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A Error estimation for graph registration

We show here that, for GRAPH REGISTRATION with a Moore graph, Var [3;]
tends to 0 as the parameter d of the Moore graph tends to infinity. We assume
here a bit more familiarity with graph theory concepts than in the rest of the
article. All concepts can be found in a standard textbook.!

A Moore graph is a d-regular graph with diameter k, where the number of
verticesisn = 14+d Zf;ol (d—1)*. The structure of the Moore graph ensures that
the union of paths P; ; that end in j form a balanced tree rooted in j. That is,
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there are d(d—1)*~" vertices at depth £ and each of them have "_1_3(52_”{):20,(?_1)
descendants. As a consequence, if we consider the shortest paths between a fixed
vertex j and all other vertices then an edge betwen a vertex at depth ¢ and its

parent appears as often as:
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IDiestel, R. Graph Theory (5th edition). Springer-Verlag, 2017.



With the same assumptions on the errors as before, we compute:
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where in the last step we have used the identity of a geometric series. Therefore,
the variance decreases with d, and thus, with high probability and increasing d,
the estimate §; will be close to the true value s;.

B Expected length of a permutation path

We compute the expected length ¢ of a path of a permutation 7 of the posi-
tions. The computation involves three expectations: the expectation Eg, .
with respect to the random process to draw the shifts s;, the expectation
Es, 4,....50.041 to draw the shifts between consecutive measurements (governed
by a 2-dimensional normal distribution with mean 0 and variance o2 in each
direction), and the expectation E, with respect to the choice of the random
permutation 7. We furthermore use PP to denote a probability.
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where the last step uses that || Zle sj.;+1|| is distributed according to a Rayleigh

distribution? with scale parameter v'ko2. We continue
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Using the Euler-Maclaurin formula® for both sums, this can be written as:
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(The O(1)-notation means: a quantity that is bounded as n grows to infinity.)
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