Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

A novel approach in sample preparation for analysis of Sb isotope ratios in

natural water by MC-ICP-MS

Table of Contents	
S1: Typical operating conditions for the MC-ICP-MS	
S2: Typical operating conditions for the AFS	
S3: Analysis method of dissolved organic matter (DOM) in natural water	
S4: The operation process of DOM measure	
S5: Results of DOM measurement	
S6: Preconcentration and purification of large volume (200 mL) lake water	
S7:Sb isotope composition of different water samples	
S8:Sb isotope composition of artificial and natural humus with different gradients	
S9:Blank correction of samples	
SI References	

S1: Typical operating conditions for the MC-ICP-MS

Hydride generator	Designed and manufactured by our research group
Mass spectrometer	Nu Plasma II MC-ICP–MS
Acid medium	HCl 3 M
Reducing agent medium	0.5 wt% NaBH4 in 0.5 wt% NaOH
Sample or standard	HCl 3 M
acidity	
Cup configuration	L4(111), L3(112), L2(113), L1(114), Ax(115),
Cup mass	НЗ(118),
	H6(121), H7(123), H8(125)
Operating parameters	Aridus II with a 50 μ L/min PFA nebulizer
Introduction system	
(Cd)	
RF power	1300 W
Cooling Ar flow rate	15.0 L min ⁻¹
Auxiliary Ar flow rate	0.80 L min ⁻¹
Sample Ar flow rate	0.06 L min ⁻¹ (adjusted daily)
Nebulizer Ar flow rate	20 PSI (adjusted daily)
Sweep gas flow rate in	1.8 L min ⁻¹ (adjusted daily)
Aridus II	
Analysis	1 block of 50 cycles
Number	
Integration time	10 s

Table S1. Operating parameters for the HG-MC-ICPMS system.

S2: Typical operating conditions for the AFS

Hydride generator	Designed and manufactured by our research group
Mass spectrometer	AFS
Acid medium	HCl 3 M
Reducing agent medium	2 wt% NaBH ₄ in 0.5 wt% NaOH
Sample or standard acidity	HCl 3 M
Lamp current	60-70 m A
Negative high voltage of photomultiplier tube	280-300 V
Measurement method	Standard curve method
Integration method	Peak area
Carrier gas flow	400 ml/min
Shielding gas flow	900-1000 ml/min
Atomizer preheating temperature	200°C

Table S2. Operating parameters for the AFS system.

S3: Analysis method of dissolved organic matter (DOM) in natural water

As carbon is the skeleton element of DOM, its mass usually accounts for more than half of DOM, so the content of DOM is often characterized by the concentration of dissolved organic carbon (DOC).

Туре	DOC concentration (mg L ⁻¹)
Seawater	0.5~1
River	5~9
Oligotrophic lake	2~3
Eutrophic lakes	9~16
Soil seepage	19~31
Groundwater (CaCO ₃ aquifer)	0~1

Table S3. DOC concentration in different types of water

Humic acids (HAs) are a type of macromolecular organic substance in nature, mainly from the sediments of soil, water and plant bodies that are decomposed by microorganisms. ^[1] The soluble organic matter in the overlying water of a eutrophic lake is dominated by soluble microbial metabolites and humic acid-like DOM, and as the degree of eutrophication increases, the proportion of humic acid-like DOM is higher. ^[1] By artificially adding humic acid to fit the humus in natural water, the recovery rate of the Sb standard solution with humic acid was measured under this method.

 UV_{254} represents the absorption value of organics, such as aromatic hydrocarbons in water, at a wavelength of 253.7 nm in the ultraviolet region. It indirectly represents the content of organics in the water and has good

correlation with chromaticity, etc. [2] The UV254 value of unsaturated organic matter measured by ultraviolet spectrophotometry is stable and reliable, and UV₂₅₄ can reflect the content of unsaturated organic matter in water. [3]

Formula: KHP-OCconc.= (UV₂₅₄-0.0018)/0.0144

The calibration curve:

	KHP-SCS Preparation	
UVA@254 nm	ORGANIC CARBON (mg L-	OC-PDS (mL added per liter of LRW)
(cm ⁻¹)	¹)	
0.0738	5	10
0.1458	10	20
0.2898	20	40
0.4338	30	60

The instrument for determining the content of organic matter is a UV-2900

Test reagent: potassium hydrogen phthalate (KHP)

Molecular formula: C₈H₅KO₄, Relative molecular weight: 204

The proportion of C: 47%

The above formula is the calculation of the content of C in KHP:

The concentration of KHP was 1 g L⁻¹, diluted to the appropriate concentration for calculation.

For absorption values, the measurement range of ultraviolet absorbance in general is 0.005~0.900 with the best accuracy.

S4: The operation process of DOM measurement

(1) Water sample dilution: the sample shall be based on the optical path of the color pan, and the absorbance shall be generally guaranteed between 0.005~0.900. If it exceeds this range, the water sample shall be diluted with clean water containing no organic matter, so that the absorbance of the diluted water sample shall be within this range.

(2) Preparation of water samples: The collected and filtered water samples were classified for reserve, and MQ water was prepared as a blank sample for comparative analysis with water samples.

(3) Spectrophotometric determination: the wavelength was set at 254 nm but was set to zero when measuring the blank sample. Then, the KHP standard sample was analyzed with known absorbance to verify whether the spectrophotometer was well calibrated. Finally, the determination was started at room temperature. At least two groups of water samples were used as the standard sample.

S5: Results of DOM measurement

(1) The standard curve

Figure S1. The standard curve with KHP as the reference material

(2) Organic matter content of different samples

Table S5. Organic matter content of different samples

	Rice-field water	Rainwater	Lake water
DOM (mg L ⁻¹)	6.61	18.63	21.33
	6.68	18.49	21.47
	6.89	18.76	20.57
Mean	6.73	18.63	21.13
2 σ	0.004	0.004	0.014

After the rice-field water, rainfall, and lake water were filtered through a 0.45 μ m pore filter membrane, the soluble organic matter content in water samples from the rice field, Hongfeng Lake, and rainfall measured by UV₂₅₄ was 6.73 \pm 0.004 mg L⁻¹, 18.63 \pm 0.004 mg L⁻¹, and 21.13 \pm 0.014 mg L⁻¹, respectively.

S6: Preconcentration and purification of large volume (200 mL) lake water

Table S6. The preconcentration and purification experiments for a large volume (200 mL) of rice-field water, lake

	water and rainwater									
	Number	Background	Standard sample	Measured	2σ	Recovery	2σ			
Туре	of	value	content of Sb	value	μg	%	%			
	samples	μg L ⁻¹	added ng	μg L ⁻¹	L-1					
Rice-field water	3	_	0	1.00	0.01	_	_			
lake water	3	_	0	0.18	0.05	_	_			
rainfall	3	_	0	0.04	0.02	_	_			
Rice-field water+std	3	1.00	400	4.99		100.0	0.05			
lake water+std	3	0.18	200	2.19		95.4	0.00			

water and rainwater

rainfall+std	3	0.04	50	0.51	100.4	0.03

S7: Sb isotope composition of different water samples

	Milli-Q	Volume	Lake	Lake	Rice-	Rice field	Rainfall	Rainfall
	water+Std	(Milli-Q	water	water+Std	field	water+Std		+Std
		water) +			water			
		Std						
	-0.26	-0.2	4.96	0.22	2.14	1.59	3.36	-0.06
	-0.32	-0.1	4.87	0.28	2.88	1.27	2.79	0.27
	-0.35	0.24	4.00	0.54	2.18	1.30	2.57	-0.27
	0.26	-0.1	4.55	0.44	2.20	1.19	2.80	-0.30
	0.08	0.24	4.89		2.43		2.84	
	0.07	-0.2	4.70		2.70			
	-0.24	0.17						
	-0.36	-0.2						
	0.02	0.12						
	-0.02							
	-0.02							
(12301)	0.06							
$(\epsilon^{123}Sb)$	0.16							
М	-0.34							
	0.24							
	0.19							
	0.3							
	0.28							
Mean	-0.01	0.00	4.66	0.37	2.42	1.34	2.87	-0.09
2 σ	0.48	0.39	0.71	0.29	0.62	0.35	0.58	0.52
Sb(ng)	20	20	4.8	24.8	31.2	51.2	1.8	20.54
$(\epsilon^{123}Sb)$			-	0.89	-	1.47	-	0.22
Т								

Table S7. Sb isotope composition of different water samples

-

0.13

_

b)

Std: Sb standard solution sample, $(\epsilon^{123}Sb)_M$: measured Sb isotope composition, $(\epsilon^{123}Sb)_T$: theoretical Sb isotope composition, σ : standard deviation, Mean: average value. The unit of antimony isotope composition is ϵ .

S8: Sb isotope composition of artificial and natural humus with different gradients

	Humus content	Artificial	Artificial	Natural	Natural	
	(mg L ⁻¹)	Humus	humus+Std	humus	humus+Std	2 σ
	5	0.23	20.23	0.72	20.72	
Sb(ng)	10	0.01	20.01	0.94	20.94	
	15	0.06	20.06			
	20	0.14	20.14	1.48	21.48	
	5	2.28	-0.02	3.89	0.60	0.41
$(\epsilon^{123}Sb)_M$	10	2.25	-0.24	6.07	0.88	
	15	2.82	-0.06			
	20	1.19	0.24	7.05	0.48	
	5		0.11		0.12	
$(\epsilon^{123}Sb)_T$	10		0.08		0.25	
	15		0.09			
	20		0.04		0.46	
	5		-0.14		0.48	
$\triangle(\epsilon^{123}sb)$	10		0.33		0.63	
	15		0.16			
	20		0.19		0.02	

Table S8. Sb isotope composition of artificial and natural humus with different gradients

_

Std: Sb standard sample, (ϵ^{123} Sb)_M: measured Sb isotope composition, (ϵ^{123} Sb)_T: theoretical Sb isotope composition.

S9: Blank correction of samples

The process blank of our experiment was homogeneous, which means that all of our vessels were washed under exactly the same conditions, as well as the same reagent and operation process. During our experiment, the process blank was monitored by using ultrapure water as the sample. To avoid the influence of blank on the isotope composition of the sample. If the blank is greater than 1%, we will conduct blank correction on the measured isotope of the sample. The correction formula is as follows:

$(\epsilon^{123}Sb)_{Sample} = [(\epsilon^{123}Sb)_{M} - (\epsilon^{123}Sb)_{Blank} \cdot (M_{Blank} / M_{(Sample+Blank)})]/(M_{Sample} / M_{(Sample+Blank)})$

 $(\epsilon^{123}Sb)_{M}$: measured Sb isotope composition of samples, $(\epsilon^{123}Sb)_{Blank}$: measured Sb isotope composition of blank, M _{Sample}: Mass of sample Sb, M _{Sample}: Mass of sample blank, M _(Sample+Blank): Mass of sample Sb and blank Sb.

SI REFERENCES

[1] Maccarthy P. (2001) The principles of humic substances: an intro-duction to the first principle. Soil Sci, 166: 738-751.

[2] Cihlar, Z., Vojtova, L., Michlovska, L. and Kucerik, J. (2016) Preparation and hydration characteristics of carbodiimide crosslinked lignite humic acids[J]. Geoderma, 2016,274:10-17.

[3] Yao, X., Zhang, YL., Zhu, GW., Qin, BQ., Feng LQ., Cai, LL., and Gao, GA. (2010) Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu a nd its tributaries. Chemosphere, 82 (2) :145-155.