Electronic Supplementary Information

Impact of the Crystal Phase of Binary Silicide on its Lithiation and Delithiation Properties

Yasuhiro Domi,^{a,b} Hiroyuki Usui,^{a,b} Takumi Ando,^{b,c} Hiroki Sakaguchi^{a,b,*}

^aDepartment of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University,4-101 Minami, Koyama-cho, Tottori 680-8552, Japan.

^bCenter for Research on Green Sustainable Chemistry, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan.

^cDepartment of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan.

Fig. S1. Crystal structure of (a) NiSi₂, (b) NiSi, (c) Ni₂Si and (d) Ni₃Si.

Fig. S2. Crystal structure of (a) FeSi₂, (b) FeSi and (c) Fe₃Si. The structure of Fe₂Si cannot be determined because Z number is unknown.

Fig. S3. Capacity retention of NiSi_x (x = 2, 1, 1/2 and 1/3) electrodes under a current density of 50 mA g⁻¹ in 1 M LiFSA/Py13-FSA.

Fig. S4. Capacity retention of FeSi_x (x = 2, 1, 1/2 and 1/3) electrodes under a current density of 50 mA g⁻¹ in 1 M LiFSA/Py13-FSA.

Fig. S5. Crystal structure of each lithiated NiSi_x (x = 2, 1, 1/2 or 1/3). While Li_{0.25}NiSi₂, Li_{0.25}NiSi and Li_{0.25}Ni₂Si were optimized crystal structure, LiNiSi₃ did not converge. Hence, the charge density was calculated with Li at the center of the lattice as in the former three crystals.

Fig. S6. Distance of between Li and nearest–neighbour atom in each Ni-Si lattice.

Silicide	Molar ratio	Rotational speed / rpm	Treatment time / h
NiSi ₂	Ni : Si = 1 : 2	380	20
NiSi	Ni : Si = 1 : 1	380	10
Ni ₂ Si	Ni : Si = 2 : 1	380	10
Ni ₃ Si	Ni : Si = $3 : 1$	380	40
FeSi ₂	Fe: Si = 1: 3.3	380	100
FeSi	Fe: Si = 1: 1	380	10
Fe ₂ Si	Fe: Si = 2: 1	380	10
Fe ₃ Si	Fe: Si = 3: 1	380	10

Table S1. Molar ratio, rotational speed, and treatment time for preparation of each silicide powder.

	NiSi ₂	NiSi	Ni ₂ Si	Ni ₃ Si
Crystallite size / nm	9.2	11.8	13.9	9.0
	FeSi ₂	FeSi	Fe ₂ Si	Fe ₃ Si
Crystallite size / nm	13.7	22.2	6.3	11.7

Table S2. Crystallite sizes of (upper) NiSi_x and (lower) FeSi_x (x = 2, 1, 1/2 or 1/3).

Silicide	Molar mass / g mol ⁻¹	Density / $g \text{ cm}^{-3}$	Crystal system
NiSi2	114.87	4.83	Cubic
NiSi	86.78	5.96	Orthorhombic
Ni ₂ Si	145.47	7.37	Orthorhombic
Ni ₃ Si	204.17	7.84	Cubic
FeSi ₂	112.02	5.04	Tetragonal
FeSi	83.93	6.17	Cubic
Fe ₂ Si	139.78	_	Cubic
Fe ₃ Si	195.62	7.1^{40}	Cubic

 Table S3. Molar mass, density and crystal structure for each silicide.