Supplementary Material (ESI) for Lab on a Chip

Electronic Supplementary Information (ESI)

Lab-in-a-fiber based integrated particle separation and counting

T. Kumar^{*, a, d}, A.V. Harish^{*, b}, S. Etcheverry^c, W. Margulis^c, F. Laurell^b, A. Russom^{a, d+}

^a Division of Nanobiotechnology, Department of Protein Science, Science for life laboratory, KTH Royal Institute of Technology, Solna, Sweden.

^b Laser Physics, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.

^c Research Institutes of Sweden (RISE), Stockholm, Sweden.

^dAIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden

+Corresponding author: <u>aman@kth.se</u>

*Authors contributed equally

1. Fabrication of the fiber components

Step 1: Splice and cleave

Step 2: Inserting in the housing capillary (255/330 μm)

90/125 μ m capillary spliced to central hole of 5-hole fiber for sheath flow

Step 3: Input capillaries for sheath and sample

Step 4: Inserting into housing capillaries

Step 5: Inserting 127/250 capillary from other end of housing capillary for input to migration channel.

Step 6: Inserting 127/250 capillary from other end of housing capillary for output to migration channel.

	0.5 mm		3 cm	0.	.5 mm S	eparated 1 µ particles
			250 µm		••••••	mu 00
90 µm Sheath	1	• • • • • • • • • • • • • • • • • • •	• • • •		• • (•	• • • •
90 µm						Separated 10 µ particles
	Mixing	Migratio	on channel Glued here	Collection	fiber	

Schematic of the full component to understand the fabrication process.

Fig. S1.: Separation component fabrication. Images of the step-by-step process of fabrication of the separation component are shown in this figure. Step 1: First we splice a 90/125 capillary to the central hole of the 5-hole fiber (a cross-section of the -hole fiber is shown in the inset). The spliced fiber is then cleaved such that the length of the 5-hole fiber is 0.5 mm. Step 2: We insert the whole assembly into a housing capillary ($255/330 \mu m$). Steps 3 and 4: We then insert another 90/125 μm capillary into the housing capillary to flow the sample. The capillary is pushed into the housing capillary and the assembly is glued with UV-curing glue. Step 5: From the distal end of the housing capillary, we insert the 127/250 μm capillary (cross-section picture shown in the inset) where the separation of migrating particles takes place. Step 6: A similar module fabricated as before in reverse order is built for the output of separated particles. The

remaining end of the $127/250 \ \mu m$ capillary is inserted into the housing capillary, concluding the full component as shown in the schematic.

2. Particle migration in circular microchannels

Fig. S2 A: Particle elasto-inertial migration. Fluorescent images of the separation capillary (127/250 μ m capillary) at locations 0 to 5 cm showing the streamlines of the 10 μ m particles. The particles migrate toward the center irrespective of sheath flow rates (ranging from 40-160 μ L/min) at a fixed sample flow rate of 40 μ L/min.

Fig. S2 B: Fluorescent images of the separation capillary at locations 0 to 5 cm showing the streamlines of the 1 μ m particles. Contrary to the larger particles, the smaller 1 μ m particles

remain close to the wall and do not migrate to the center irrespective of the sheath flow rates (40-160 μ L/min) for the sheath and fixed 40 μ L/min for the sample.

3. Separation and integrated counting

Fig. S3: Particle counting. Temporal trace showing the particle counting of separated 10 μ m green fluorescent particles using the "all-fiber" cytometer that was integrated with the separation component. The variation in the amplitude measured is high due to weak particles focusing at a total flow rate of 50 μ L/min (sample flow rate of 10 μ L/min + sheath flow rate of 40 μ L/min).