Supplementary Information

Efficient and robust image registration for two-dimensional mirco-X-ray fluorescence measurements

Felix Bock, Andreas Gruber, Kerstin Leopold, and Henning Bruhn

A Error estimation for graph registration

We show here that, for Graph Registration with a Moore graph, $\text{Var}\left[\hat{s}_{j}\right]$ tends to 0 as the parameter d of the Moore graph tends to infinity. We assume here a bit more familiarity with graph theory concepts than in the rest of the article. All concepts can be found in a standard textbook.¹

A Moore graph is a d-regular graph with diameter k, where the number of vertices is $n=1+d\sum_{i=0}^{k-1}(d-1)^i$. The structure of the Moore graph ensures that the union of paths $P_{i,j}$ that end in j form a balanced tree rooted in j. That is, there are $d(d-1)^{\ell-1}$ vertices at depth ℓ and each of them have $\frac{n-1-d\sum_{m=0}^{\ell-1}(d-1)^m}{d(d-1)^{\ell-1}}$ descendants. As a consequence, if we consider the shortest paths between a fixed vertex j and all other vertices then an edge betwen a vertex at depth ℓ and its parent appears as often as:

$$1 + \frac{n - 1 - d\sum_{m=0}^{\ell-1} (d-1)^m}{d(d-1)^{\ell-1}} = \frac{n - 1 - d\sum_{m=0}^{\ell-2} (d-1)^m}{d(d-1)^{\ell-1}}$$

¹Diestel, R. Graph Theory (5th edition). Springer-Verlag, 2017.

With the same assumptions on the errors as before, we compute:

$$\operatorname{Var}\left[\hat{s}_{j}\right] = \operatorname{Var}\left[\frac{1}{n} \sum_{i \neq j} \sum_{(u,v) \in E(P_{i,j})} \varepsilon_{u,v}\right]$$

$$= \operatorname{Var}\left[\frac{1}{n} \sum_{\ell=1}^{k} \sum_{\substack{\text{vertex } i \\ \text{at depth } \ell}} \left(\frac{n-1-d\sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}\right) \varepsilon_{i,\text{parent}(i)}\right]$$

$$= \frac{1}{n^{2}} \sum_{\ell=1}^{k} \sum_{\substack{\text{vertex } i \\ \text{at depth } \ell}} \left(\frac{n-1-d\sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}\right)^{2} \operatorname{Var}\left[\varepsilon_{i,\text{parent}(i)}\right]$$

$$\leq \frac{1}{n^{2}} \sum_{\ell=1}^{k} d(d-1)^{\ell-1} \left(\frac{n-1-d\sum_{m=0}^{\ell-2}(d-1)^{m}}{d(d-1)^{\ell-1}}\right)^{2} \varepsilon$$

$$= \frac{1}{n^{2}} \sum_{\ell=1}^{k} \frac{\left(n-1-d\sum_{m=0}^{\ell-2}(d-1)^{m}\right)^{2}}{d(d-1)^{\ell-1}} \varepsilon.$$

We continue

$$\operatorname{Var}\left[\hat{s}_{j}\right] \leq \frac{1}{n^{2}} \sum_{\ell=1}^{\infty} \frac{n^{2}}{(d-1)^{\ell}} \varepsilon = \frac{1}{d-2} \varepsilon,$$

where in the last step we have used the identity of a geometric series. Therefore, the variance decreases with d, and thus, with high probability and increasing d, the estimate \hat{s}_j will be close to the true value s_j .

B Expected length of a permutation path

We compute the expected length ℓ of a path of a permutation τ of the positions. The computation involves three expectations: the expectation $\mathbb{E}_{s_1,\ldots,s_n}$ with respect to the random process to draw the shifts s_i , the expectation $\mathbb{E}_{s_1,2,\ldots,s_k,k+1}$ to draw the shifts between consecutive measurements (governed by a 2-dimensional normal distribution with mean 0 and variance σ^2 in each direction), and the expectation \mathbb{E}_{τ} with respect to the choice of the random permutation τ . We furthermore use \mathbb{P} to denote a probability.

$$\mathbb{E}_{s_{1},...,s_{n}} \mathbb{E}_{\tau} \left[\ell\right] = \mathbb{E}_{s_{1},...,s_{n}} \mathbb{E}_{\tau} \left[\sum_{i=1}^{n-1} ||s_{\tau(i+1)} - s_{\tau(i)}|| \right]$$

$$= \sum_{i=1}^{n-1} \mathbb{E}_{\tau} \mathbb{E}_{s_{1},...,s_{n}} \left[||s_{\tau(i+1)} - s_{\tau(i)}|| \right]$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-1} \mathbb{P} \left[|\tau(i+1) - \tau(i)| = k \right] \mathbb{E}_{s_{1,2},...,s_{k,k+1}} \left[||\sum_{j=1}^{k} s_{j,j+1}|| \right]$$

$$= \sum_{i=1}^{n-1} \left[\sum_{k=1}^{n-1} \mathbb{P} \left[|\tau(i+1) - \tau(i)| = k \right] \sqrt{\frac{\pi}{2}} \sqrt{k\sigma^{2}} \right],$$

where the last step uses that $||\sum_{j=1}^k s_{j,j+1}||$ is distributed according to a Rayleigh distribution² with scale parameter $\sqrt{k\sigma^2}$. We continue

$$\mathbb{E}_{s_1,...,s_n} \mathbb{E}_{\tau} [\ell] = (n-1) \sqrt{\frac{\pi}{2}} \sigma \sum_{k=1}^{n-1} \frac{(n-k)}{n(n-1)} \sqrt{k}$$
$$= \frac{\sqrt{2\pi}\sigma}{2n} \sum_{k=1}^{n-1} (n-k) \sqrt{k}$$
$$= \frac{\sqrt{2\pi}\sigma}{2} \left(\sum_{k=1}^{n-1} \sqrt{k} - \frac{1}{n} \sum_{k=1}^{n-1} k^{\frac{3}{2}} \right)$$

Using the Euler-Maclaurin formula³ for both sums, this can be written as:

$$\mathbb{E}_{s_1,\dots,s_n} \mathbb{E}_{\tau} \left[\ell \right] = \frac{\sqrt{2\pi}\sigma}{2} \left(\left(\frac{2}{3} n^{\frac{3}{2}} + \frac{1}{2} n^{\frac{1}{2}} + O(1) \right) - \left(\frac{2}{5} n^{\frac{3}{2}} + \frac{1}{2} n^{\frac{1}{2}} + O(1) \right) \right)$$
$$= \frac{2\sqrt{2\pi}}{15} \sigma n^{\frac{3}{2}} + \sigma O(1)$$

(The O(1)-notation means: a quantity that is bounded as n grows to infinity.)

²Papoulis, A. and Pillai, S. U. Probability, random variables, and stochastic processes.

Tata McGraw-Hill Education, 2002.

³Apostol, T. M. An elementary view of Euler's summation formula. *The American Math*ematical Monthly, 106(5): 409-418, 1999.