		$24 \pm$	4	24	24	1			
Ta Dh	$40 \pm$	12	50	1	50	(0	2	<lo< td=""><td>1100</td><td>24</td><td>-</td><td>24</td><td>24</td><td>1</td><td></td><td></td><td></td></lo<>	1100	24	-	24	24	1			
ґb ть	$2500 \pm$	800	59 ±	1	58	60 120	2	$3500 \pm$	1100	34 ±	5	34 7 1	34	1			
IN TT	90 ±	2/ D	$\delta 2 \pm 15$	41	42	120	2	01 ±	18	/.I ±	1.1	/.1	/.1	1			
U	~L0.	ν ν	13 ±	ð	/	23	2	~L01		$1.0 \pm$	0.2	1.0	1.0	1			

The uncertainties reported represent 30% relative uncertainty and 1SD for TOF and Spot, respectively. Where the number

of analyses used for the average is two or one, the uncertainties reflect the range of the two values used for the average or 15% relative uncertainty, respectively. Literature values and their uncertainties represent the mean values of low-Ca pyroxene in type 6 ordinary chondrites and the 95% confidence interval, respectively, calculated excluding anomalously high abundances.⁹⁻¹² Where the number of analyses used for the literature value is two or one, the uncertainties reflect the range of the two values used for the average or 1SD of the value, respectively. Values with more than 100% relative uncertainty are shown in red. LOD values for EPMA are 3SD of the blank intensities in % m/m: 0.01 for Na₂O, 0.01 for MgO, 0.01 for Al₂O₃, 0.02 for SiO₂, 0.04 for P₂O₅, 0.01 for CaO, 0.03 for TiO₂, 0.03 for V₂O₅, 0.02 for Cr₂O₃, 0.02 for MnO, 0.02 for FeO, 0.03 for NiO, and 0.04 for ZnO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted instead of the abundance for the average unless every analysis is below the LOD.

Supplementary Table 9.

Elemental abundances in **olivine** (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m and LA-ICP-SF-MS spot analysis in µg/g or ng/g; Min: the minimum abundances for Spot; Max: the maximum abundances for Spot; n: number of analyses and samples used for calculating the average in this study and literature values, respectively; n.d.: not determined; <LOD: below the LOD).

Matazzita			A 0961	8 (H5)						Y-79096	0 (H7)				Literature	values9-	12
Meteorite	TOF	7	Spo	t	Min	Max	n	TOF	7	Spot		Min	Max	n	Mea	n	n
(% m/m)																	
Na ₂ O	$0.22~\pm$	0.07	$0.01~\pm$	0.00	<lod< td=""><td>0.02</td><td>9</td><td>$0.15~\pm$</td><td>0.04</td><td>$0.01~\pm$</td><td>0.00</td><td><lod< td=""><td>0.01</td><td>8</td><td>< 0.03</td><td></td><td>3</td></lod<></td></lod<>	0.02	9	$0.15~\pm$	0.04	$0.01~\pm$	0.00	<lod< td=""><td>0.01</td><td>8</td><td>< 0.03</td><td></td><td>3</td></lod<>	0.01	8	< 0.03		3
MgO	$40~\pm$	12	$43.6~\pm$	0.5	42.7	44.2	9	$38 \pm$	11	$43.8~\pm$	0.2	43.5	44.1	8	$39.5~\pm$	0.5	3
Al ₂ O ₃	$0.52~\pm$	0.16	$0.04~\pm$	0.08	<lod< td=""><td>0.25</td><td>9</td><td>$0.12 \pm$</td><td>0.04</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td>< 0.02</td><td></td><td>3</td></lod<></td></lod<></td></loi<></td></lod<>	0.25	9	$0.12 \pm$	0.04	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td>< 0.02</td><td></td><td>3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>8</td><td>< 0.02</td><td></td><td>3</td></lod<></td></lod<>	<lod< td=""><td>8</td><td>< 0.02</td><td></td><td>3</td></lod<>	8	< 0.02		3
SiO ₂	$39~\pm$	12	$39.3~\pm$	0.3	38.9	39.7	9	$42 \pm$	13	$39.6~\pm$	0.2	39.2	39.8	8	$38.1~\pm$	0.5	3
P_2O_5	<lo]< td=""><td>D</td><td>$0.05~\pm$</td><td>0.02</td><td><lod< td=""><td>0.09</td><td>9</td><td><loi< td=""><td>)</td><td>$0.07~\pm$</td><td>0.06</td><td><lod< td=""><td>0.22</td><td>8</td><td></td><td></td><td></td></lod<></td></loi<></td></lod<></td></lo]<>	D	$0.05~\pm$	0.02	<lod< td=""><td>0.09</td><td>9</td><td><loi< td=""><td>)</td><td>$0.07~\pm$</td><td>0.06</td><td><lod< td=""><td>0.22</td><td>8</td><td></td><td></td><td></td></lod<></td></loi<></td></lod<>	0.09	9	<loi< td=""><td>)</td><td>$0.07~\pm$</td><td>0.06</td><td><lod< td=""><td>0.22</td><td>8</td><td></td><td></td><td></td></lod<></td></loi<>)	$0.07~\pm$	0.06	<lod< td=""><td>0.22</td><td>8</td><td></td><td></td><td></td></lod<>	0.22	8			
K ₂ O	$0.060~\pm$	0.018						$0.038~\pm$	0.011								
CaO	$0.36~\pm$	0.11	$0.01~\pm$	0.00	<lod< td=""><td>0.02</td><td>9</td><td>$0.15~\pm$</td><td>0.04</td><td>$0.02~\pm$</td><td>0.01</td><td><lod< td=""><td>0.05</td><td>8</td><td>< 0.01</td><td></td><td>3</td></lod<></td></lod<>	0.02	9	$0.15~\pm$	0.04	$0.02~\pm$	0.01	<lod< td=""><td>0.05</td><td>8</td><td>< 0.01</td><td></td><td>3</td></lod<>	0.05	8	< 0.01		3
TiO ₂	$0.023~\pm$	0.007	$0.05~\pm$	0.05	<lod< td=""><td>0.15</td><td>9</td><td>$0.011~\pm$</td><td>0.003</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td>$0.023~\pm$</td><td>0.030</td><td>3</td></lod<></td></lod<></td></loi<></td></lod<>	0.15	9	$0.011~\pm$	0.003	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td>$0.023~\pm$</td><td>0.030</td><td>3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>8</td><td>$0.023~\pm$</td><td>0.030</td><td>3</td></lod<></td></lod<>	<lod< td=""><td>8</td><td>$0.023~\pm$</td><td>0.030</td><td>3</td></lod<>	8	$0.023~\pm$	0.030	3
Cr_2O_3	$0.074~\pm$	0.022	$0.05~\pm$	0.02	<lod< td=""><td>0.08</td><td>9</td><td>$0.049~\pm$</td><td>0.015</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td>$0.056~\pm$</td><td>0.022</td><td>6</td></lod<></td></lod<></td></loi<></td></lod<>	0.08	9	$0.049~\pm$	0.015	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td>$0.056~\pm$</td><td>0.022</td><td>6</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>8</td><td>$0.056~\pm$</td><td>0.022</td><td>6</td></lod<></td></lod<>	<lod< td=""><td>8</td><td>$0.056~\pm$</td><td>0.022</td><td>6</td></lod<>	8	$0.056~\pm$	0.022	6
MnO	$0.49~\pm$	0.15	$0.35~\pm$	0.03	0.32	0.40	9	$0.47~\pm$	0.14	$0.36~\pm$	0.04	0.28	0.41	8	$0.46~\pm$	0.04	6
FeO	$19 \pm$	6	18.4 \pm	0.2	18.2	18.7	9	$19 \pm$	6	$18.5~\pm$	0.2	18.2	19.0	8	$22.6~\pm$	1.2	3
NiO	$0.18~\pm$	0.05	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td>$0.26~\pm$</td><td>0.08</td><td>$0.06~\pm$</td><td>0.06</td><td><lod< td=""><td>0.20</td><td>8</td><td>$0.019~\pm$</td><td>0.013</td><td>6</td></lod<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>9</td><td>$0.26~\pm$</td><td>0.08</td><td>$0.06~\pm$</td><td>0.06</td><td><lod< td=""><td>0.20</td><td>8</td><td>$0.019~\pm$</td><td>0.013</td><td>6</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td>$0.26~\pm$</td><td>0.08</td><td>$0.06~\pm$</td><td>0.06</td><td><lod< td=""><td>0.20</td><td>8</td><td>$0.019~\pm$</td><td>0.013</td><td>6</td></lod<></td></lod<>	9	$0.26~\pm$	0.08	$0.06~\pm$	0.06	<lod< td=""><td>0.20</td><td>8</td><td>$0.019~\pm$</td><td>0.013</td><td>6</td></lod<>	0.20	8	$0.019~\pm$	0.013	6
ZnO	$0.015~\pm$	0.005	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td>$0.012~\pm$</td><td>0.004</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td></td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>9</td><td>$0.012~\pm$</td><td>0.004</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td></td></lod<></td></lod<></td></loi<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td>$0.012~\pm$</td><td>0.004</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td></td></lod<></td></lod<></td></loi<></td></lod<>	9	$0.012~\pm$	0.004	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td></td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>8</td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td>8</td><td></td><td></td><td></td></lod<>	8			
Total	$99.9~\pm$	17.7	$101.9~\pm$	0.6				$99.9~\pm$	17.8	$102.5~\pm$	0.4				100.8 \pm	1.4	
Fa			$0.19 \pm$	0.00	0.19	0.20	9			$0.19 \pm$	0.00	0.19	0.20	8			
Fo			$0.81~\pm$	0.00	0.80	0.81	9			$0.81~\pm$	0.00	0.80	0.81	8			
(µg/g)																	
Sc	<lo]< td=""><td>D</td><td></td><td></td><td></td><td></td><td></td><td>$10 \pm$</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>$4 \pm$</td><td>3</td><td>6</td></lo]<>	D						$10 \pm$	3						$4 \pm$	3	6
V	$12 \pm$	4						$23 \pm$	7						$16 \pm$	14	6
Mn	$3800~\pm$	1100	$3267~\pm$	338	2929	3605	2	$3600~\pm$	1100	$3849~\pm$	143	3694	3976	3	$3563~\pm$	295	6
Co	61 ±	18						$110 \pm$	30						19 ±	15	6
Cu	30 ±	9	10					26 ±	8						12 ±	9	3
Zn	120 ±	40	49 ±	2	48	51	2	99 ±	30	57 ±	3	55	61	3	40 ±	25	6
Rb	<lo< td=""><td></td><td>$0.25 \pm$</td><td>0.06</td><td>0.18</td><td>0.31</td><td>2</td><td><loi< td=""><td></td><td>$0.20 \pm$</td><td>0.03</td><td>0.20</td><td>0.20</td><td>1</td><td>< 0.05</td><td>0.2</td><td>3</td></loi<></td></lo<>		$0.25 \pm$	0.06	0.18	0.31	2	<loi< td=""><td></td><td>$0.20 \pm$</td><td>0.03</td><td>0.20</td><td>0.20</td><td>1</td><td>< 0.05</td><td>0.2</td><td>3</td></loi<>		$0.20 \pm$	0.03	0.20	0.20	1	< 0.05	0.2	3
Sr V	1.9 ±	0.6	$0.1/\pm$	0.10	0.07	0.26	2	1.5 ±	0.4	$0.30 \pm$	0.05	0.30	0.30	1	0./±	0.3	2
I 7r	2 4 +	07	$0.004 \pm$	0.021	0.045	0.084	2	11 +	ر ع	$0.24 \pm$	0.11	0.15	0.33	2	<0.5		2
Nh	$2.4 \pm$ 0.40 +	0.12						<lui< td=""><td>י ר</td><td></td><td></td><td></td><td></td><td></td><td>~7</td><td></td><td>2</td></lui<>	י ר						~7		2
Ba	0.40 ±	0.12	0.078 +	0.023	0.055	0.10	2	25+	07	0.14 +	0.02	0.14	0.14	1	<0.8		3
(ng/g)	1.0 =	0.5	0.070 ±	0.025	0.055	0.10	2	2.3 ±	0.7	0.11 =	0.02	0.11	0.11	1	-0.0		5
La	<lo]< td=""><td>D</td><td>$12 \pm$</td><td>0</td><td>12</td><td>13</td><td>2</td><td><loi< td=""><td>)</td><td>$23 \pm$</td><td>3</td><td>20</td><td>25</td><td>2</td><td>11 ±</td><td>5</td><td>3</td></loi<></td></lo]<>	D	$12 \pm$	0	12	13	2	<loi< td=""><td>)</td><td>$23 \pm$</td><td>3</td><td>20</td><td>25</td><td>2</td><td>11 ±</td><td>5</td><td>3</td></loi<>)	$23 \pm$	3	20	25	2	11 ±	5	3
Ce	<lo]< td=""><td>D</td><td>$59 \pm$</td><td>33</td><td>26</td><td>92</td><td>2</td><td>5400 \pm</td><td>1600</td><td>$59 \pm$</td><td>11</td><td>48</td><td>70</td><td>2</td><td>$26 \pm$</td><td>21</td><td>3</td></lo]<>	D	$59 \pm$	33	26	92	2	5400 \pm	1600	$59 \pm$	11	48	70	2	$26 \pm$	21	3
Pr	<lo]< td=""><td>D</td><td>$2.8 \pm$</td><td>0.1</td><td>2.7</td><td>2.8</td><td>2</td><td><loi< td=""><td>)</td><td>$9.1 \pm$</td><td>3.8</td><td>5.3</td><td>13</td><td>2</td><td></td><td></td><td></td></loi<></td></lo]<>	D	$2.8 \pm$	0.1	2.7	2.8	2	<loi< td=""><td>)</td><td>$9.1 \pm$</td><td>3.8</td><td>5.3</td><td>13</td><td>2</td><td></td><td></td><td></td></loi<>)	$9.1 \pm$	3.8	5.3	13	2			
Nd	<lo]< td=""><td>D</td><td>$11 \pm$</td><td>1</td><td>10</td><td>13</td><td>2</td><td><loi< td=""><td>C</td><td>$46 \pm$</td><td>20</td><td>26</td><td>66</td><td>2</td><td><31</td><td></td><td>2</td></loi<></td></lo]<>	D	$11 \pm$	1	10	13	2	<loi< td=""><td>C</td><td>$46 \pm$</td><td>20</td><td>26</td><td>66</td><td>2</td><td><31</td><td></td><td>2</td></loi<>	C	$46 \pm$	20	26	66	2	<31		2
Sm	<lo]< td=""><td>D</td><td>$3 \pm$</td><td>0</td><td>3</td><td>4</td><td>2</td><td><loi< td=""><td>)</td><td>$15 \pm$</td><td>5</td><td>10</td><td>20</td><td>2</td><td>5 ±</td><td>6</td><td>3</td></loi<></td></lo]<>	D	$3 \pm$	0	3	4	2	<loi< td=""><td>)</td><td>$15 \pm$</td><td>5</td><td>10</td><td>20</td><td>2</td><td>5 ±</td><td>6</td><td>3</td></loi<>)	$15 \pm$	5	10	20	2	5 ±	6	3
Eu	<lo]< td=""><td>D</td><td>$1.0 \pm$</td><td>0.2</td><td>0.8</td><td>1.2</td><td>2</td><td><loi< td=""><td>)</td><td>$11 \pm$</td><td>2</td><td>11</td><td>11</td><td>1</td><td><1</td><td></td><td>3</td></loi<></td></lo]<>	D	$1.0 \pm$	0.2	0.8	1.2	2	<loi< td=""><td>)</td><td>$11 \pm$</td><td>2</td><td>11</td><td>11</td><td>1</td><td><1</td><td></td><td>3</td></loi<>)	$11 \pm$	2	11	11	1	<1		3
Gd	<lo]< td=""><td>D</td><td>$10 \pm$</td><td>2</td><td>7</td><td>12</td><td>2</td><td><loi< td=""><td>)</td><td>$29 \pm$</td><td>15</td><td>14</td><td>43</td><td>2</td><td></td><td></td><td></td></loi<></td></lo]<>	D	$10 \pm$	2	7	12	2	<loi< td=""><td>)</td><td>$29 \pm$</td><td>15</td><td>14</td><td>43</td><td>2</td><td></td><td></td><td></td></loi<>)	$29 \pm$	15	14	43	2			
Tb	<lo< td=""><td>D</td><td>$1.6 \pm$</td><td>0.5</td><td>1.1</td><td>2.1</td><td>2</td><td><loi< td=""><td>)</td><td>$6.0 \pm$</td><td>3.8</td><td>2.2</td><td>9.8</td><td>2</td><td>1 ±</td><td>1</td><td>3</td></loi<></td></lo<>	D	$1.6 \pm$	0.5	1.1	2.1	2	<loi< td=""><td>)</td><td>$6.0 \pm$</td><td>3.8</td><td>2.2</td><td>9.8</td><td>2</td><td>1 ±</td><td>1</td><td>3</td></loi<>)	$6.0 \pm$	3.8	2.2	9.8	2	1 ±	1	3
Dy	<lo< td=""><td>D</td><td>9.1 ±</td><td>1.8</td><td>7.3</td><td>11</td><td>2</td><td><loi< td=""><td>2</td><td>39 ±</td><td>19</td><td>20</td><td>57</td><td>2</td><td></td><td></td><td></td></loi<></td></lo<>	D	9.1 ±	1.8	7.3	11	2	<loi< td=""><td>2</td><td>39 ±</td><td>19</td><td>20</td><td>57</td><td>2</td><td></td><td></td><td></td></loi<>	2	39 ±	19	20	57	2			
Ho	<lo< td=""><td>D</td><td>$3.0 \pm$</td><td>0.9</td><td>2.1</td><td>3.9</td><td>2</td><td><loi< td=""><td>)</td><td>8.4 ±</td><td>3.1</td><td>5.4</td><td>11</td><td>2</td><td></td><td></td><td></td></loi<></td></lo<>	D	$3.0 \pm$	0.9	2.1	3.9	2	<loi< td=""><td>)</td><td>8.4 ±</td><td>3.1</td><td>5.4</td><td>11</td><td>2</td><td></td><td></td><td></td></loi<>)	8.4 ±	3.1	5.4	11	2			
Er	<l0]< td=""><td></td><td>$10 \pm$</td><td>1</td><td>9</td><td>11</td><td>2</td><td><loi< td=""><td></td><td>31 ± 7</td><td>12</td><td>19</td><td>44</td><td>2</td><td></td><td>0</td><td>~</td></loi<></td></l0]<>		$10 \pm$	1	9	11	2	<loi< td=""><td></td><td>31 ± 7</td><td>12</td><td>19</td><td>44</td><td>2</td><td></td><td>0</td><td>~</td></loi<>		31 ± 7	12	19	44	2		0	~
1m	<l01< td=""><td></td><td>2 ±</td><td>1</td><td>2</td><td>3</td><td>2</td><td><loi< td=""><td></td><td>7 ±</td><td>3</td><td>4</td><td>9</td><td>3</td><td>1 ±</td><td>0</td><td>2</td></loi<></td></l01<>		2 ±	1	2	3	2	<loi< td=""><td></td><td>7 ±</td><td>3</td><td>4</td><td>9</td><td>3</td><td>1 ±</td><td>0</td><td>2</td></loi<>		7 ±	3	4	9	3	1 ±	0	2
YD Lu	<loi< td=""><td></td><td>19 ±</td><td>1 2</td><td>18</td><td>21 61</td><td>2</td><td></td><td></td><td>46 ±</td><td>16</td><td>44</td><td>49</td><td>3</td><td>11 ±</td><td>9</td><td>3</td></loi<>		19 ±	1 2	18	21 61	2			46 ±	16	44	49	3	11 ±	9	3
Lu Hf	<loi< td=""><td></td><td>4.9 ± 55 ⊥</td><td>1.2</td><td>5./ 19</td><td>0.1 61</td><td>2</td><td>\LUI 170 ⊥</td><td>5 50</td><td>0.0 ± 5 ⊥</td><td>1.0</td><td>/.ð 5</td><td>11 5</td><td>3 1</td><td>4 ±</td><td>1</td><td>3</td></loi<>		4.9 ± 55 ⊥	1.2	5./ 19	0.1 61	2	\LUI 170 ⊥	5 50	0.0 ± 5 ⊥	1.0	/.ð 5	11 5	3 1	4 ±	1	3
ти Та	<loi< td=""><td>D</td><td>$55 \pm$</td><td>/</td><td>40</td><td>01</td><td>2</td><td>- 1/0 ± <i oi<="" td=""><td>))</td><td>5 ±</td><td>1</td><td>3</td><td>3</td><td>1</td><td></td><td></td><td></td></i></td></loi<>	D	$55 \pm$	/	40	01	2	- 1/0 ± <i oi<="" td=""><td>))</td><td>5 ±</td><td>1</td><td>3</td><td>3</td><td>1</td><td></td><td></td><td></td></i>))	5 ±	1	3	3	1			
Ph	2000 +	600	71 +	11	71	71	1	3000 +	- 900	36 +	6	33	43	3			
Th	<lo]< td=""><td>D</td><td>5.2 ±</td><td>2.3</td><td>2.9</td><td>7.5</td><td>2</td><td><loi< td=""><td>)</td><td>$6.3 \pm$</td><td>0.9</td><td>6.3</td><td>6.3</td><td>1</td><td></td><td></td><td></td></loi<></td></lo]<>	D	5.2 ±	2.3	2.9	7.5	2	<loi< td=""><td>)</td><td>$6.3 \pm$</td><td>0.9</td><td>6.3</td><td>6.3</td><td>1</td><td></td><td></td><td></td></loi<>)	$6.3 \pm$	0.9	6.3	6.3	1			
U	<lo]< td=""><td>D</td><td>$2.0 \pm$</td><td>0.5</td><td>1.6</td><td>2.5</td><td>2</td><td><loi< td=""><td>)</td><td>$2.7 \pm$</td><td>0.3</td><td>2.4</td><td>3.1</td><td>2</td><td></td><td></td><td></td></loi<></td></lo]<>	D	$2.0 \pm$	0.5	1.6	2.5	2	<loi< td=""><td>)</td><td>$2.7 \pm$</td><td>0.3</td><td>2.4</td><td>3.1</td><td>2</td><td></td><td></td><td></td></loi<>)	$2.7 \pm$	0.3	2.4	3.1	2			

The uncertainties reported represent 30% relative uncertainty and 1SD for TOF and Spot, respectively. Where the number

of analyses used for the average is two or one, the uncertainties reflect the range of the two values used for the average or 15% relative uncertainty, respectively. Literature values and their uncertainties represent the mean values of olivine in type 6 ordinary chondrites and the 95% confidence interval, respectively, calculated excluding anomalously high abundances.9-¹² Where the number of analyses used for the literature value is two or one, the uncertainties reflect the range of the two values used for the average or 1SD of the value, respectively. Values with more than 100% relative uncertainty are shown in red. LOD values for EPMA are 3SD of the blank intensities in % m/m: 0.01 for Na₂O, 0.01 for MgO, 0.01 for Al₂O₃, 0.02 for SiO₂, 0.04 for P₂O₅, 0.01 for CaO, 0.03 for TiO₂, 0.03 for V₂O₅, 0.02 for Cr₂O₃, 0.02 for MnO, 0.02 for FeO, 0.03 for NiO, and 0.04 for ZnO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted of instead the abundance for the average unless analysis is below the LOD. every

Supplementary Table 10.

Elemental abundances in oxides (TOF: abundances obtained based on LA-ICP-TOF-MS mapping; Spot: average abundances obtained based on EPMA in % m/m; Min: the minimum abundances for Spot; Max: the

Mineral/	Chromite/A 09618 (H5)								Chr	omite/Y-7	90960	(H7)		0	Chromite/Literatu	ire values	9-12		Ilme	nite/Y-790	960 (H	7)		
Meteorite	TOF		Spo	t	Min	Max	n	TOF		Spo	t	Min	Max	n	Mean		n	TOF		Spot		Min	Max	n
(% m/m)																								
Na ₂ O	$0.38~\pm$	0.11	$0.01~\pm$	0.00	<lod< td=""><td>0.02</td><td>9</td><td>$0.22~\pm$</td><td>0.07</td><td>$0.01~\pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>9</td><td>n.d.</td><td></td><td>3</td><td><loi< td=""><td>)</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></loi<></td></lod<></td></lod<>	0.02	9	$0.22~\pm$	0.07	$0.01~\pm$	0.00	<lod< td=""><td>0.02</td><td>9</td><td>n.d.</td><td></td><td>3</td><td><loi< td=""><td>)</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></loi<></td></lod<>	0.02	9	n.d.		3	<loi< td=""><td>)</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></loi<>)	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<>	<lod< td=""><td>3</td></lod<>	3
MgO	$4.3 \pm$	1.3	$3.26~\pm$	0.18	3.09	3.52	9	$3.6 \pm$	1.1	$3.29~\pm$	0.13	3.05	3.45	9	$2.50 \pm$	0.00	3	$3.9 \pm$	1.2	$5.04~\pm$	0.12	4.91	5.14	3
Al ₂ O ₃	$8.8~\pm$	2.7	$6.63~\pm$	0.18	6.38	6.99	9	$4.9~\pm$	1.5	$6.73~\pm$	0.06	6.65	6.81	9	$5.7 \pm$	0.5	3	$0.056~\pm$	0.017	$0.02~\pm$	0.01	<lod< td=""><td>0.03</td><td>3</td></lod<>	0.03	3
SiO_2	$5.9 \pm$	1.8	$0.03~\pm$	0.01	<lod< td=""><td>0.04</td><td>9</td><td>$6.4 \pm$</td><td>1.9</td><td>$0.04~\pm$</td><td>0.03</td><td><lod< td=""><td>0.11</td><td>9</td><td>< 0.11</td><td></td><td>3</td><td>$2.2 \pm$</td><td>0.7</td><td>$0.03~\pm$</td><td>0.00</td><td>0.03</td><td>0.04</td><td>. 3</td></lod<></td></lod<>	0.04	9	$6.4 \pm$	1.9	$0.04~\pm$	0.03	<lod< td=""><td>0.11</td><td>9</td><td>< 0.11</td><td></td><td>3</td><td>$2.2 \pm$</td><td>0.7</td><td>$0.03~\pm$</td><td>0.00</td><td>0.03</td><td>0.04</td><td>. 3</td></lod<>	0.11	9	< 0.11		3	$2.2 \pm$	0.7	$0.03~\pm$	0.00	0.03	0.04	. 3
P_2O_5	<lod< td=""><td>)</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td>$0.30~\pm$</td><td>0.09</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<></td></lo<></td></lod<>)	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td>$0.30~\pm$</td><td>0.09</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>9</td><td>$0.30~\pm$</td><td>0.09</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lo<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td>$0.30~\pm$</td><td>0.09</td><td><lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lo<></td></lod<>	9	$0.30~\pm$	0.09	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td></td><td></td><td></td><td>$0.11 \pm$</td><td>0.03</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<></td></lod<>	9				$0.11 \pm$	0.03	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<>	<lod< td=""><td>. 3</td></lod<>	. 3
K ₂ O	$0.086~\pm$	0.026						$0.096 \pm$	0.029									$0.032 \pm$	0.010					
CaO	<lod< td=""><td>)</td><td>$0.02 \pm$</td><td>0.01</td><td><lod< td=""><td>0.06</td><td>9</td><td><lod< td=""><td>)</td><td>$0.02 \pm$</td><td>0.00</td><td><lod< td=""><td>0.03</td><td>9</td><td>n.d.</td><td></td><td>2</td><td><loi< td=""><td>)</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>. 3</td></lod<></td></loi<></td></lod<></td></lod<></td></lod<></td></lod<>)	$0.02 \pm$	0.01	<lod< td=""><td>0.06</td><td>9</td><td><lod< td=""><td>)</td><td>$0.02 \pm$</td><td>0.00</td><td><lod< td=""><td>0.03</td><td>9</td><td>n.d.</td><td></td><td>2</td><td><loi< td=""><td>)</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>. 3</td></lod<></td></loi<></td></lod<></td></lod<></td></lod<>	0.06	9	<lod< td=""><td>)</td><td>$0.02 \pm$</td><td>0.00</td><td><lod< td=""><td>0.03</td><td>9</td><td>n.d.</td><td></td><td>2</td><td><loi< td=""><td>)</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>. 3</td></lod<></td></loi<></td></lod<></td></lod<>)	$0.02 \pm$	0.00	<lod< td=""><td>0.03</td><td>9</td><td>n.d.</td><td></td><td>2</td><td><loi< td=""><td>)</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>. 3</td></lod<></td></loi<></td></lod<>	0.03	9	n.d.		2	<loi< td=""><td>)</td><td>$0.01 \pm$</td><td>0.00</td><td><lod< td=""><td>0.02</td><td>. 3</td></lod<></td></loi<>)	$0.01 \pm$	0.00	<lod< td=""><td>0.02</td><td>. 3</td></lod<>	0.02	. 3
TiO ₂	$1.7 \pm$	0.5	$2.26 \pm$	0.16	1.88	2.41	9	$1.3 \pm$	0.4	$2.30 \pm$	0.04	2.23	2.35	9	$2.8 \pm$	0.4	6	$41 \pm$	12	$55.6 \pm$	0.4	55.2	55.9	3
V_2O_5	$0.62 \pm$	0.19						$0.51 \pm$	0.15						$0.50 \pm$	0.19	6	$0.022 \pm$	0.007	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>. 3</td></lod<></td></lod<>	<lod< td=""><td>. 3</td></lod<>	. 3
Cr ₂ O ₃	$38 \pm$	12	$56.7 \pm$	0.5	56.0	57.3	9	$47 \pm$	14	$56.3 \pm$	0.3	55.8	56.8	9	55.1 ±	1.0	6	$0.053 \pm$	0.016	$0.07 \pm$	0.01	0.06	0.08	. 3
MnO	$0.85 \pm$	0.26	$0.72 \pm$	0.03	0.68	0.77	9	$0.78~\pm$	0.23	$0.66 \pm$	0.04	0.63	0.73	9	$0.64 \pm$	0.08	6	$2.1 \pm$	0.6	$2.53 \pm$	0.12	2.40	2.64	. 3
FeO	$37 \pm$	11	$29.4 \pm$	0.3	29.0	29.8	9	$34 \pm$	10	$29.5 \pm$	0.2	29.3	29.9	9	$31.0 \pm$	1.5	3	$49 \pm$	15	$39.2 \pm$	0.2	39.0	39.3	3
NiO	$0.74 \pm$	0.22	<lo< td=""><td>D</td><td><lod< td=""><td><lod< td=""><td>9</td><td>$0.65 \pm$</td><td>0.19</td><td>$0.04 \pm$</td><td>0.00</td><td><lod< td=""><td>0.04</td><td>9</td><td>$0.038 \pm$</td><td>0.043</td><td>5</td><td>$1.2 \pm$</td><td>0.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lod<></td></lo<>	D	<lod< td=""><td><lod< td=""><td>9</td><td>$0.65 \pm$</td><td>0.19</td><td>$0.04 \pm$</td><td>0.00</td><td><lod< td=""><td>0.04</td><td>9</td><td>$0.038 \pm$</td><td>0.043</td><td>5</td><td>$1.2 \pm$</td><td>0.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td>$0.65 \pm$</td><td>0.19</td><td>$0.04 \pm$</td><td>0.00</td><td><lod< td=""><td>0.04</td><td>9</td><td>$0.038 \pm$</td><td>0.043</td><td>5</td><td>$1.2 \pm$</td><td>0.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></lod<></td></lod<>	9	$0.65 \pm$	0.19	$0.04 \pm$	0.00	<lod< td=""><td>0.04</td><td>9</td><td>$0.038 \pm$</td><td>0.043</td><td>5</td><td>$1.2 \pm$</td><td>0.4</td><td><loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<></td></lod<>	0.04	9	$0.038 \pm$	0.043	5	$1.2 \pm$	0.4	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<>	<lod< td=""><td>3</td></lod<>	3
ZnO	$0.19~\pm$	0.06	$0.35~\pm$	0.04	0.32	0.43	9	$0.43~\pm$	0.13	$0.34~\pm$	0.04	0.29	0.41	9				$0.0085~\pm$	0.0025	<loi< td=""><td>)</td><td><lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<></td></loi<>)	<lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<>	<lod< td=""><td>3</td></lod<>	3
Total	$99.2~\pm$	16.4	$99.5~\pm$	0.6				$99.8~\pm$	17.5	$99.3~\pm$	0.4				$98.0~\pm$	1.9		$99.9~\pm$	19.3	102.5 \pm	0.5			
(ug/g)																								
Sc	<lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td><lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td>3.4 ±</td><td>1.9</td><td>5</td><td><loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<></td></lod<></td></lod<>)						<lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td>3.4 ±</td><td>1.9</td><td>5</td><td><loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<></td></lod<>)						3.4 ±	1.9	5	<loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<>)					
V	$4200 \pm$	1300						$3500 \pm$	1100						$3417 \pm$	1260	6	$150 \pm$	50					
Co	$240~\pm$	70						$270~\pm$	80						$35 \pm$	9	5	$890 \pm$	270					
Cu	$73~\pm$	22						$96 \pm$	29						$227 \pm$	548	3	$39 \pm$	12					
Zn	$1500~\pm$	500						$3400~\pm$	1000						$2200~\pm$	994	3	$68 \pm$	20					
Rb	<lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td><lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td>< 0.2</td><td></td><td>1</td><td><loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<></td></lod<></td></lod<>)						<lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td>< 0.2</td><td></td><td>1</td><td><loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<></td></lod<>)						< 0.2		1	<loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<>)					
Sr	$4.3 \pm$	1.3						$3.2 \pm$	0.9						$7 \pm$	3	3	$4.3 \pm$	1.3					
Y	<lod< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td><loe< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td>< 0.5</td><td></td><td>2</td><td><loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<></td></loe<></td></lod<>)						<loe< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td>< 0.5</td><td></td><td>2</td><td><loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<></td></loe<>)						< 0.5		2	<loi< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td></loi<>)					
Zr	$5.9 \pm$	1.8						$32 \pm$	10						$3 \pm$	4	3	$29 \pm$	9					
Nb	$1.2 \pm$	0.4						$1.1 \pm$	0.3									$320 \pm$	100					
Ba	$2.5 \pm$	0.7						$5.7 \pm$	1.7						$1.4 \pm$	0.6	2	$7.0 \pm$	2.1					
Hf	$0.11 \pm$	0.03						$0.46 \pm$	0.14									$1.0 \pm$	0.3					
Та	$0.042 \pm$	0.013						<loe< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$13 \pm$</td><td>4</td><td></td><td></td><td></td><td></td><td></td></loe<>)									$13 \pm$	4					

maximum abundances for Spot; n: number of analyses and samples used for calculating the average in this study and literature values, respectively; n.d.: not determined; <LOD: below the LOD).

The uncertainties reported represent 30% relative uncertainty and 1SD for TOF and Spot, respectively. Literature values and their uncertainties represent the mean values of chromite in type 6 ordinary chondrites and the 95% confidence interval, respectively, calculated excluding anomalously high or low abundances.⁹⁻¹² Where the number of analyses used for the literature value is two or one, the uncertainties reflect the range of the two values used for the average or 1SD of the value, respectively. Values with more than 100% relative uncertainty are shown in red. LOD values for EPMA are 3SD of the blank intensities in % m/m: 0.01 for Na₂O, 0.01 for MgO, 0.01 for Al₂O₃, 0.02 for SiO₂, 0.04 for P₂O₅, 0.01 for CaO, 0.03 for TiO₂, 0.03 for V₂O₅, 0.02 for Cr₂O₃, 0.02 for MnO, 0.02 for FeO, 0.03 for NiO, and 0.04 for ZnO. Where the abundance of an element was below the LOD for Spot, the LOD value is substituted instead of the abundance for the average unless everv analysis is below the LOD.

References

- 1. K.P. Jochum, M. Willbold, I. Raczek, B. Stoll and K. Herwig, Geostand. Geoanal. Res., 2005, 29, 285–302.
- K.P. Jochum, B. Stoll, K.P. Herwig, M. Willbold, A.W. Hofmann, M. Amini and 47 coauthors, *Geochem. Geophys. Geosyst.*, 2006, 7, Q02008.
- 3. M.A.W. Marks, T. Wenzel, M.J. Whitehouse, M. Loose, T. Zack, M. Barth, L. Worgard, V. Krasz, G.N. Eby, H. Stosnach and G. Markl, *Chem. Geol.*, 2012, **291**, 241-255.
- 4. L.-K. Sha and W. Chappell, Geochim. Cosmochim. Acta, 1999, 63, 3861-3881.
- 5. M. Tanner, J. Anal. At. Spectrom., 2010, 25, 405–407.
- R. Maeda, S. Goderis, V. Debaille, H. Pourkhorsandi, G. Hublet and P. Claeys, *Geochim. Cosmochim. Acta*, 2021, 305, 106-129.
- 7. J.T. Wasson and G.W. Kallemeyn, Philos. Trans. R. Soc. Lond., 1988, A 325, 535-544.
- 8. D. Ward, A. Bischoff, J. Roszjar and M.J. Whitehouse, American Mineralogist, 2017, 102, 1856-1880.
- 9. B. Mason and A.L. Graham, *Earth Sci.*, 1970, **3**, 1-17.
- 10. R.O. Allen Jr. and B. Mason, Geochim. Cosmochim. Acta, 1973, 37, 1435-1456.
- 11. D.B. Curtis, Ph.D. Thesis, Oregon State University, Oregon, 1974.
- 12. D.B. Curtis and R.A. Schmitt, Geochim. Cosmochim. Acta, 1979, 43, 1091-1103.