First-principles study of the defect-activity and optical properties of FAPbCl³

Sean Nations^a, Lavrenty Gutsev^{a,b}, Bala Ramachandran^a, Sergey Aldoshin^b, Yuhua Duan^c, Shengnian Wanga*

a Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, United States

b Institute of Problems of Chemical Physics of Russian Academy of Sciences, 1, Acad. Semenov Av., Chernogolovka, Moscow region, 142432 Russian Federation

^c National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, USA

Figure S1. The calculated defect formation energy (DFE) as a function of the Fermi level for FAPbCl3. The vertical dashed line indicates the value of the Fermi level caused by the defect pair that controls the pinning. a) PBE+D3 with intermediate potentials at 0 K. b) SCAN+D3 with intermediate potentials at 0 K.

Figure S2: The PBE+D3 defect formation energy (DFE) for the Cl-rich case at 0 K as a function of the Fermi level for FAPbCl3. The vertical dashed line indicates the value of the Fermi level caused by the defect pair that controls the pinning.

Optics:

The imaginary portion of the dielectric constant is obtained as a 3×3 Cartesian tensor as follows:

$$
e^{a\beta}_{2}(\omega) = \frac{4\pi^{2}e^{2}}{\Omega} \lim_{q \to 0} \frac{1}{q^{2}} \sum_{c,v,k} 2\omega_{k}\delta(\varepsilon_{ck} - \varepsilon_{vk} - \omega) \times v_{vk} | u_{ck + \varepsilon_{\beta}q > (S1)
$$

where the summation is over indices *c* (CB states), *v* (VB states), and *k* (k-points), *e* is elementary charge, Ω is volume of the Brillouin zone, ω_k is weight of the k-point vector, ε_{ck} and ε_{vk} are energy levels, and u_{ck} is the periodic portion of the orbital at k-point *k*. Vector e_{α} is made of unit vectors for the Cartesian directions and α/β refer to axis *x*, *y*, and *z*. From the imaginary portion of the dielectric constant, the real part can be obtained by a Kramers-Kronig transformation:

$$
\varepsilon_{1}^{\alpha\beta}(\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\varepsilon_{2}^{\alpha\beta}(\omega') \omega'}{\omega^{2} - \omega^{2}} d\omega' \tag{S2}
$$

where *P* denotes the Cauchy principal value. As the dielectric tensor is diagonally dominate and with nearly identical diagonal elements, ε_1 and ε_2 are taken here to be the average of their three diagonal elements calculated via equations S1 and S2.

The real part of the optical conductivity $(\sigma(\omega))$ is defined as

$$
\sigma_1(\omega) = Re[\sigma(\omega)] = \frac{\omega}{4\pi} \varepsilon_2(\omega)
$$
\n(S3)

where σ(ω) and ω are in the cgs unit of sec⁻¹. The cgs conductivity is 9×10^{11} times larger than the

SI conductivity unit (Siemens/cm) which in the form of $v_1(\omega)$ – $\frac{\omega_1(\omega)}{60}$ where ω is in the unit $\sigma_1(\omega) = \varepsilon^{}_{2}(\omega) \cdot \omega$ 60 of cm⁻¹. The corresponding imaginary part of $\sigma(\omega)$ in SI unit is ²

$$
\sigma_2(\omega) = -\frac{\omega(\varepsilon_1(\omega) - 1)}{60} \tag{S4}
$$

The complex dielectric constant can be expressed as:

$$
\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega) = \frac{4\pi i}{\omega}\sigma(\omega) = (\tilde{n} + i\tilde{k})^2
$$
\n(5)

where \tilde{n} and \tilde{k} are the index of refraction and the extinction coefficient respectively, and can be evaluated by the calculated dielectric constants from equations (S1) and (S2).

$$
\tilde{n} = \frac{1}{\sqrt{2}} (\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{\frac{1}{2}})^{\frac{1}{2}}
$$
\n
$$
\tilde{\kappa} = \frac{1}{\sqrt{2}} (-\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{\frac{1}{2}})^{\frac{1}{2}}
$$
\n(6)

(7)

In the case of normal incidence, the reflectivity R and the absorption coefficient
$$
\alpha
$$
 (sec⁻¹ in cgs unit) in terms of \tilde{n} and k are defined as ²

$$
R = \frac{(\tilde{n} - 1)^2 + k}{(\tilde{n} + 1)^2 + k}
$$
\n(8)

$$
\alpha = \frac{2\omega k}{c} \tag{9}
$$

In SI unit, ω and α are in cm⁻¹, $\alpha = 4\pi\omega^k$. In all cases, both the low frequency region $\omega \tau \ll l$ (*t* is the relaxation time) and the high frequency region *ωτ*≫*1* are extensively studied to analyze the exact ground state of the material as these two regions carry the signatures of two distinct mechanisms associated with optical conductivity within a solid. While the low frequency region is dominated by free carriers which are in abundance in a metal, the high frequency region is dominated by inter-band electronic transitions typical of a dielectric material. As in the limit ω*τ*≪*1*, both \tilde{n} and \tilde{k} become sufficiently large, for example, in a metallic conductor,

$$
R = 1 - \frac{2}{\tilde{n}} \to 1\tag{10}
$$

which means that the conductor is characterized by its behavior as a perfect reflector with an exceedingly large absorption coefficient in the low frequency region.

Figure S3. The complex dielectric constant for (a) PBE+D3 and (b) SCAN+D3 with the real portion plotted regularly and the imaginary portion plotted on the negative y-axis.

Figure S4. The complex conductivity for (a) PBE+D3 and (b) SCAN+D3.

Figure S5. The refractive index (n) and extinction coefficient (k) for (a) PBE+D3 and (b) SCAN+D3.

Figure S6. The reflectivity for (a) PBE+D3 and (b) SCAN+D3.

Figure S7. The local geometry of the Pb_{Cl} defect

Figure S8. The local geometry of the FA_{Pb} defect

Figure S9. SCAN+D3 plots of A. HOMO, B. LUMO and C. DOS of the Pb_{Cl} and FA_{Pb} defects