Supplementary Information

Efficient and robust image registration for two-dimensional mirco-X-ray fluorescence measurements

Felix Bock, Andreas Gruber, Kerstin Leopold, and Henning Bruhn

A Error estimation for graph registration

We show here that, for Graph Registration with a Moore graph, $\operatorname{Var}\left[\hat{s}_{j}\right]$ tends to 0 as the parameter d of the Moore graph tends to infinity. We assume here a bit more familiarity with graph theory concepts than in the rest of the article. All concepts can be found in a standard textbook. ${ }^{1}$

A Moore graph is a d-regular graph with diameter k, where the number of vertices is $n=1+d \sum_{i=0}^{k-1}(d-1)^{i}$. The structure of the Moore graph ensures that the union of paths $P_{i, j}$ that end in j form a balanced tree rooted in j. That is, there are $d(d-1)^{\ell-1}$ vertices at depth ℓ and each of them have $\frac{n-1-d \sum_{m=0}^{\ell-1}(d-1)^{m}}{d(d-1)^{\ell-1}}$ descendants. As a consequence, if we consider the shortest paths between a fixed vertex j and all other vertices then an edge betwen a vertex at depth ℓ and its parent appears as often as:

$$
1+\frac{n-1-d \sum_{m=0}^{\ell-1}(d-1)^{m}}{d(d-1)^{\ell-1}}=\frac{n-1-d \sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}
$$

[^0]With the same assumptions on the errors as before, we compute:

$$
\begin{aligned}
\operatorname{Var}\left[\hat{s}_{j}\right] & =\operatorname{Var}\left[\frac{1}{n} \sum_{i \neq j} \sum_{(u, v) \in E\left(P_{i, j}\right)} \varepsilon_{u, v}\right] \\
& =\operatorname{Var}\left[\frac{1}{n} \sum_{\ell=1}^{k} \sum_{\substack{\text { vertex } i \\
\text { at depth } \ell}}\left(\frac{n-1-d \sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}\right) \varepsilon_{i, \text { parent }(i)}\right] \\
& =\frac{1}{n^{2}} \sum_{\ell=1}^{k} \sum_{\substack{\text { vertex } i}}\left(\frac{n-1-d \sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}\right)^{2} \operatorname{Var}\left[\varepsilon_{i, \text { parent }(i)}\right] \\
& \leq \frac{1}{n^{2}} \sum_{\ell=1}^{k} d(d-1)^{\ell-1}\left(\frac{n-1-d \sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}\right)^{2} \varepsilon \\
& =\frac{1}{n^{2}} \sum_{\ell=1}^{k} \frac{\left(n-1-d \sum_{m=0}^{\ell-2}(d-1)^{m}\right)^{2}}{d(d-1)^{\ell-1}} \varepsilon .
\end{aligned}
$$

We continue

$$
\operatorname{Var}\left[\hat{s}_{j}\right] \leq \frac{1}{n^{2}} \sum_{\ell=1}^{\infty} \frac{n^{2}}{(d-1)^{\ell}} \varepsilon=\frac{1}{d-2} \varepsilon
$$

where in the last step we have used the identity of a geometric series. Therefore, the variance decreases with d, and thus, with high probability and increasing d, the estimate \hat{s}_{j} will be close to the true value s_{j}.

B Expected length of a permutation path

We compute the expected length ℓ of a path of a permutation τ of the positions. The computation involves three expectations: the expectation $\mathbb{E}_{s_{1}, \ldots, s_{n}}$ with respect to the random process to draw the shifts s_{i}, the expectation $\mathbb{E}_{s_{1,2}, \ldots, s_{k, k+1}}$ to draw the shifts between consecutive measurements (governed by a 2-dimensional normal distribution with mean 0 and variance σ^{2} in each direction), and the expectation \mathbb{E}_{τ} with respect to the choice of the random permutation τ. We furthermore use \mathbb{P} to denote a probability.

$$
\begin{aligned}
\mathbb{E}_{s_{1}, \ldots, s_{n}} \mathbb{E}_{\tau}[\ell] & =\mathbb{E}_{s_{1}, \ldots, s_{n}} \mathbb{E}_{\tau}\left[\sum_{i=1}^{n-1}\left\|s_{\tau(i+1)}-s_{\tau(i)}\right\|\right] \\
& \left.=\sum_{i=1}^{n-1} \mathbb{E}_{\tau} \mathbb{E}_{s_{1}, \ldots, s_{n}}\left[\left\|s_{\tau(i+1)}-s_{\tau(i)}\right\|\right]\right] \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-1} \mathbb{P}[|\tau(i+1)-\tau(i)|=k] \mathbb{E}_{s_{1,2}, \ldots, s_{k, k+1}}\left[\left\|\sum_{j=1}^{k} s_{j, j+1}\right\|\right] \\
& =\sum_{i=1}^{n-1}\left[\sum_{k=1}^{n-1} \mathbb{P}[|\tau(i+1)-\tau(i)|=k] \sqrt{\frac{\pi}{2}} \sqrt{k \sigma^{2}}\right]
\end{aligned}
$$

where the last step uses that $\left\|\sum_{j=1}^{k} s_{j, j+1}\right\|$ is distributed according to a Rayleigh distribution ${ }^{2}$ with scale parameter $\sqrt{k \sigma^{2}}$. We continue

$$
\begin{aligned}
\mathbb{E}_{s_{1}, \ldots, s_{n}} \mathbb{E}_{\tau}[\ell] & =(n-1) \sqrt{\frac{\pi}{2}} \sigma \sum_{k=1}^{n-1} \frac{(n-k)}{n(n-1)} \sqrt{k} \\
& =\frac{\sqrt{2 \pi} \sigma}{2 n} \sum_{k=1}^{n-1}(n-k) \sqrt{k} \\
& =\frac{\sqrt{2 \pi} \sigma}{2}\left(\sum_{k=1}^{n-1} \sqrt{k}-\frac{1}{n} \sum_{k=1}^{n-1} k^{\frac{3}{2}}\right)
\end{aligned}
$$

Using the Euler-Maclaurin formula ${ }^{3}$ for both sums, this can be written as:

$$
\begin{aligned}
\mathbb{E}_{s_{1}, \ldots, s_{n}} \mathbb{E}_{\tau}[\ell] & =\frac{\sqrt{2 \pi} \sigma}{2}\left(\left(\frac{2}{3} n^{\frac{3}{2}}+\frac{1}{2} n^{\frac{1}{2}}+O(1)\right)-\left(\frac{2}{5} n^{\frac{3}{2}}+\frac{1}{2} n^{\frac{1}{2}}+O(1)\right)\right) \\
& =\frac{2 \sqrt{2 \pi}}{15} \sigma n^{\frac{3}{2}}+\sigma O(1)
\end{aligned}
$$

(The $O(1)$-notation means: a quantity that is bounded as n grows to infinity.)

[^1]
[^0]: ${ }^{1}$ Diestel, R. Graph Theory (5th edition). Springer-Verlag, 2017.

[^1]: ${ }^{2}$ Papoulis, A. and Pillai, S. U. Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, 2002.
 ${ }^{3}$ Apostol, T. M. An elementary view of Euler's summation formula. The American Mathematical Monthly, 106(5): 409-418, 1999.

