## **Electronic Supplementary Information (ESI)**

## Electrocatalytic CO<sub>2</sub> reduction reaction on dual-metal- and nitrogen-

## doped graphene: Coordination environment effect of active sites

Peinan He, Haisong Feng, Si Wang, Hu Ding, Yujie Liang, Min Ling and Xin Zhang\*

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

\*Corresponding author. E-mail: zhangxin@mail.buct.edu.cn

| Title                                                                                                                                                                                       | Page         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1. The supercell size test of Ni/Fe-N <sub>6</sub> -Gra (Model 1, Model 2, Model 3) surfaces (Fig. S1)                                                                                      | S3           |
| 2. AIMD simulation result of water/NiFe-N <sub>6</sub> -Gra-Model 2 interface (Fig. S2)                                                                                                     | S3           |
| 3. Optimized geometries of $M_1/M_2$ -N <sub>6</sub> -Gra substrate, N-doped graphene substrate, *COOH, and *CO adsorbed $M_1/M_2$ -N <sub>6</sub> -Gra (Fig. S3, S4, S5–S7)                | S4, S5, S6   |
| 4. Test of *COOH Geometry (H-up and H-down) (Fig. S8)                                                                                                                                       | S7           |
| 5. Calculated limiting potentials for HER ( $U_L$ (HER)), CO <sub>2</sub> RR ( $U_L$ (CO <sub>2</sub> RR)), and $U_L$ (CO <sub>2</sub> RR) – $U_L$ (HER) on M-N <sub>4</sub> -Gra (Fig. S9) | S7           |
| 6. Relative free energy diagrams of the hydrogenation of CO to *CHO/*COH (Fig. S10)                                                                                                         | S8           |
| 7. Charge density difference for Fe/Zn-N <sub>6</sub> -Gra, Mn/Zn-N <sub>6</sub> -Gra, Co/Zn-N <sub>6</sub> -Gra, and Fe/Mn-N <sub>6</sub> -Gra-Model 3 (Fig. S11)                          | S8           |
| 8. Calculated formation energies (Table S1)                                                                                                                                                 | S9           |
| 9. Bond lengths between bimetals $(d(M_1 - M_2))$ (Table S2)                                                                                                                                | S10          |
| 10. Free energy change values of elementary step for $CO_2RR$ (Table S3)                                                                                                                    | S11          |
| 11. Calculated adsorption energies and adsorption free energies of *CO and *COOH (Table S4, S5)                                                                                             | S12, S13     |
| 12. Bond length of *CO and *COOH adsorbed $M_1/M_2$ -N <sub>6</sub> -Gra ( $d(M_1$ C) and $d(M_2$ C)) (Table S6, S7)                                                                        | S14, S15–S16 |
| 13. Calculated limiting potentials of HER on Model 2 and Model 3 (Table S8)                                                                                                                 | S17          |
| 14. Calculated <i>d</i> -band center of $M_1/M_2$ -N <sub>6</sub> -Gra-Model 3 (Table S9)                                                                                                   | S18          |
| 15. Test of U values of Fe/Zn and Co/Zn-N <sub>6</sub> -Gra-Model 3 (Table S10)                                                                                                             | S18          |
| 16. Magnetic moments of metal atoms at different U values on Fe/Zn and CoZn-N <sub>6</sub> -Gra-Model 3 (Table S11)                                                                         | S19          |

|            | Мо                         | Model 1                  |                            | del 2                      | Model 3                       |                          |
|------------|----------------------------|--------------------------|----------------------------|----------------------------|-------------------------------|--------------------------|
| Surpercell | *СООН                      | *CO                      | *СООН                      | *CO                        | *СООН                         | *CO                      |
| 4 × 3      | $E_{a} = -4.12 \text{ eV}$ | $E_a = -3.28 \text{ eV}$ | $E_a = -2.26 \text{ eV}$   | $E_{a} = -1.81 \text{ eV}$ | $E_{\rm a} = -2.14  {\rm eV}$ | $E_a = -0.96 \text{ eV}$ |
| 5 × 3      | $E_a = -4.08 \text{ cV}$   | $E_a = -3.36 \text{ eV}$ | $E_{a} = -2.27 \text{ eV}$ | $E_a = -1.83 \text{ eV}$   | $E_{a} = -2.19 \text{ eV}$    | $E_s = -1.04 \text{ eV}$ |
| 6 × 4      | $E_{a} = -4.06 \text{ eV}$ | $E_a = -3.20 \text{ eV}$ | $E_s = -2.28 \text{ eV}$   | $E_{a}$ = -1.86 eV         | $E_s = -2.09 \text{ eV}$      | $E_a = -1.01 \text{ eV}$ |

**Fig. S1** The adsorption energies ( $E_a$ ) of \*COOH and \*CO on 4 × 3, 5 × 3, and 6 × 4 supercells of Ni/Fe-N<sub>6</sub>-Gra (Model 1, Model 2, Model 3) surfaces, respectively.



Fig. S2 The AIMD simulation result of water/NiFe-N $_6$ -Gra-Model 2 interface.



Fig. S3 Optimized geometries of  $M_1/M_2$ -N<sub>6</sub>-Gra substrate on Model 1, Model 2, and Model 3 (top view).



Fig. S4 Optimized geometries of N-doped graphene substrate ( $N_6$ -Gra) on Model 1, Model 2, and Model 3. Unit is in Å.



Fig. S5 Optimized geometries of \*COOH and \*CO adsorbed  $M_1/M_2$ -N<sub>6</sub>-Gra on Model 1 (side view).

| Mn/Mn | Fe/Fe | Co/Co               | Ni/Ni                | Cu/Cu                  | Zn/Zn                 | Ni/Mn                                   |
|-------|-------|---------------------|----------------------|------------------------|-----------------------|-----------------------------------------|
| *COOH |       |                     |                      |                        | 50 CD CD CD CD        |                                         |
| *CO   |       | 00 00 00 00 00      | *****                | 8<br>20 20 20 20 20 20 | <del>م، من من م</del> |                                         |
| Ni/Fe | Ni/Co | Ni/Cu               | Ni/Zn                | Fe/Mn                  | Fe/Co                 | Fe/Cu                                   |
| *СООН |       |                     | 00 00 00 00 00       | 20 20 20 20 20         | 00 00 00 00 00        |                                         |
| *CO   |       | 8<br>               |                      |                        |                       |                                         |
| Fe/Zn | Cu/Mn | Cu/Co               | Cu/Zn                | Mn/Co                  | Mn/Zn                 | Co/Zn                                   |
| *COOH |       | -02-02-02-03-03-03- |                      |                        |                       |                                         |
| *CO   |       |                     | 8<br>00-00-00-00-00- |                        |                       | 00-00-00-00-00-00-00-00-00-00-00-00-00- |

Fig. S6 Optimized geometries of \*COOH and \*CO adsorbed  $M_1/M_2$ -N<sub>6</sub>-Gra on Model 2 (side view).



Fig. S7 Optimized geometries of \*COOH and \*CO adsorbed  $M_1/M_2$ -N<sub>6</sub>-Gra on Model 3 (side view).

|                           | *СООН  | Model 1                        | Model 2                    | Model 3                       |
|---------------------------|--------|--------------------------------|----------------------------|-------------------------------|
| Ni/Fo N. Cro              | H-up   | $E_a = -4.12 \text{ eV}$       | $E_{a} = -2.26 \text{ eV}$ | $E_{\rm a} = -2.14  {\rm eV}$ |
| Ni/Fe-N <sub>6</sub> -Gra | H-down | $E_{\rm a}$ = -4.00 eV         | $E_{a}$ = -1.77 eV         | $E_{\rm a} = -2.06  {\rm eV}$ |
| Fe/Zn-N <sub>6</sub> -Gra | H-up   | $E_{\rm a} = -2.97  {\rm eV}$  | $E_{a} = -3.08 \text{ eV}$ | $E_{a} = -2.35 \text{ eV}$    |
|                           | H-down | $E_{\rm a} = -2.88 \text{ eV}$ | $E_{\rm a}$ = -2.98 eV     | $E_{\rm a} = -2.26  {\rm eV}$ |

**Fig. S8** Optimized geometries and adsorption energies ( $E_a$ ) of adsorbed cis-COOH (H-up) and trans-COOH (H-down) on Ni/Fe-N<sub>6</sub>-Gra and Fe/Zn-N<sub>6</sub>-Gra.



**Fig. S9** Calculated limiting potentials for HER ( $U_L$ (HER)), CO<sub>2</sub>RR ( $U_L$ (CO<sub>2</sub>RR)), and ( $U_L$ (CO<sub>2</sub>RR) –  $U_L$ (HER)) on M-N<sub>4</sub>-Gra (M = Mn, Fe, Co, Ni, Cu, and Zn).



Fig. S10 Relative free energy diagrams of the hydrogenation of CO to \*CHO and \*COH.



Fig. S11 The charge density difference for Fe/Zn-N<sub>6</sub>-Gra, Mn/Zn-N<sub>6</sub>-Gra, Co/Zn-N<sub>6</sub>-Gra, and Fe/Mn-N<sub>6</sub>-Gra.Yellow: charge accumulation; Cyan: charge depletion. The isosurface value is set to  $0.003 \text{ e/Bohr}^3$ .

| M/M N Cro              |         | $E_{\rm f}({\rm eV})$ |         |
|------------------------|---------|-----------------------|---------|
| $M_1/M_2$ - $N_6$ -Gra | Model 1 | Model 2               | Model 3 |
| Ni/Mn                  | 1.12    | -2.20                 | -6.91   |
| Ni/Fe                  | 3.01    | -0.91                 | -5.75   |
| Ni/Co                  | 2.09    | -1.27                 | -5.94   |
| Ni/Ni                  | 1.70    | -1.93                 | -6.03   |
| Ni/Cu                  | 1.60    | -1.39                 | -4.58   |
| Ni/Zn                  | 0.56    | -1.86                 | -5.22   |
| Fe/Mn                  | 1.98    | -0.70                 | -7.27   |
| Fe/Fe                  | 2.83    | -0.02                 | -6.19   |
| Fe/Co                  | 3.26    | -0.68                 | -6.27   |
| Fe/Cu                  | 2.16    | -0.43                 | -4.00   |
| Fe/Zn                  | 0.97    | -0.58                 | -4.79   |
| Cu/Mn                  | 2.33    | -1.47                 | -5.15   |
| Cu/Co                  | 2.11    | -0.98                 | -4.27   |
| Cu/Cu                  | 1.65    | -4.90                 | -3.40   |
| Cu/Zn                  | 0.42    | -1.90                 | -4.07   |
| Mn/Mn                  | 1.11    | -1.42                 | -8.12   |
| Mn/Co                  | 1.39    | -1.41                 | -7.46   |
| Mn/Zn                  | 1.10    | -1.70                 | -5.96   |
| Co/Co                  | 2.61    | -0.87                 | -6.24   |
| Co/Zn                  | 0.88    | -1.21                 | -4.89   |
| Zn/Zn                  | -1.47   | -2.22                 | -4.58   |

**Table S1.** The formation energies  $(E_f)$  on  $M_1/M_2$ -N<sub>6</sub>-Gra.

| M/M N. C.         | $d(M_1 - M_2) (Å)$ |         |         |  |  |  |  |
|-------------------|--------------------|---------|---------|--|--|--|--|
| $M_1/M_2-M_6-Gra$ | Model 1            | Model 2 | Model 3 |  |  |  |  |
| Ni/Mn             | 2.252              | 2.264   | 2.462   |  |  |  |  |
| Ni/Fe             | 2.216              | 2.274   | 2.438   |  |  |  |  |
| Ni/Co             | 2.247              | 2.307   | 2.423   |  |  |  |  |
| Ni/Ni             | 2.342              | 2.341   | 2.580   |  |  |  |  |
| Ni/Cu             | 2.298              | 2.381   | 2.547   |  |  |  |  |
| Ni/Zn             | 2.294              | 2.425   | 2.546   |  |  |  |  |
| Fe/Mn             | 2.134              | 2.337   | 2.236   |  |  |  |  |
| Fe/Fe             | 2.281              | 2.208   | 2.221   |  |  |  |  |
| Fe/Co             | 2.108              | 2.166   | 2.250   |  |  |  |  |
| Fe/Cu             | 2.289              | 2.397   | 2.445   |  |  |  |  |
| Fe/Zn             | 2.303              | 2.430   | 2.451   |  |  |  |  |
| Cu/Mn             | 2.230              | 2.398   | 2.325   |  |  |  |  |
| Cu/Co             | 2.290              | 2.395   | 2.428   |  |  |  |  |
| Cu/Cu             | 2.329              | 2.382   | 2.576   |  |  |  |  |
| Cu/Zn             | 2.241              | 2.386   | 2.632   |  |  |  |  |
| Mn/Mn             | 2.217              | 2.372   | 2.266   |  |  |  |  |
| Mn/Co             | 2.184              | 2.224   | 2.258   |  |  |  |  |
| Mn/Zn             | 2.315              | 2.491   | 2.514   |  |  |  |  |
| Co/Co             | 2.236              | 2.229   | 2.258   |  |  |  |  |
| Co/Zn             | 2.310              | 2.408   | 2.470   |  |  |  |  |
| Zn/Zn             | 2.221              | 2.546   | 2.553   |  |  |  |  |

Table S2. Bond lengths between bimetals on  $M_1/M_2$ -N<sub>6</sub>-Gra.

| M <sub>1</sub> /M <sub>2</sub> - |                | Model 1      |                |                | Model 2      |                | Model 3        |              |                |
|----------------------------------|----------------|--------------|----------------|----------------|--------------|----------------|----------------|--------------|----------------|
| N <sub>6</sub> -Gra              | $\Delta G_{1}$ | $\Delta G_2$ | $\Delta G_{3}$ | $\Delta G_{1}$ | $\Delta G_2$ | $\Delta G_{3}$ | $\Delta G_{1}$ | $\Delta G_2$ | $\Delta G_{3}$ |
| Ni/Mn                            | -1.13          | -0.30        | 1.56           | 0.30           | -0.56        | 0.39           | 0.31           | -0.36        | 0.18           |
| Ni/Fe                            | -1.61          | -0.61        | 2.35           | 0.23           | -0.98        | 0.87           | 0.39           | -0.29        | 0.03           |
| Ni/Co                            | -0.47          | -1.13        | 1.73           | -0.08          | -0.81        | 1.02           | 0.54           | -0.08        | -0.33          |
| Ni/Ni                            | -0.19          | -1.33        | 1.65           | 0.62           | -0.58        | 0.09           | 1.47           | -0.66        | -0.68          |
| Ni/Cu                            | -0.23          | -1.10        | 1.46           | 0.73           | -0.58        | -0.03          | 1.49           | -0.63        | -0.73          |
| Ni/Zn                            | -0.73          | -0.87        | 1.73           | 0.09           | -0.55        | 0.59           | 1.06           | -0.34        | -0.59          |
| Fe/Mn                            | -1.20          | -0.29        | 1.62           | -0.65          | -0.68        | 1.46           | 0.26           | 0.01         | -0.14          |
| Fe/Fe                            | -0.82          | -0.55        | 1.50           | -0.32          | -0.77        | 1.22           | 0.48           | -0.06        | -0.29          |
| Fe/Co                            | -1.54          | -0.65        | 2.32           | 0.10           | -0.91        | 0.94           | 0.42           | 0.01         | -0.30          |
| Fe/Cu                            | -0.62          | -0.72        | 1.47           | 0.01           | -0.68        | 0.80           | 0.22           | -0.34        | 0.25           |
| Fe/Zn                            | -0.47          | -0.75        | 1.35           | -0.56          | -0.65        | 1.34           | 0.19           | -0.30        | 0.24           |
| Cu/Mn                            | -2.32          | -0.05        | 2.50           | 0.17           | -0.55        | 0.51           | 0.25           | -0.39        | 0.27           |
| Cu/Co                            | -0.57          | -0.97        | 1.67           | 0.13           | -0.64        | 0.64           | 0.42           | 0.04         | -0.33          |
| Cu/Cu                            | -0.33          | -0.97        | 1.43           | 1.09           | -0.79        | -0.17          | 1.83           | -0.98        | -0.72          |
| Cu/Zn                            | -0.59          | 0.07         | 0.65           | 0.40           | -0.19        | -0.08          | 0.86           | -0.10        | -0.63          |
| Mn/Mn                            | -0.81          | -0.38        | 1.32           | -0.57          | -0.75        | 1.45           | 0.08           | 0.32         | -0.27          |
| Mn/Co                            | -1.15          | -0.46        | 1.74           | -0.53          | -0.56        | 1.22           | 0.34           | -0.42        | 0.21           |
| Mn/Zn                            | -1.26          | -0.60        | 1.99           | -0.63          | -0.32        | 1.08           | 0.15           | -0.28        | 0.26           |
| Co/Co                            | -0.85          | -0.84        | 1.82           | 0.09           | -1.31        | 1.35           | 0.89           | 0.06         | -0.82          |
| Co/Zn                            | -0.55          | -0.99        | 1.67           | -0.45          | -0.62        | 1.20           | 0.20           | -0.09        | 0.02           |
| Zn/Zn                            | 0.81           | -0.18        | -0.50          | -0.50          | 1.08         | -0.45          | 1.01           | -0.37        | -0.51          |

**Table S3.** Free energy change values of elementary steps for  $CO_2RR$  at U = 0 V on  $M_1/M_2$ -N<sub>6</sub>-Gra.Unit is in eV.

Note: The red values represent the maximum free energy change values on the reaction pathway.

| M <sub>1</sub> /M <sub>2</sub> -N <sub>6</sub> - | Mode                     | 11                     | Mode                     | el2          | Model 3                  |              |
|--------------------------------------------------|--------------------------|------------------------|--------------------------|--------------|--------------------------|--------------|
| Gra                                              | $E_{\rm a}(*{\rm COOH})$ | $E_{\rm a}(*{\rm CO})$ | $E_{\rm a}(*{\rm COOH})$ | $E_{a}(*CO)$ | $E_{\rm a}(*{\rm COOH})$ | $E_{a}(*CO)$ |
| Ni/Mn                                            | -3.65                    | -2.49                  | -2.17                    | -1.34        | -2.18                    | -1.11        |
| Ni/Fe                                            | -4.12                    | -3.28                  | -2.26                    | -1.81        | -2.14                    | -0.96        |
| Ni/Co                                            | -2.98                    | -2.66                  | -2.58                    | -1.96        | -1.96                    | -0.58        |
| Ni/Ni                                            | -2.72                    | -2.61                  | -1.90                    | -1.00        | -1.01                    | -0.09        |
| Ni/Cu                                            | -2.74                    | -2.40                  | -1.77                    | -0.89        | -1.01                    | -0.07        |
| Ni/Zn                                            | -3.20                    | -2.69                  | -2.42                    | -1.49        | -1.40                    | -0.27        |
| Fe/Mn                                            | -3.69                    | -2.53                  | -3.18                    | -2.40        | -2.25                    | -0.80        |
| Fe/Fe                                            | -3.33                    | -2.41                  | -2.83                    | -2.17        | -2.04                    | -0.64        |
| Fe/Co                                            | -4.06                    | -3.25                  | -2.45                    | -1.89        | -2.09                    | -0.64        |
| Fe/Cu                                            | -3.13                    | -2.39                  | -2.47                    | -1.76        | -2.28                    | -1.18        |
| Fe/Zn                                            | -2.97                    | -2.27                  | -3.08                    | -2.28        | -2.35                    | -1.17        |
| Cu/Mn                                            | -4.86                    | -3.46                  | -2.34                    | -1.42        | -2.25                    | -1.20        |
| Cu/Co                                            | -3.07                    | -2.59                  | -2.38                    | -1.56        | -2.09                    | -0.76        |
| Cu/Cu                                            | -2.82                    | -2.36                  | -1.37                    | -0.75        | -0.65                    | -0.08        |
| Cu/Zn                                            | -3.12                    | -1.60                  | -2.13                    | -0.85        | -1.63                    | -0.21        |
| Mn/Mn                                            | -3.32                    | -2.23                  | -3.09                    | -2.34        | -2.41                    | -0.65        |
| Mn/Co                                            | -3.65                    | -2.66                  | -3.09                    | -2.16        | -2.16                    | -1.15        |
| Mn/Zn                                            | -3.75                    | -2.93                  | -3.13                    | -2.00        | -2.39                    | -1.86        |
| Co/Co                                            | -3.35                    | -2.75                  | -2.45                    | -2.30        | -1.61                    | -0.11        |
| Co/Zn                                            | -3.04                    | -2.61                  | -2.97                    | -2.14        | -2.29                    | -0.96        |
| Zn/Zn                                            | -1.68                    | -0.38                  | -3.03                    | -0.40        | -1.48                    | -0.34        |

Table S4. Adsorption energies of \*CO and \*COOH on  $M_1/M_2$ -N<sub>6</sub>-Gra. Unit is in eV.

| M/M N C.               | Model 1                |                         | Model2                 |                         | Model 3                |                         |
|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|
| $M_1/M_2$ - $N_6$ -Gra | $\Delta G_{*\rm COOH}$ | $\Delta G_{*_{\rm CO}}$ | $\Delta G_{*\rm COOH}$ | $\Delta G_{*_{\rm CO}}$ | $\Delta G_{*\rm COOH}$ | $\Delta G_{*_{\rm CO}}$ |
| Ni/Mn                  | -3.12                  | -2.35                   | -1.69                  | -1.18                   | -1.68                  | -0.97                   |
| Ni/Fe                  | -3.60                  | -3.14                   | -1.78                  | -1.64                   | -1.59                  | -0.81                   |
| Ni/Co                  | -2.46                  | -2.52                   | -2.07                  | -1.81                   | -1.46                  | -0.45                   |
| Ni/Ni                  | -2.18                  | -2.44                   | -1.38                  | -0.88                   | -0.52                  | -0.11                   |
| Ni/Cu                  | -2.23                  | -2.25                   | -1.27                  | -0.77                   | -0.50                  | -0.06                   |
| Ni/Zn                  | -2.73                  | -2.52                   | -1.90                  | -1.38                   | -0.70                  | -0.18                   |
| Fe/Mn                  | -3.19                  | -2.41                   | -2.64                  | -2.25                   | -1.74                  | -0.65                   |
| Fe/Fe                  | -2.81                  | -2.29                   | -2.31                  | -2.01                   | -1.52                  | -0.50                   |
| Fe/Co                  | -3.54                  | -3.11                   | -1.90                  | -1.73                   | -1.57                  | -0.49                   |
| Fe/Cu                  | -2.61                  | -2.26                   | -1.99                  | -1.59                   | -1.78                  | -1.04                   |
| Fe/Zn                  | -2.46                  | -2.14                   | -2.55                  | -2.13                   | -1.81                  | -1.03                   |
| Cu/Mn                  | -4.31                  | -3.29                   | -1.83                  | -1.30                   | -1.74                  | -1.06                   |
| Cu/Co                  | -2.56                  | -2.46                   | -1.86                  | -1.43                   | -1.58                  | -0.46                   |
| Cu/Cu                  | -2.32                  | -2.22                   | -0.91                  | -0.62                   | -0.17                  | -0.07                   |
| Cu/Zn                  | -2.58                  | -1.44                   | -1.60                  | -0.71                   | -1.13                  | -0.17                   |
| Mn/Mn                  | -2.81                  | -2.11                   | -2.56                  | -2.24                   | -1.92                  | -0.52                   |
| Mn/Co                  | -3.14                  | -2.53                   | -2.53                  | -2.01                   | -1.66                  | -1.00                   |
| Mn/Zn                  | -3.25                  | -2.78                   | -2.62                  | -1.87                   | -1.84                  | -1.05                   |
| Co/Co                  | -2.84                  | -2.61                   | -1.91                  | -2.14                   | -1.11                  | 0.03                    |
| Co/Zn                  | -2.55                  | -2.46                   | -2.44                  | -1.99                   | -1.79                  | -0.81                   |
| Zn/Zn                  | -1.18                  | -0.28                   | -2.50                  | -0.34                   | -0.99                  | -0.28                   |

Table S5. Adsorption free energies of \*CO and \*COOH on  $M_1/M_2$ -N<sub>6</sub>-Gra. Unit is in eV.

| M/M N Cro       | Model 1      |                              | Model 2      |                              | Model 3      |                              |
|-----------------|--------------|------------------------------|--------------|------------------------------|--------------|------------------------------|
| W1/1V12-1N6-OTa | $d(M_1 - C)$ | <i>d</i> (M <sub>2</sub> —C) | $d(M_1 - C)$ | <i>d</i> (M <sub>2</sub> —C) | $d(M_1 - C)$ | <i>d</i> (M <sub>2</sub> —C) |
| Ni/Mn           | 1.832        | 1.986                        | 2.043        | 1.816                        |              | 1.745                        |
| Ni/Fe           | 1.905        | 1.871                        | 2.119        | 1.747                        |              | 1.734                        |
| Ni/Co           | 1.901        | 1.835                        | 1.992        | 1.766                        |              | 1.739                        |
| Ni/Ni           | 1.852        | 1.852                        | 1.929        | 1.924                        |              |                              |
| Ni/Cu           | 1.810        | 1.911                        | 1.771        | 2.829                        |              |                              |
| Ni/Zn           | 1.701        | 2.378                        | 1.736        | 2.745                        |              |                              |
| Fe/Mn           | 1.752        | 2.313                        | 1.728        | 2.318                        | 1.725        | _                            |
| Fe/Fe           | 1.891        | 1.912                        | 1.879        | 1.879                        | 1.726        |                              |
| Fe/Co           | 2.017        | 1.807                        | 1.859        | 1.868                        | 1.726        |                              |
| Fe/Cu           | 1.840        | 1.942                        | 1.719        | 2.728                        | 1.722        | _                            |
| Fe/Zn           | 1.750        | 2.508                        | 1.740        | 2.403                        | 1.721        |                              |
| Cu/Mn           | 1.907        | 1.935                        | 2.404        | 1.804                        |              | 1.747                        |
| Cu/Co           | 1.962        | 1.787                        | 2.512        | 1.748                        |              | 1.740                        |
| Cu/Cu           | 1.855        | 1.862                        |              |                              |              |                              |
| Cu/Zn           | 1.777        | 2.528                        |              |                              |              | _                            |
| Mn/Mn           | 2.173        | 1.801                        | 1.785        | 2.158                        | 1.973        | 1.973                        |
| Mn/Co           | 2.350        | 1.736                        | 1.938        | 1.845                        | 1.749        |                              |
| Mn/Zn           | 1.865        | 2.489                        | 1.795        | 2.294                        | 1.765        | _                            |
| Co/Co           | 1.858        | 1.886                        | 1.846        | 1.848                        | 1.818        |                              |
| Co/Zn           | 1.719        | 2.472                        | 1.725        | 2.442                        | 1.731        | —                            |
| Zn/Zn           |              |                              | <u> </u>     |                              | <u> </u>     |                              |

**Table S6.** Bond lengths ( $d(M_1 - C)$  and  $d(M_2 - C)$ ) of \*CO adsorbed  $M_1/M_2$ -N<sub>6</sub>-Gra. Unit is in Å.

| Model 1 | $d(M_1 - C)$                 | <i>d</i> (M <sub>1</sub> —O) | <i>d</i> (M <sub>2</sub> —C) | <i>d</i> (M <sub>2</sub> —O) |
|---------|------------------------------|------------------------------|------------------------------|------------------------------|
| Ni/Mn   | 1.829                        |                              |                              | 1.920                        |
| Ni/Fe   | 1.854                        |                              |                              | 2.007                        |
| Ni/Co   | —                            | 1.927                        | 1.797                        |                              |
| Ni/Ni   | 1.821                        |                              |                              | 1.955                        |
| Ni/Cu   | —                            | 2.022                        | 1.871                        |                              |
| Ni/Zn   | 1.888                        |                              | 2.434                        |                              |
| Fe/Mn   | 1.870                        |                              |                              | 1.990                        |
| Fe/Fe   | 1.832                        |                              |                              | 1.983                        |
| Fe/Co   | —                            | 1.982                        | 1.853                        |                              |
| Fe/Cu   | —                            | 2.045                        | 1.880                        |                              |
| Fe/Zn   | 1.951                        |                              | 2.484                        |                              |
| Cu/Mn   | 1.871                        |                              |                              | 2.101                        |
| Cu/Co   | 1.879                        |                              |                              | 2.042                        |
| Cu/Cu   | 1.870                        |                              |                              | 2.001                        |
| Cu/Zn   | 1.878                        |                              |                              | 2.105                        |
| Mn/Mn   | 1.870                        |                              | 1.986                        |                              |
| Mn/Co   |                              | 2.004                        | 1.836                        |                              |
| Mn/Zn   | —                            | 2.198                        | 1.968                        |                              |
| Co/Co   | 1.853                        |                              |                              | 1.957                        |
| Co/Zn   | 1.872                        |                              |                              | 2.151                        |
| Zn/Zn   | 2.025                        |                              | 2.733                        |                              |
| Model 2 | <i>d</i> (M <sub>1</sub> —C) | <i>d</i> (M <sub>1</sub> —O) | <i>d</i> (M <sub>2</sub> —C) | <i>d</i> (M <sub>2</sub> —O) |
| Ni/Mn   | 2.261                        |                              | 2.006                        |                              |
| Ni/Fe   | 2.189                        |                              | 1.952                        |                              |
| Ni/Co   | 2.365                        |                              | 1.909                        |                              |
| Ni/Ni   | 2.046                        |                              | 2.070                        |                              |
| Ni/Cu   | 1.941                        |                              | 2.515                        |                              |
| Ni/Zn   | 1.877                        |                              |                              | 2.139                        |
| Fe/Mn   | 1.840                        |                              |                              | 2.078                        |
| Fe/Fe   | 1.854                        |                              |                              | 2.014                        |
| Fe/Co   | —                            | 2.260                        | 1.857                        |                              |
| Fe/Cu   | 1.864                        |                              |                              |                              |
| Fe/Zn   | 1.916                        |                              |                              | 2.070                        |
| Cu/Mn   | 1.869                        |                              |                              | 2.052                        |
| Cu/Co   |                              |                              | 1.862                        |                              |

Table S7. Bond lengths of \*COOH adsorbed  $M_1/M_2$ -N<sub>6</sub>-Gra on Model 1, Model 2, and Model 3. Unit is in Å.

| Cu/Cu   | 2.009        |                              | 2.575                        | —                            |
|---------|--------------|------------------------------|------------------------------|------------------------------|
| Cu/Zn   | 1.881        |                              |                              | 2.044                        |
| Mn/Mn   | 1.924        |                              |                              | 2.106                        |
| Mn/Co   |              | 2.181                        | 1.845                        |                              |
| Mn/Zn   |              | 2.119                        | 2.020                        |                              |
| Co/Co   | 1.855        |                              |                              | 2.152                        |
| Co/Zn   | 1.854        |                              |                              | 2.084                        |
| Zn/Zn   | 2.003        |                              |                              | 2.098                        |
|         |              |                              |                              |                              |
| Model 3 | $d(M_1 - C)$ | <i>d</i> (M <sub>1</sub> —O) | <i>d</i> (M <sub>2</sub> —C) | <i>d</i> (M <sub>2</sub> —O) |
| Ni/Mn   |              |                              | 1.947                        |                              |
| Ni/Fe   | _            |                              | 1.923                        |                              |
| Ni/Co   | —            |                              | 1.897                        |                              |
| Ni/Ni   | 1.963        |                              |                              |                              |
| Ni/Cu   | 1.952        |                              |                              |                              |
| Ni/Zn   |              |                              | 2.019                        |                              |
| Fe/Mn   | 1.882        |                              |                              |                              |
| Fe/Fe   | 1.920        |                              |                              |                              |
| Fe/Co   | 1.914        |                              |                              |                              |
| Fe/Cu   | 1.918        |                              |                              |                              |
| Fe/Zn   | 1.880        |                              |                              | 2.091                        |
| Cu/Mn   | —            |                              |                              | 1.951                        |
| Cu/Co   |              |                              |                              | 1.894                        |
| Cu/Cu   | 2.028        |                              |                              |                              |
| Cu/Zn   |              |                              |                              | 2.071                        |
| Mn/Mn   | 1.950        |                              |                              |                              |
| Mn/Co   | 1.960        |                              |                              |                              |
| Mn/Zn   | 1.917        |                              |                              | 2.065                        |
| Co/Co   | 1.912        |                              |                              |                              |
| Co/Zn   | 1.886        |                              |                              |                              |
| Zn/Zn   | 2.020        |                              |                              |                              |

| M <sub>1</sub> /M <sub>2</sub> -N <sub>6</sub> -Gra | Model 2 | Model 3 |
|-----------------------------------------------------|---------|---------|
| Ni/Mn                                               | -0.14   | -0.31   |
| Ni/Fe                                               | -0.08   | -0.33   |
| Ni/Co                                               | -0.35   | -0.50   |
| Ni/Ni                                               | -0.10   | -1.37   |
| Ni/Cu                                               | -0.41   | -1.37   |
| Ni/Zn                                               | -0.16   | -1.15   |
| Fe/Mn                                               | -0.61   | -0.29   |
| Fe/Fe                                               | -0.40   | -0.41   |
| Fe/Co                                               | -0.10   | -0.37   |
| Fe/Cu                                               | -0.17   | -0.20   |
| Fe/Zn                                               | -0.67   | -0.32   |
| Cu/Mn                                               | -0.07   | -0.22   |
| Cu/Co                                               | -0.16   | -0.37   |
| Cu/Cu                                               | -0.77   | -1.94   |
| Cu/Zn                                               | -0.25   | -0.76   |
| Mn/Mn                                               | -0.71   | -0.05   |
| Mn/Co                                               | -0.54   | -0.31   |
| Mn/Zn                                               | -0.59   | -0.33   |
| Co/Co                                               | -0.21   | -0.82   |
| Co/Zn                                               | -0.50   | -0.25   |
| Zn/Zn                                               | -0.61   | -1.00   |

**Table S8.** The limiting potentials of HER at U = 0 V on Model 2, and Model 3. Unit is in V.

| $M_1/M_2$ -N <sub>6</sub> -Gra | $\varepsilon_{d}\left(M_{1} ight)$ | $\varepsilon_{\rm d} \left( { m M}_2  ight)$ |
|--------------------------------|------------------------------------|----------------------------------------------|
| Mn/Mn                          | -0.74                              | -0.74                                        |
| Fe/Fe                          | -1.53                              | -1.52                                        |
| Co/Co                          | -1.96                              | -1.97                                        |
| Ni/Ni                          | -1.93                              | -1.94                                        |
| Cu/Cu                          | -3.37                              | -3.37                                        |
| Zn/Zn                          | -5.86                              | -5.87                                        |
| Ni/Mn                          | -2.00                              | -0.86                                        |
| Ni/Fe                          | -2.22                              | -1.49                                        |
| Ni/Co                          | -2.38                              | -1.67                                        |
| Ni/Cu                          | -1.86                              | -3.69                                        |
| Ni/Zn                          | -1.33                              | -5.88                                        |
| Fe/Mn                          | -1.42                              | -0.95                                        |
| Fe/Co                          | -1.33                              | -1.80                                        |
| Fe/Cu                          | -1.53                              | -3.53                                        |
| Fe/Zn                          | -1.55                              | -6.34                                        |
| Cu/Mn                          | -3.68                              | -1.07                                        |
| Cu/Co                          | -3.44                              | -1.38                                        |
| Cu/Zn                          | -3.78                              | -6.28                                        |
| Mn/Co                          | -1.27                              | -1.75                                        |
| Mn/Zn                          | -0.76                              | -6.18                                        |
| Co/Zn                          | -1.18                              | -6.07                                        |
|                                |                                    |                                              |

**Table S9.** The *d*-band center ( $\varepsilon_d$ ) of  $M_1/M_2$ -N<sub>6</sub>-Gra-Model 3. Unit is in eV.

**Table S10.** The adsorption energies of intermediates, free energy change values of elementary steps and limiting potentials of Fe/Zn-N<sub>6</sub>-Gra-Model 3 and Co/Zn-N<sub>6</sub>-Gra-Model 3 at different U values and Cu/Fe-N<sub>6</sub>-Gra-Model 2 at U = 4 eV. Unit is in eV.

|                   | U value | <i>E</i> <sub>a</sub> (*COOH) | $E_{a}(*CO)$ | $\Delta G_1$ | $\Delta G_2$ | $\Delta G_3$ | $U_{\rm L}({ m V})$ |
|-------------------|---------|-------------------------------|--------------|--------------|--------------|--------------|---------------------|
| Fe/Zn-<br>Model 3 | U = 3   | -1.70                         | -0.45        | 0.85         | -0.28        | -0.44        | -0.85               |
|                   | U = 4   | -1.54                         | -0.32        | 1.00         | -0.25        | -0.61        | -1.00               |
|                   | U = 5   | -1.09                         | -0.27        | 1.45         | -0.73        | -0.59        | -1.45               |
|                   | U = 6   | -0.91                         | -0.36        | 1.61         | -0.97        | -0.50        | -1.61               |
| Co/Zn-<br>Model 3 | U = 3   | -2.29                         | -0.96        | 0.44         | -0.14        | -0.17        | -0.44               |
|                   | U = 4   | -2.05                         | -0.72        | 0.61         | -0.23        | -0.25        | -0.61               |
|                   | U = 5   | -1.90                         | -0.64        | 0.81         | -0.35        | -0.34        | -0.81               |
|                   | U = 6   | -1.69                         | -0.54        | 1.01         | -0.46        | -0.43        | -1.01               |
| Cu/Fe-<br>Model 2 | U = 4   | -1.40                         | -0.80        | 1.08         | -0.84        | -0.11        | -1.08               |

| Uvelue  | Fe/Zn                |            | Co/Zn      |            |  |
|---------|----------------------|------------|------------|------------|--|
| 0 value | mag(M <sub>1</sub> ) | $mag(M_2)$ | $mag(M_1)$ | $mag(M_2)$ |  |
| U = 3   | 2.625                | 0.011      | -1.123     | 0.077      |  |
| U = 4   | 2.724                | 0.015      | -1.060     | 0.002      |  |
| U = 5   | 2.992                | 0.001      | -1.089     | 0.001      |  |
| U = 6   | 3.198                | 0.002      | -1.733     | 0.001      |  |

**Table S11.** Magnetic moments of metal atoms at different U values on Fe/Zn and Co/Zn-N<sub>6</sub>-Gra-Model 3 Unit is in  $\mu_B$ .