Electronic Supplementary Information

pH-Controlled forms of 1-amino-1-hydrazino-2,2-dinitroethylene (HFOX): Selective reactivity of amine and hydrazinyl groups with aldehydes or ketones

Ajay Kumar Chinnam,^a Richard J. Staples,^b Jean'ne M. Shreeve*^a

^a Department of Chemistry, University of Idaho, Moscow, ID 83844-2343 USA, E-mail: jshreeve@uidaho.edu

^b Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

Table of Contents

1.	Experimental section	S2
2.	Theoretical calculations	S6
3.	X-ray Crystallographic Data	S8
4.	NMR Spectra	S55
5.	References	S70

1. Experimental Section

Caution! 1-Amino-1-hydrazino-2,2-dinitroethylene is highly sensitive¹ and other new materials can potentially explode under certain conditions (e.g., impact, friction, or electric discharge). Although no explosions or detonations occurred during the preparation and manipulation of these materials, all reactions should be carried out on a small scale with appropriate safety precautions, such as the use of extra shields in a fume hood and personal protection equipment (safety glasses, face shields, ear plugs, as well as gloves) are strongly encouraged.

General Information

Reagents were purchased from Aldrich and Acros Organics and were used as received. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 300 MHz (Bruker AVANCE 300) nuclear magnetic resonance spectrometer operating at 300.13, 75.48 and 282.40 MHz, respectively, by using DMSO-d₆ or acetone-d₆ or chloroform-d or acetonitrile-d₃ as the solvent and locking solvent. Tetramethyl silane, is used as a reference for ¹H, and ¹³C, respectively. IR spectra were recorded using KBr pellets for solids on a Nicolet Thermo-model AVATAR 370-spectrometer. The melting and decomposition (onset) points were obtained on a differential scanning calorimeter (TA Instruments Co., model Q2000) at a scan rate of 5 °C min⁻¹. Density was measured at room temperature by employing a Micromeritics AccuPyc II 1340 gas pycnometer. Elemental analyses (C, H, N) were determined using a Vario Micro-cube Elementar Analyser. The sensitivities to impact (IS) and friction (FS) were determined according to BAM standards. Crystallographic data for the reported structures in this manuscript have been deposited with the Cambridge Crystallographic Data Centre. CCDC 1975378 (11), 1975379 (9), 2154055 (5, form i), 2154056 (5, form ii), 2154057 (5c), 2154058 (5e), and 2154059 (12a), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

3-(2-(1-Amino-2,2-dinitrovinyl)hydrazono)butan-2-one (3): A mixture of HFOX (0.2 g, 1.23 mmol) and 2,3-butanedione (0.1g, 1.23 mmol) was stirred in distilled water (10.0 mL) and pH~2 adjusted using concentrated HCl. The resulting mixture was stirred at room temperature for 4 hours. A yellow precipitate formed and was collected by filtration. The solid was washed with excess water (15.0 mL) and dried at room temperature to give a yellow product **3** (0.26 g, 92%). T_d (onset): 165 °C; ¹H NMR (DMSO-d6, ppm): 12.42 (b, s, 1H, NH), 10.44 (s, 1H, NH), 9.86 (s, 1H, NH), 2.50 (s, 3H, CH₃), 2.04 (s, 3H, CH₃); ¹³C NMR (DMSO-d6, ppm): 197.3, 157.2, 155.9, 125.7, 25.2, 11.6. IR (KBr pellet): v 3421, 3310, 1696, 1618, 1558, 1492, 1426, 1360, 1303, 1216, 1139, 1076, 867, 800, 787, 749, 605, 541, 486, 486 cm⁻¹; Elemental analysis (%) calcd for C₆H₉N₅O₅ (231.06): C, 31.37; H, 3.92; N, 30.30; found: C, 31.43; H, 4.34; N, 30.30.

Potassium (5,6-dimethyl-1,2,4-triazin-3-yl)dinitromethanide (5): HFOX (0.30 g, 1.84 mmol) and 2,3-butanedione (0.16 g, 1.84 mmol) were mixed in acetonitrile (10.0 mL). To this, potassium hydroxide (0.10 g, 1.84 mmol) dissolved in the minimum amount of water was added, and the resulting mixture was stirred at room temperature for 6 hours. An orange precipitate formed and

was collected by filtration and dried at room temperature to give an orange solid **5** (0.39 g, 85%) T_d (onset): 236 °C; ¹H NMR (DMSO-d₆): 2.65 (s, 3H, CH₃), 2.53 (s, 3H, CH₃) ppm; ¹³C NMR (DMSO-d₆): 159.8, 159.6, 155.9, 132.4, 21.4, 19.1 ppm. IR (KBr pellet): v 3431, 1702, 1497, 1361, 1246, 1137, 984, 932, 820, 753, 653, 519 cm⁻¹; Elemental analysis (%) calcd for $C_6H_7N_5KO_{4.5}$ (251.01): C, 27.69; H, 2.71; N, 26.91; found: C, 27.14; H, 2.88; N, 27.07.

Sodium (5,6-dimethyl-1,2,4-triazin-3-yl)dinitromethanide (5a): HFOX (0.30 g, 1.84 mmol) and 2,3-butanedione (0.16 g, 1.84 mmol) were mixed in acetonitrile (10.0 mL). To this, sodium hydroxide (74 mg, 1.84 mmol) dissolved in the minimum amount of water was added, and the resulting mixture was stirred at room temperature for 6 hours. An orange precipitate formed and was collected by filtration and dried at room temperature to give an orange solid **5a** (0.38 g, 88%) T_d (onset): 260 °C; ¹H NMR (DMSO-d₆): 2.63 (s, 3H, CH₃), 2.51 (s, 3H, CH₃) ppm; ¹³C NMR (DMSO-d₆): 159.9, 159.5, 155.9, 132.4, 21.4, 19.2 ppm. IR (KBr pellet): υ 3454, 2515, 1495, 1442, 1371, 1241, 1124, 1045, 983, 937, 830, 754, 652, 552 cm⁻¹; Elemental analysis (%) calcd for C₆H₆N₅NaO₄ (235.03): C, 30.52; H, 2.99; N, 29.66; found: C, 30.17; H, 3.12; N, 29.28.

Lithium (5,6-dimethyl-1,2,4-triazin-3-yl)dinitromethanide (5b): HFOX (0.2 g, 1.23 mmol) and 2,3-butanedione (0.1g, 1.23 mmol) were mixed in acetonitrile (10.0 mL). To this, lithium hydroxide (30 mg, 1.23 mmol) dissolved in the minimum amount of water was added, and the resulting mixture was stirred at room temperature for 6 hours. A yellow precipitate formed and was collected by filtration and dried at room temperature to give yellow solid **5b** (0.2 g, 76%). T_d (onset): 158 °C; ¹H NMR (DMSO-d₆): 2.63 (s, 3H, CH₃), 2.50 (s, 3H, CH₃) ppm; ¹³C NMR (DMSO-d₆): 159.9, 156.8, 155.9, 132.3, 21.5, 19.2 ppm. IR (KBr pellet): υ 3463, 2339, 1636, 1508, 1392, 1343, 1256, 1135, 1034, 987, 930, 829, 755, 737, 589, 489 cm⁻¹; Elemental analysis (%) calcd for C₆H₈N₅LiO₅ (237.06): C, 30.27; H, 3.81; N, 29.41; found: C, 30.52; H, 4.01; N, 29.75.

Ammonium (5,6-dimethyl-1,2,4-triazin-3-yl)dinitromethanide (5c): HFOX (0.30 g, 1.84 mmol) and 2,3-butanedione (0.30 g, 1.84 mmol) were mixed in acetonitrile (10.0 mL). To this, aqueous ammonia (0.5 mL) was added dropwise, and the resulting mixture was stirred at room temperature for 6 hours. A yellow precipitate formed and was collected by filtration and dried at room temperature to give yellow solid **5c** (0.38 g, 90%). T_d (onset): 161 °C; ¹H NMR (DMSO-d₆): 7.11 (b, 4H, NH₄), 2.63 (s, 3H, CH₃), 2.50 (s, 3H, CH₃) ppm; ¹³C NMR (DMSO-d₆): 159.9, 159.6, 155.9, 132.4, 21.4, 19.1 ppm. IR (KBr pellet): v 3176, 1690, 1482, 1349, 1238, 1142, 1043, 1006, 984, 934, 822, 799, 752, 654, 613, 553 cm⁻¹; Elemental analysis (%) calcd for C₆H₁₀N₆O₄ (230.07): C, 31.31; H, 4.38; N, 36.51; found: C, 31.57; H, 4.59; N, 37.23.

Sodium dinitro(1,2,4-triazin-3-yl)methanide (5e): HFOX (0.28 g, 1.72 mmol) and 40% glyoxal (0.20 g, 1.72 mmol) were mixed in acetonitrile (10.0 mL). To this, sodium hydroxide (70 mg, 1.72 mmol) dissolved in water (1.0 mL) was added, and the resulting mixture was stirred at room temperature for 6 hours. An orange precipitate formed and was collected by filtration and dried at room temperature to give an orange solid 5e (0.30 g, 84%). T_d (onset): 301 °C; ¹H NMR (DMSO-

d₆): 9.29 (s, 1H, CH), 8.92 (s, 1H, CH) ppm; ¹³C NMR (DMSO-d₆): 162.0, 154.0, 148.0, 132.6 ppm. IR (KBr pellet): υ 3405, 3029, 1609, 1507, 1370, 1313, 1243, 1123, 1089, 1057, 887, 842, 751, 611, 461 cm⁻¹; Elemental analysis (%) calcd for C₄H₂N₅NaO₄ (207.00): C, 23.20; H, 0.97; N, 33.82; found: C, 22.61; H, 1.57; N, 34.18.

Lithium dinitro(1,2,4-triazin-3-yl)methanide (5f): HFOX (0.30 g, 1.84 mmol) and 40% glyoxal (0.25 g, 1.84 mmol) were mixed in acetonitrile (10.0 mL). To this, lithium hydroxide (44 mg, 1.84 mmol) dissolved in the minimum amount of water was added, and the resulting mixture was stirred at room temperature for 6 hours. An orange precipitate formed and was collected by filtration and dried at room temperature to give an orange solid **5f** (0.27 g, 77%). T_d (onset): 200 °C; ¹H NMR (DMSO-d₆): 9.29 (s, 1H, CH), 8.91 (s, 1H, CH) ppm; ¹³C NMR (DMSO-d₆): 162.0, 150.2, 147.8, 131.8 ppm. IR (KBr pellet): v 3406, 3122, 1518, 1440, 1415, 1345, 1278, 1139, 1087, 1061, 987, 968, 885, 870, 844, 812, 748, 538, 481, 436 cm⁻¹; Elemental analysis (%) calcd for C₄H₂N₅LiO₄ (191.02): C, 25.15; H, 1.06; N, 36.66; found: C, 24.84; H, 1.73; N, 35.69.

Potassium-1-(1-amino-2,2-dinitrovinyl)-2-(3-oxobutan-2-ylidene)hydrazin-1-ide (6): To compound **3** (0.2 g, 0.93 mmol) in acetonitrile (10.0 mL) was added potassium hydride (52 mg, 0.93 mmol) in distilled water (1.0 mL). The resulting mixture was stirred at room temperature for 1 hour, and an orange precipitate formed and was collected by filtration and washed with acetonitrile (2.0 mL) and dried at room temperature to give an orange solid **6** (0.23 g, 98%). T_d (onset): 142 °C; ¹H NMR (DMSO-d6, ppm): 8.06 (b, 2H, NH₂), 2.38 (s, 3H, CH₃), 1.89 (s, 3H, CH₃); ¹³C NMR (DMSO-d6, ppm): 198.8, 155.8, 130.0, 24.9, 10.8. IR (KBr pellet): v 3599, 3429, 3307, 3194, 1676, 1607, 1545, 1510, 1418, 1361, 1291, 1226, 1120, 1029, 946, 854, 793, 751, 709, 658, 611, 523 cm⁻¹; Elemental analysis (%) calcd for C₆H₈N₅KO₅(269.01): C, 26.76; H, 2.99; N, 26.01; found: C, 25.94; H, 3.21; N, 26.09.

2,2-Dinitro-1-(2-((perfluorophenyl)methylene)hydrazineyl)ethen-1-amine (9): HFOX (0.2 g, 1.23 mmol) and pentafluorobenzaldehyde (0.24 g, 1.23 mmol) were mixed in distilled water (10 mL). A few drops of concentrated HCl were added to maintain a pH~2, and the resulting mixture was stirred at room temperature for 4 hours. A yellow precipitate was formed and collected by filtration and dried at room temperature to give a yellow solid 9 (0.40 g, 96%). T_d (onset): 160 °C; ¹H NMR (DMSO-d₆): 13.36 (s, 1H, NH), 10.16 (s, 1H, NH₂), 9.43 (s, 1H, NH₂), 8.43 (s, 1H, CH) ppm; ¹³C NMR (DMSO-d₆): 154.3, 146.9, 143.5, 142.4, 140.4, 139.2, 125.7, 108.4 ppm. ¹⁹F NMR (DMSO-d₆): -139.69 (s, 1F), -141.95 (s, 1F), -149.99 (s, 1F), -162.19 to -162.29 (m, 2F) ppm; IR (KBr pellet): υ 3472, 1654, 1509, 1425, 1347, 1287, 1188, 1139, 1037, 987, 828, 828, 810, 712, 663, 595, 522, 453 cm⁻¹; Elemental analysis (%) calcd for C₉H₄F₅N₅O₄ (341.01): C, 31.69; H, 1.18; N, 20.53; found: C, 31.92; H, 1.34; N, 20.22.

1-(2-(1,3-Dichloropropan-2-ylidene)hydrazineyl)-2,2-dinitroethen-1-amine (10): HFOX (0.25 g, 1.53 mmol) and 1,3-dichloropropan-2-one (0.19 g, 1.53 mol) were mixed in distilled water (10 mL). To this, a few drops of concentrated HCl was added to maintain pH~2, and the resulting mixture was stirred at room temperature for 4 hours. A pale-yellow precipitate formed and was

collected by filtration and dried at room temperature to give compound **10** (0.41 g, 98%). T_m (onset): 117 °C; T_d (onset): 135 °C; ¹H NMR (DMSO-d₆): 12.55 (s, 1H, NH), 10.30 (s, 1H, NH₂), 9.85 (s, 12H, NH₂), 4.53 (s, 2H, CH₂), 4.51 (s, 2H, CH₂) ppm; ¹³C NMR (DMSO-d₆): 155.6, 154.5, 125.3, 45.2, 34.9 ppm. IR (KBr pellet): v 3418, 3308, 3017, 1540, 1360, 1225, 1141, 1062, 957, 906, 873, 851, 789, 755, 713, 699, 633 cm⁻¹; Elemental analysis (%) calcd for C₅H₇Cl₂N₅O₄ (270.98): C, 22.08; H, 2.59; N, 25.74; found: C, 22.19; H, 2.70; N, 26.38.

1-(2-(1,3-Diazidopropan-2-ylidene)hydrazineyl)-2,2-dinitroethen-1-amine (11): HFOX (0.15 g, 0.92 mmol) and diazo carbonyl compound (0.13 g, 0.92 mmol) were mixed in distilled water (10 mL). A few drops of concentrated HCl were added to this mixture to maintain pH~2, and the resulting mixture was stirred at room temperature for 6 hours. A yellow precipitate formed and was collected by filtration and dried at room temperature to give a yellow solid of **11** (0.27 g, 93%) T_d (onset): 160 °C; ¹H NMR (DMSO-d₆): 13.36 (s, 1H, NH), 10.16 (s, 1H, NH₂), 9.43 (s, 12H, NH₂), 8.43 (s, 1H, CH) ppm; ¹³C NMR (DMSO-d₆): 154.3, 146.9, 143.5, 142.4, 140.4, 139.2, 125.7, 108.4 ppm. IR (KBr pellet): v 3430, 3311, 3199, 2114, 1598, 1560, 1533, 1365, 1219, 1138, 1115, 1000, 907, 843, 787, 743, 683, 601, 457 cm⁻¹; Elemental analysis (%) calcd for C₅H₇N₁₁O₄ (285.06): C, 21.06; H, 2.47; N, 54.03; found: C, 21.18; H, 2.53; N, 54.06.

1-(1-Amino-2,2-dinitrovinyl)-3-methyl-5-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-5-ol (**12a**): HFOX (0.24 g, 1.47 mmol) and 1,1,1-trifluoropentane-2,4-dione (0.23 g, 1.47 mmol) were mixed in distilled water (10 mL).. To this, a few drops of concentrated HCl was added to maintain a pH~2, and the resulting mixture was stirred at room temperature for 4 hours. A colorless precipitate formed and was collected by filtration and washed with an excess of water (5.0 mL) and dried at room temperature to give a colorless solid **12a** (0.33 g, 76%). T_d (onset): 184 °C; ¹H NMR (DMSO-d₆, ppm): 10.35 (s, 1H), 9.61 (s, 1H), 9.31 (s, 1H), 3.70-3.43 (q, 2H), 2.09 (s, 3H); ¹³C NMR (DMSO-d6, ppm): 163.7, 156.8, 154.8, 124.6, 120.8, 93.4, 92.9, 92.5, 46.2, 15.8. ¹⁹F NMR (DMSO-d₆, ppm): -81.2. IR (KBr pellet): v 3426, 2706, 1638, 1532, 1489, 1433, 1382, 1300, 1195, 1140, 1065, 950, 477 cm⁻¹; C₇H₈F₃N₅O₅(299.03): C, 28.10; H, 2.70; N, 23.41; found: C, 27.34; H, 3.01; N, 23.93.

1-(1-Amino-2,2-dinitrovinyl)-3,5-bis(trifluoromethyl)-4,5-dihydro-1H-pyrazol-5-ol (12b): HFOX (0.30 g, 1.84 mmol) and hexafluoropentane-2,4-dione (0.38 g, 1.84 mmol) were mixed in distilled water (10 mL). To this, a few drops of concentrated HCl was added to maintain a pH~2, and the resulting mixture was stirred at ice-bath temperature for 30 minutes and then at room temperature for 6 hours. The solvent was removed using an air blower, which resulted in a white solid. The solid was washed with cold water (5.0 mL) and collected by filtration and dried at room temperature to give a colorless solid **12b** (0.41 g, 64%). T_d (onset): 171 °C; ¹H NMR (DMSO-d₆, ppm): 11.81 (s, 1H, OH), 10.03 (s, 2H, NH₂), 4.13-3.10 (m, 2H, CH₂); ¹³C NMR (DMSO-d₆, ppm): 156.8, 151.8-149.6 (q), 126.6, 126.6-116.8 (q), 95.2-93.0 (q), 81.1, 41.10. ¹⁹F NMR (DMSO-d₆, ppm): -66.87, -80.98. IR (KBr pellet): v 3429, 1574, 1535, 1461, 1431, 1327, 1271, 1191, 1104, 1019, 879, 850, 677 cm⁻¹; Elemental analysis (%) calcd for C₇H₆F₆N₅O_{5.5}(362.02): C, 23.22; H, 1.67; N, 19.34; found: C, 23.15; H, 2.15; N, 18.78.

2. Theoretical Calculations

The heats of formation for anions of **5-5f** and neutral compounds **9-11**, and **12-12b** were calculated based on isodesmic reactions (Scheme 1). The calculations were carried out using Gaussian 03 (Revision D.01) suite of programs.² All the structures were optimized, and frequency analyses were calculated at the B3LYP/6-31+G** level and single energy points were calculated at the MP2/6- $311++G^{**}$ level. The solid-state heats of formation for neutral compounds (**9**, **10**, **12a**, and **12b**) were calculated based on Trouton's rule according to equation 1 (*T* represents melting temperature).³

$$\Delta H_{sub} = 188/Jmol^{-1}K^{-1} \times T \tag{1}$$

For salts, the solid-state enthalpy of formation is obtained using a Born-Haber energy cycle.⁴

Scheme 1

Table S1 Calculated zero point energy (ZPE), values of the correction (Hr), total energy (E0) and gas-state heats of formation (HOF).

Compound	ZPE	HT	E0	HOF
Compound	[Hartree /Particle]	[Hartree /Particle]	[kJ mol ⁻¹]	(gas) [kJ mol ⁻¹]
T1	0.138464	0.153194	-804.8998915	-8.47
T1a	0.146460	0.156596	-397.2408086	173.25
Τ2	0.083633	0.094951	-726.4910676	86.27
T2a	0.091461	0.098313	-318.8300122	273.10
DNA	0.036739	0.042196	-447.9434569	-14.14
9	0.153515	0.174552	-1415.970394	-692.58
HF	0.109516	0.120809	-652.2173912	66.15
HC ₆ F ₅	0.059621	0.069237	-726.9385768	-850.17

9a	0.068467	0.073344	-133.5862623	36.79
11	0.176603	0.196718	-1095.0752785	745.51
11a	0.104667	0.115516	-499.2526806	691.08
12	0.208621	0.225844	-920.8980753	-226.78
12a	0.184064	0.203903	-1218.1428151	-869.78
12b	0.160902	0.182745	-1515.3873553	-1469.47
12-1	0.152908	0.16227	-380.2818367	-122.71
12a-1	0.12944	0.140983	-677.5378422	-793.68
12b-1	0.106555	0.119911	-974.7875549	1406.75
FOX-7	0.09195	0.102165	-597.0259689	-134.1
NH ₃	0.034384	0.038203	-56.4154647	-45.90
CH ₄	0.044793	0.048605	-40.3796224	-74.60

^a The enthalpy of sublimation was calculated by using Trouton's rule. Solid-state heats of formation of the resulting compounds were calculated with Equation (1) in which T_m is the melting temperature.

$$\Delta Hf = \Delta Hf(g) - \Delta Hsub = \Delta Hf(g) - 188[J \text{ mol}^{-1} \text{ K}^{-1}] \text{ x } T_{\text{m}}$$
(1)

3. X-ray Crystallographic data⁵⁻¹¹

Table S2. Crystallographic data and structure refinement details for 5 (Forms i and ii), 5c and 5e

Compound	5 (Form i)	5 (Form ii)	5c	5e
Formula	C ₆ H ₆ KN ₅ O ₄	C ₆ H ₆ KN ₅ O ₄	$C_{6}H_{10}N_{6}O_{4}$	C4H2N5NaO4
$D_{calc.}$ / g cm ⁻³	1.743	1.728	1.540	1.931
μ/mm^{-1}	5.024	4.981	1.128	2.011
Formula Weight	251.26	251.26	230.20	207.10
Color	yellow	yellow	yellow	yellow
Shape	block-shaped	needle-shaped	block-shaped	needle-shaped
Size/mm ³	0.21×0.13×0.04	0.23×0.04×0.02	0.18×0.12×0.08	0.19×0.10×0.03
T/K	99.98(15)	99.98(16)	100.00(10)	100.00(10)
Crystal System	monoclinic	orthorhombic	triclinic	orthorhombic
Space Group	C2/c	$P2_{1}2_{1}2_{1}$	<i>P</i> -1	Pnma
a/Å	18.0180(2)	7.95992(19)	5.96567(19)	12.4451(2)
b/Å	12.9201(2)	12.8763(3)	7.3226(2)	7.51185(15)
c/Å	8.26330(11)	18.8416(5)	11.8671(4)	15.2435(2)
$lpha/^{\circ}$	90	90	77.154(3)	90
$\beta/^{\circ}$	95.5690(12)	90	81.278(3)	90
$\gamma/^{\circ}$	90	90	81.757(3)	90
V/Å ³	1914.57(5)	1931.16(8)	496.34(3)	1425.06(4)
Ζ	8	8	2	8
Z'	1	2	1	1
Wavelength/Å	1.54184	1.54184	1.54184	1.54184
Radiation type	Cu K _a	Cu K _a	Cu K _a	Cu K _a
$ heta_{min}/^{\circ}$	4.217	4.159	3.850	4.587
$\theta_{max}/^{\circ}$	79.625	80.359	79.781	79.507
Measured Refl's.	13322	9448	5927	6395
Ind't Refl's	2054	3872	2094	1639
Refl's with $I > 2(I)$	1967	3633	1903	1471
R _{int}	0.0494	0.0465	0.0271	0.0247
Parameters	148	294	163	163
Restraints	0	0	0	0
Largest Peak	0.338	0.366	0.311	0.287
Deepest Hole	-0.321	-0.409	-0.289	-0.282
GooF	1.068	1.134	1.080	1.063
wR_2 (all data)	0.0808	0.1160	0.0989	0.0850
wR_2	0.0800	0.1146	0.0964	0.0829
R_I (all data)	0.0313	0.0436	0.0382	0.0331
R_{I}	0.0304	0.0412	0.0358	0.0295
CCDC	2154055	2154056	2154057	2154058

Figure S1: Thermal ellipsoids shown at 50% 5 (Form i).

Figure S2: Ball-and-stick packing diagram of 5 (Form i) viewed up the c axis

Table S3: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5 (Form i)**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
K1	5000	4644.6(3)	7500	14.45(13)
K2	5000	796.8(3)	7500	16.15(13)
01	5869.4(6)	3979.1(8)	4897.8(12)	16.6(2)
O2	5512.8(6)	2635.9(8)	6218.5(12)	16.3(2)
O3	5620.5(7)	842.1(8)	4687.9(13)	21.4(2)
O4	6037.0(6)	969.5(8)	2308.3(13)	19.9(2)
N1	7055.1(7)	3001.3(9)	2455.8(14)	14.0(2)
N2	5828.0(7)	3357.1(10)	1217.8(14)	14.8(3)
N3	6113.0(7)	3810.2(10)	-56.1(14)	14.6(2)

Atom	X	У	Z	U_{eq}
N4	5773.4(7)	3010.5(10)	5009.2(14)	13.5(2)
N5	5868.8(7)	1382.5(10)	3608.4(14)	14.9(2)
C1	5974.2(8)	2432.3(11)	3728.5(17)	13.8(3)
C2	6305.8(8)	2962.2(11)	2380.1(17)	13.2(3)
C3	7334.8(8)	3486.7(11)	1239.1(16)	13.1(3)
C4	6846.8(8)	3883.2(11)	-70.5(16)	14.1(3)
C5	8160.8(8)	3637.6(12)	1320.0(18)	16.9(3)
<u>C6</u>	7133.7(9)	4412.1(13)	-1492.3(18)	19.7(3)

Table S4: Anisotropic Displacement Parameters (×10⁴) for **5 (Form i)**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U ₁₁	U ₂₂	U33	U ₂₃	<i>U</i> ₁₃	U_{12}	
K1	15.6(2)	15.4(2)	12.3(2)	0	1.07(14)	0	
K2	19.6(2)	13.5(2)	16.4(2)	0	6.99(16)	0	
01	21.3(5)	11.4(5)	17.5(5)	-0.9(4)	3.7(4)	-1.3(4)	
O2	21.0(5)	16.4(5)	12.3(5)	2.4(4)	6.1(4)	0.5(4)	
03	32.8(6)	14.6(5)	19.0(5)	2.5(4)	13.0(5)	-4.0(5)	
O4	29.3(6)	15.0(5)	16.9(5)	-2.9(4)	9.6(4)	-1.2(4)	
N1	16.2(6)	12.3(6)	13.8(6)	-1.4(4)	2.0(4)	0.7(5)	
N2	16.1(6)	14.6(6)	14.1(6)	1.0(5)	2.9(4)	-0.4(5)	
N3	17.1(6)	13.2(6)	13.6(5)	0.8(4)	2.4(4)	0.2(4)	
N4	13.8(5)	13.6(6)	13.0(5)	0.9(4)	1.0(4)	0.2(4)	
N5	16.9(6)	13.4(6)	14.8(5)	0.5(4)	4.0(4)	0.3(5)	
C1	16.1(7)	12.4(7)	13.3(6)	0.0(5)	3.1(5)	-0.1(5)	
C2	16.0(6)	10.6(6)	13.2(6)	-2.2(5)	3.1(5)	-0.4(5)	
C3	15.7(6)	10.1(6)	14.0(6)	-2.0(5)	3.2(5)	-0.4(5)	
C4	17.4(6)	10.5(6)	14.6(6)	-0.7(5)	3.6(5)	0.9(5)	
C5	14.3(7)	18.0(7)	18.8(7)	-0.4(5)	3.5(5)	0.0(5)	
C6	21.2(7)	20.4(7)	18.3(7)	6.6(6)	5.4(6)	3.2(6)	

Table S5: Bond Lengths in Å for 5 (Form i).

Atom	Atom	Length/Å
K1	O1 ¹	2.9104(10)
K1	O1 ²	2.9898(11)
K1	O1 ³	2.9898(11)
K1	01	2.9104(10)
K1	O2	2.9834(11)
K1	$O2^1$	2.9834(11)
K1	N2 ²	3.2127(13)
K1	N2 ³	3.2127(13)
K1	N3 ⁴	2.9113(12)
K1	N3 ⁵	2.9113(12)
K1	N41	3.3455(12)
K1	N4	3.3455(12)
K2	02	2.7949(11)

Atom	Atom	Length/Å
K2	O21	2.7948(11)
K2	O36	2.9343(12)
K2	O31	2.6753(11)
K2	O3	2.6753(11)
K2	O3 ⁷	2.9343(12)
K2	O4 ⁶	2.9634(11)
K2	O4 ⁷	2.9634(11)
K2	N5 ⁷	3.3075(13)
K2	N5 ⁶	3.3075(13)
K2	C5 ⁸	3.4409(14)
K2	C5 ⁹	3.4409(14)
01	N4	1.2679(16)
O2	N4	1.2427(16)
O3	N5	1.2493(16)
O4	N5	1.2625(16)
N1	C2	1.3465(19)
N1	C3	1.3253(18)
N2	N3	1.3489(17)
N2	C2	1.3279(18)
N3	C4	1.3268(19)
N4	C1	1.3724(18)
N5	C1	1.3719(19)
C1	C2	1.4820(19)
C3	C4	1.4219(19)
C3	C5	1.4959(19)
C4	C6	1.4941(19)
C4	C6	1.4941(19)

 $---^{1}1-x,+y,3/2-z; \ ^{2}1-x,\overline{1-y,1-z;} \ ^{3}+x,1-y,1/2+z; \ ^{4}1-x,+y,1/2-z; \ ^{5}+x,+y,1+z; \ ^{6}1-x,-y,1-z; \ ^{7}+x,-y,1/2+z; \ ^{8}-1/2+x,1/2-y,1/2+z; \ ^{9}3/2-x,1/2-y,1-z$

Table S6: Bond Angles in $^{\circ}$ for 5 (Form i).

Atom	Atom	Atom	Angle/°
O1 ¹	K1	01	145.63(4)
O1 ²	K1	O1 ³	107.01(4)
O1 ¹	K1	O1 ³	112.36(4)
O1 ¹	K1	O1 ²	88.34(3)
01	K1	O1 ²	112.36(4)
01	K1	O1 ³	88.34(3)
01	K1	O2	43.39(3)
O11	K1	O2	102.28(3)
O11	K1	$O2^1$	43.39(3)
01	K1	$O2^1$	102.28(3)
01	K1	N2 ³	141.40(3)
O1 ³	K1	N2 ²	62.20(3)
O11	K1	N2 ³	72.14(3)
O1 ³	K1	N2 ³	60.68(3)
O1 ²	K1	N2 ³	62.20(3)

Atom	Atom	Atom	Angle/°
011	K1	N2 ²	141.40(3)
01	K1	N2 ²	72.14(3)
O1 ²	K1	N2 ²	60.68(3)
O11	K1	N3 ⁴	91.10(3)
O11	K1	N3 ⁵	76.23(3)
01	K1	N3 ⁴	76.23(3)
01	K1	N3 ⁵	91.10(3)
01	K1	N4	22.00(3)
O1 ³	K1	$N4^1$	124.08(3)
O11	K1	N4	123.66(3)
O1 ³	K1	N4	100.97(3)
$O1^2$	K1	N4	124.08(3)
01	K1	N4 ¹	123.66(3)
$O1^2$	K1	N4 ¹	100.97(3)
01^{1}	K1	N4 ¹	22.00(3)
02	K1	$O1^3$	11627(3)
02^{1}	K1	01^2	116.27(3)
02^{1}	K1	$O1^{3}$	126.32(3)
02	K1	01^{2}	126.31(3)
02	K1	O^{2^1}	59 10(4)
02^{1}	K1	N2 ³	114.35(3)
02	K1	$N2^3$	170.37(3)
02^{1}	K1	$N2^2$	170.37(3)
02	K1	$N2^2$	114.35(3)
$O2^1$	K1	N4	80.28(3)
02	K1	N4	21.69(3)
O21	K1	$N4^1$	21.69(3)
02	K1	$N4^1$	80.28(3)
N2 ²	K1	N2 ³	73.04(4)
N2 ³	K1	N4	160.83(3)
N2 ²	K1	N4	94.00(3)
N2 ³	K1	N4 ¹	94.00(3)
N2 ²	K1	N4 ¹	160.83(3)
N3 ⁴	K1	O1 ³	58.62(3)
N3 ⁵	K1	O1 ²	58.62(3)
N3 ⁵	K1	O1 ³	164.00(3)
N3 ⁴	K1	O1 ²	164.00(3)
N3 ⁴	K1	O2	69.38(3)
N3 ⁵	K1	O2	73.01(3)
N3 ⁵	K1	O21	69.38(3)
N3 ⁴	K1	O21	73.01(3)
N3 ⁴	K1	N2 ²	112.30(3)
N3 ⁵	K1	N2 ³	112.30(3)
N3 ⁴	K1	N2 ³	102.46(3)
N3 ⁵	K1	N2 ²	102.46(3)
N3 ⁴	K1	N3 ⁵	136.53(5)
N3 ⁴	K1	N4	68.87(3)

Atom	Atom	Atom	Angle/°
N3 ⁵	K1	N4	83.86(3)
N3 ⁴	K1	N41	83.86(3)
N3 ⁵	K1	N41	68.87(3)
N4 ¹	K1	N4	101.74(4)
O21	K2	O2	63.53(4)
O2	K2	O3 ⁶	120.02(3)
O2	K2	O3 ⁷	136.62(3)
O21	K2	O3 ⁶	136.62(3)
O21	K2	O3 ⁷	120.02(3)
O2	K2	$O4^6$	155.28(3)
02	K2	O4 ⁷	113.65(3)
O21	K2	O4 ⁷	155.27(3)
O21	K2	$O4^{6}$	113.65(3)
02	K2	N5 ⁶	141.61(3)
02	K2	N5 ⁷	131.58(3)
O21	K2	N5 ⁷	141.61(3)
O21	K2	N5 ⁶	131.58(3)
O21	K2	C58	93.26(3)
02	K2	C58	65.30(3)
O21	K2	C5 ⁹	65.30(3)
02	K2	C5 ⁹	93.26(3)
O31	K2	O2	119.47(3)
O31	K2	O21	58.06(3)
03	K2	O2	58.06(3)
03	K2	O21	119.47(3)
O3	K2	O3 ⁷	112.62(3)
O3 ⁶	K2	O3 ⁷	87.62(5)
O3	K2	O31	177.49(5)
O31	K2	O3 ⁶	112.62(3)
O3	K2	O3 ⁶	69.33(4)
O31	K2	O3 ⁷	69.33(4)
O3 ⁶	K2	O4 ⁶	43.34(3)
O3	K2	O4 ⁶	112.46(3)
O3 ⁶	K2	O4 ⁷	67.41(3)
O3 ⁷	K2	$O4^{6}$	67.41(3)
O31	K2	$O4^{6}$	69.61(3)
O3 ⁷	K2	O4 ⁷	43.34(3)
O3 ¹	K2	O4 ⁷	112.47(3)
O3	K2	O4 ⁷	69.61(3)
O3 ⁶	K2	N5 ⁶	22.06(3)
O3	K2	N5 ⁷	91.87(3)
O31	K2	N5 ⁶	91.87(3)
O3 ⁶	K2	N5 ⁷	72.43(3)
O31	K2	N5 ⁷	90.26(3)
O3 ⁷	K2	N5 ⁷	22.06(3)
O3 ⁷	К2	N5 ⁶	72.43(3)
O3	K2	N5 ⁶	90.26(3)

Atom	Atom	Atom	Angle/°
03	K2	C5 ⁸	76.66(4)
O3	K2	C5 ⁹	102.79(4)
O3 ⁶	K2	C5 ⁹	71.32(3)
O31	K2	C5 ⁸	102.79(4)
O31	K2	C5 ⁹	76.66(4)
O3 ⁷	K2	C5 ⁹	128.81(4)
O3 ⁷	K2	C5 ⁸	71.32(3)
O3 ⁶	К2	C5 ⁸	128.81(3)
O4 ⁶	K2	O4 ⁷	79.28(4)
O4 ⁷	K2	N5 ⁶	67.27(3)
O4 ⁷	K2	N5 ⁷	22.37(3)
$O4^6$	K2	N56	22.37(3)
$O4^6$	K2	N5 ⁷	67.27(3)
O4 ⁶	K2	C5 ⁹	65.40(3)
$O4^{7}$	к2	C5 ⁸	65 40(3)
$O4^{6}$	K2	C5 ⁸	$138\ 01(4)$
$O4^{7}$	K2	$C5^{9}$	138.01(4)
N5 ⁶	K2	N5 ⁷	63.29(4)
N5 ⁷	K2	$C5^9$	132.55(3)
N5 ⁷	K2	C5 ⁸	71.66(3)
N5 ⁶	K2	C5 ⁸	132.55(3)
N5 ⁶	K2	C5 ⁹	71.66(3)
C5 ⁸	K2	C5 ⁹	155.48(5)
K1	01	K1 ³	91.66(3)
N4	01	K1	98.68(8)
N4	01	K1 ³	124.67(8)
K2	02	K1	118.68(4)
N4	02	K1	95.79(8)
N4	O2	K2	143.17(9)
K2	03	K2 ⁶	110.67(4)
N5	03	K2	147.27(9)
N5	03	K2 ⁶	96.02(8)
N5	O4	K2 ⁶	94.32(8)
C3	N1	C2	115.84(12)
N3	N2	K1 ³	97.63(8)
C2	N2	K1 ³	111.07(9)
C2	N2	N3	117.52(12)
N2	N3	K1 ¹⁰	114.41(8)
C4	N3	K1 ¹⁰	125.97(9)
C4	N3	N2	119.54(12)
01	N4	K1	59.31(7)
01	N4	C1	115.67(12)
O2	N4	K1	62.52(7)
O2	N4	01	120.51(12)
O2	N4	C1	123.82(12)
C1	N4	K1	167.08(9)
O3	N5	K2 ⁶	61.92(7)

Atom	Atom	Atom	Angle/°
03	N5	O4	120.24(12)
03	N5	C1	123.89(12)
O4	N5	K2 ⁶	63.31(7)
O4	N5	C1	115.87(12)
C1	N5	K2 ⁶	156.96(9)
N4	C1	C2	118.95(13)
N5	C1	N4	123.29(13)
N5	C1	C2	117.74(12)
N1	C2	C1	117.25(12)
N2	C2	N1	126.58(13)
N2	C2	C1	116.16(12)
N1	C3	C4	119.68(13)
N1	C3	C5	118.53(12)
C4	C3	C5	121.74(13)
N3	C4	C3	120.72(13)
N3	C4	C6	117.43(12)
C3	C4	C6	121.84(13)
C3	C5	K2 ⁸	165.22(10)

 $\underbrace{---1_{1-x,+y,3/2-z; 2+x,1-y,1/2+z; 31-x,1-y,1-z; 41-x,+y,1/2-z; 5+x,+y,1+z; 61-x,-y,1-z; 7}_{\text{1-x,-y,1-z; 7}+x,-y,1/2+z; 83/2-x,1/2-y,1-z; 9-1/2+x,1/2-y,1/2+z; 10+x,+y,-1+z}$

Table S7: Torsion Angles in ° for 5 (Form i).

Atom	Atom	Atom	Atom	Angle/°
K11	01	N4	K1	-98.12(8)
K1	O1	N4	O2	-13.51(13)
K11	O1	N4	O2	-111.63(11)
K1	O1	N4	C1	166.48(10)
K11	O1	N4	C1	68.36(14)
K1	O2	N4	O1	13.09(12)
K1	O2	N4	C1	-166.90(11)
K11	N2	N3	K1 ²	-61.23(7)
K11	N2	N3	C4	115.81(12)
K11	N2	C2	N1	-108.35(13)
K11	N2	C2	C1	71.25(13)
K1 ²	N3	C4	C3	176.85(9)
K1 ²	N3	C4	C6	-2.04(18)
K1	N4	C1	N5	-112.1(4)
K1	N4	C1	C2	66.4(5)
K2	O2	N4	K1	160.06(15)
K2	O2	N4	O1	173.14(10)
K2	O2	N4	C1	-6.8(2)
K2	O3	N5	K2 ³	-145.12(18)
K2	O3	N5	O4	-170.93(12)
K2 ³	O3	N5	O4	-25.81(13)
K2 ³	O3	N5	C1	153.91(12)
K2	O3	N5	C1	8.8(3)
K2 ³	O4	N5	O3	25.47(13)

Atom	Atom	Atom	Atom	Angle/°
K2 ³	O4	N5	C1	-154.27(10)
K2 ³	N5	C1	N4	93.3(2)
K2 ³	N5	C1	C2	-85.2(3)
01	N4	C1	N5	-176.21(13)
01	N4	C1	C2	2.28(18)
02	N4	C1	N5	3.8(2)
02	N4	C1	C2	-177.73(12)
O3	N5	C1	N4	-4.2(2)
O3	N5	C1	C2	177.27(13)
04	N5	C1	N4	175.51(13)
O4	N5	C1	C2	-3.00(19)
N1	C3	C4	N3	2.8(2)
N1	C3	C4	C6	-178.38(13)
N1	C3	C5	K2 ⁴	-48.1(4)
N2	N3	C4	C3	0.2(2)
N2	N3	C4	C6	-178.71(13)
N3	N2	C2	N1	2.8(2)
N3	N2	C2	C1	-177.58(12)
N4	C1	C2	N1	94.45(16)
N4	C1	C2	N2	-85.20(16)
N5	C1	C2	N1	-86.98(16)
N5	C1	C2	N2	93.38(16)
C2	N1	C3	C4	-2.81(19)
C2	N1	C3	C5	174.81(12)
C2	N2	N3	K1 ²	-179.83(9)
C2	N2	N3	C4	-2.79(19)
C3	N1	C2	N2	0.1(2)
C3	N1	C2	C1	-179.52(12)
C4	C3	C5	K2 ⁴	129.5(3)
C5	C3	C4	N3	-174.77(13)
C5	C3	C4	C6	4.1(2)

-----¹1-x,1-y,1-z; ²+x,+y,-1+z; ³1-x,-y,1-z; ⁴3/2-x,1/2-y,1-z

Table S8: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5 (Form i)**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
H5A	8282.49	4358.82	1601.13	25
H5B	8333.83	3474.1	261.14	25
H5C	8407.04	3178.85	2150.76	25
H6A	6714.92	4587.28	-2291.93	30
H6B	7477.27	3949.55	-1992	30
H6C	7397.06	5046.22	-1125.68	30

Figure S3: Thermal ellipsoids shown at 50% 5 (Form ii).

Figure S4: Thermal ellipsoids shown at 50% 5 (Form ii).

Figure S5: Ball-and-stick packing diagram of 5 (Form ii) viewed up the b axis

Atom	X	У	Z	U_{eq}
K1	8196.7(11)	6757.9(6)	5194.5(5)	20.4(2)
K2	5249.4(11)	1659.6(6)	5129.6(5)	21.3(2)
01	9714(4)	8136(2)	4310.1(16)	23.6(6)
O2	11004(4)	9563(2)	4035.3(16)	23.1(6)
O3	6657(4)	8546(2)	4788.4(17)	25.4(6)
O4	5419(4)	9831(2)	4245.6(17)	23.8(6)
O5	7909(4)	4900(2)	4387.6(17)	23.6(6)
O6	6710(4)	3559(2)	4885.6(17)	22.8(6)
O7	3638(4)	3179(2)	4416.6(17)	25.5(6)
08	2499(4)	4458(2)	3837.5(18)	28.1(7)
N1	8837(5)	10485(3)	2972.0(18)	19.3(7)
N2	7798(5)	11477(3)	3950(2)	25.9(8)
N3	7962(5)	12358(3)	3571(2)	27.0(8)
N4	9682(5)	9076(2)	4149.8(18)	18.6(7)
N5	6726(5)	9303(2)	4379(2)	20.5(7)
N6	5921(5)	5487(3)	3025.5(19)	20.2(7)
N7	4756(5)	6441(3)	3991(2)	26.3(8)
N8	4842(5)	7327(3)	3610(2)	27.2(8)
N9	6638(5)	4322(2)	4484(2)	20.4(7)
N10	3748(5)	4055(3)	4135(2)	20.8(7)
C1	8190(5)	9632(3)	4072(2)	19.7(8)
C2	8268(5)	10598(3)	3645(2)	20.3(8)
C3	9005(5)	11348(3)	2598(2)	19.9(8)
C4	8568(6)	12318(3)	2916(2)	22.5(8)
C5	9633(6)	11275(3)	1858(2)	24.5(9)
C6	8802(7)	13338(3)	2540(2)	28.5(9)
C7	5218(5)	4621(3)	4122(2)	19.8(8)
C8	5293(5)	5579(3)	3686(2)	19.1(8)
С9	6024(5)	6357(3)	2651(2)	19.8(8)
C10	5479(6)	7311(3)	2963(2)	21.3(8)
C11	5596(6)	8326(3)	2581(2)	28.1(9)
C31	6692(7)	6305(3)	1915(2)	28.1(9)

Table S9: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5 (Form ii)**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Table S10: Anisotropic Displacement Parameters (×10⁴) for **5 (Form ii)**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U_{22}	U33	U ₂₃	U_{13}	U_{12}
K1	20.3(4)	15.9(3)	24.9(4)	2.2(3)	-1.3(3)	-1.4(3)
K2	20.9(4)	17.2(4)	25.9(4)	2.5(3)	0.3(3)	-0.2(3)
01	29.8(15)	13.1(11)	27.8(14)	3.5(11)	4.8(13)	3.2(12)
O2	21.5(14)	21.8(13)	26.1(15)	6.3(12)	-1.1(12)	-1.5(12)
O3	24.7(14)	22.3(13)	29.3(15)	9.5(12)	2.2(13)	-0.1(12)
O4	19.9(14)	19.2(12)	32.4(15)	3.0(12)	-1.3(13)	2.4(12)
O5	23.7(15)	19.2(12)	27.9(15)	1.3(11)	-1.4(13)	-5.1(12)

Atom	U_{11}	U_{22}	U33	U_{23}	U_{13}	U_{12}
06	25.0(14)	14.9(12)	28.5(15)	5.5(11)	-0.1(13)	1.4(11)
07	24.5(15)	17.8(13)	34.3(15)	7.0(12)	-0.9(13)	-4.1(12)
08	21.4(15)	27.0(14)	35.8(16)	5.7(13)	-3.9(13)	1.5(13)
N1	21.1(17)	17.8(14)	18.9(15)	0.2(13)	-1.2(14)	0.2(13)
N2	37(2)	14.6(14)	26.1(17)	1.9(13)	7.4(16)	-1.7(15)
N3	37(2)	14.6(14)	29.7(18)	1.7(14)	9.0(17)	2.6(15)
N4	21.6(16)	17.2(14)	17.1(15)	1.7(12)	1.6(14)	0.9(14)
N5	20.5(16)	14.8(14)	26.1(17)	3.4(13)	-1.1(14)	1.1(13)
N6	21.0(17)	17.4(14)	22.4(15)	-1.3(13)	-1.0(14)	1.1(13)
N7	37(2)	16.9(15)	25.3(17)	0.7(14)	4.4(16)	2.3(15)
N8	35(2)	17.4(14)	28.7(18)	-0.9(15)	2.2(17)	1.9(15)
N9	22.3(17)	13.5(14)	25.4(17)	1.2(13)	0.9(14)	-2.1(13)
N10	19.2(17)	17.6(14)	25.7(17)	-1.3(13)	-1.0(14)	-1.7(14)
C1	18.2(19)	16.7(17)	24.3(19)	2.4(15)	1.4(16)	1.0(16)
C2	19.1(19)	18.2(16)	23.6(18)	-1.8(15)	0.9(17)	0.5(15)
C3	17.5(18)	18.3(16)	23.9(19)	-0.2(15)	-2.8(16)	1.8(15)
C4	24(2)	17.5(17)	26(2)	2.5(16)	2.2(17)	-0.8(16)
C5	27(2)	21.8(18)	24(2)	1.5(16)	-0.3(18)	0.1(18)
C6	39(2)	16.7(18)	30(2)	4.2(17)	7.8(19)	0.0(18)
C7	19.2(19)	17.6(16)	22.6(18)	3.1(15)	-0.6(16)	-1.5(16)
C8	18.1(19)	15.5(15)	23.7(18)	0.1(15)	-0.8(16)	0.3(15)
С9	19.1(18)	16.8(16)	23.6(18)	-0.9(15)	-2.8(16)	0.3(15)
C10	21.9(19)	16.6(17)	25.4(19)	2.0(16)	-1.1(17)	-1.2(15)
C11	35(2)	19.9(19)	29(2)	5.0(18)	-0.9(18)	2.3(18)
C31	33(2)	24.9(19)	27(2)	0.6(17)	1.4(19)	0.4(19)

Table S11: Bond Lengths in Å for 5 (Form ii).

Atom	Atom	Length/Å
K1	K11	4.4754(7)
K1	O1	2.718(3)
K1	O11	2.929(3)
K1	$O2^1$	2.836(3)
K1	O3	2.718(3)
K1	O3 ²	2.782(3)
K1	O4 ²	2.903(3)
K1	O5	2.844(3)
K1	$N4^1$	3.241(4)
K1	N5 ²	3.225(4)
K1	N7 ²	3.046(4)
K1	N8 ²	2.859(4)
K2	K2 ³	4.5565(7)
K2	O4 ⁴	2.887(3)
K2	O5 ³	2.886(3)
K2	O6 ³	2.832(3)
K2	O6	2.747(3)
K2	07	2.698(3)

Atom	Atom	Length/Å
K2	O7 ⁵	2.838(3)
K2	O8 ⁵	3.011(3)
K2	N2 ⁴	3.019(4)
K2	N31	3.303(4)
K2	N9 ³	3.224(4)
K2	N10 ⁵	3.244(4)
01	N4	1.247(4)
O2	N4	1.244(5)
O3	N5	1.244(4)
O4	N5	1.268(5)
05	N9	1.269(5)
06	N9	1.242(4)
07	N10	1.249(5)
08	N10	1.254(5)
N1	C2	1.355(5)
N1	C3	1.324(5)
N2	N3	1.346(5)
N2	C2	1.323(5)
N3	C4	1.326(6)
N4	C1	1.395(5)
N5	C1	1.369(5)
N6	C8	1.347(6)
N6	C9	1.326(5)
N7	N8	1.349(5)
N7	C8	1.321(5)
N8	C10	1.321(6)
N9	C7	1.374(6)
N10	C7	1.379(5)
C1	C2	1.482(5)
C3	C4	1.429(6)
C3	C5	1.483(6)
C4	C6	1.504(6)
C7	C8	1.483(5)
C9	C10	1.429(5)
C9	C31	1.486(6)
C10	C11	1.496(5)

 $--\!\!-^{1}\!-\!1/2+x,3/2-y,1-z;\,^{2}1/2+x,3/2-y,\overline{1-z;\,^{3}\!-\!1/2+x,1/2-y,1-z;\,^{4}\!+\!x,\!-\!1\!+\!y,\!+\!z;\,^{5}1/2\!+\!x,1/2\!-\!y,1\!-\!z}$

Table S12: Bond Angles in ° for 5 (Form ii).

Atom	Atom	Atom	Angle/°	
01	K1	K1 ¹	90.91(7)	
O11	K1	K11	35.95(6)	
01	K1	O11	125.85(8)	
01	K1	O21	168.17(10)	
01	K1	O3 ²	70.06(9)	
01	K1	O3	58.30(9)	

Atom	Atom	Atom	Angle/°
01	K1	O4 ²	114.36(9)
01	K1	05	104.92(9)
01	K1	N4 ¹	146.46(9)
O1 ¹	K1	N41	22.59(8)
O11	K1	N5 ²	139.89(9)
01	K1	N5 ²	92.43(9)
01	K1	$N7^2$	68.33(10)
O11	K1	$N7^2$	100.94(10)
01	K1	N8 ²	90.60(11)
O21	K1	K1 ¹	78.03(6)
$O2^{1}$	K1	O 1 ¹	44.13(8)
O21	K1	O4 ²	76.49(9)
O21	K1	05	73.71(9)
O21	K1	N4 ¹	22.37(8)
$O2^{1}$	K1	N5 ²	98.89(9)
02^{1}	K1	N7 ²	116.70(10)
02^{1}	K1	N8 ²	97.23(11)
$O3^{2}$	K1	K1 ¹	160.44(7)
03	K1	K1 ¹	36.02(7)
03	K1	011	67.88(9)
O3 ²	K1	O1 ¹	160.06(9)
03	K1	O21	111.98(9)
O3 ²	K1	O21	121.27(9)
03	K1	O3 ²	124.67(8)
O3 ²	K1	O4 ²	45.06(9)
03	K1	O4 ²	166.92(9)
03	K1	05	121.72(10)
O3 ²	K1	05	88.15(9)
O3	K1	N41	89.91(9)
O3 ²	K1	N41	143.47(9)
O3 ²	K1	N5 ²	22.38(9)
03	K1	N5 ²	145.25(9)
O3 ²	K1	N7 ²	72.40(10)
03	K1	N7 ²	71.39(10)
03	K1	N8 ²	94.56(10)
O3 ²	K1	N8 ²	66.13(11)
O4 ²	K1	K11	154.45(7)
O4 ²	K1	O1 ¹	119.58(9)
O4 ²	K1	N41	98.85(9)
O4 ²	K1	N5 ²	23.13(8)
O4 ²	K1	N7 ²	96.04(10)
05	K1	K11	101.54(7)
05	K1	O1 ¹	97.66(9)
05	K1	O4 ²	69.53(9)
05	K1	N41	81.70(9)
05	K1	N5 ²	81.21(9)
05	K1	N7 ²	160.54(11)

_

Atom	Atom	Atom	Angle/°
05	K1	N8 ²	143.56(10)
N4 ¹	K1	K11	55.68(6)
N5 ²	K1	K11	174.98(8)
N5 ²	K1	N41	121.10(9)
N7 ²	K1	K 1 ¹	96.88(8)
N7 ²	K1	N41	114.31(10)
N7 ²	K1	N5 ²	80.89(10)
N8 ²	K1	K1 ¹	111.12(9)
N8 ²	K1	O11	99.40(11)
N8 ²	K1	O4 ²	74.05(10)
N8 ²	K1	N4 ¹	103.38(11)
N8 ²	K1	N5 ²	65.11(10)
N8 ²	K1	N7 ²	26.17(10)
O4 ³	K2	K2 ⁴	111.48(7)
O4 ³	K2	O8 ⁵	87.44(9)
O4 ³	K2	N2 ³	58.69(9)
O4 ³	K2	N3 ¹	139.97(9)
O4 ³	K2	N9 ⁴	81.50(9)
O4 ³	K2	N10 ⁵	88.58(9)
O5 ⁴	K2	K2 ⁴	78.49(6)
O5 ⁴	K2	O4 ³	69.18(8)
O5 ⁴	K2	O8 ⁵	81.23(9)
O5 ⁴	K2	N2 ³	127.71(9)
O5 ⁴	K2	N3 ¹	71.17(9)
O5 ⁴	K2	N9 ⁴	23.13(8)
O5 ⁴	K2	N10 ⁵	102.84(9)
O6	K2	K2 ⁴	85.91(7)
O6 ⁴	K2	K2 ⁴	34.63(5)
O6	K2	O4 ³	127.58(9)
O6 ⁴	K2	O4 ³	87.67(9)
06	K2	O5 ⁴	160.98(9)
O6 ⁴	K2	O5 ⁴	44.90(8)
06	K2	O6 ⁴	120.53(7)
O6 ⁴	K2	O7 ⁵	162.99(10)
06	K2	O7 ⁵	65.35(9)
O6 ⁴	K2	O8 ⁵	123.42(9)
06	K2	O8 ⁵	106.39(9)
O6 ⁴	K2	N2 ³	130.81(10)
06	K2	N2 ³	70.23(9)
O6 ⁴	K2	N31	59.81(9)
O6	K2	N31	90.92(9)
O6	K2	N94	139.85(9)
O6 ⁴	K2	N94	22.48(8)
O6 ⁴	K2	N10 ⁵	146.13(9)
06	K2	N10 ⁵	87.75(9)
O7 ⁵	K2	K2 ⁴	145.89(7)
O7	K2	K2 ⁴	35.60(7)

_

Atom	Atom	Atom	Angle/°
07	K2	O4 ³	109.05(10)
O7 ⁵	K2	O4 ³	100.90(9)
07	K2	O5 ⁴	110.78(9)
O7 ⁵	K2	O5 ⁴	124.72(9)
07	K2	O6 ⁴	66.06(9)
07	K2	O6	58.12(9)
07	K2	O7 ⁵	123.29(7)
07	K2	O8 ⁵	162.04(10)
O7 ⁵	K2	O8 ⁵	43.51(8)
07	K2	N2 ³	90.54(10)
O7 ⁵	K2	N2 ³	65.70(10)
07	K2	N31	80.16(10)
O7 ⁵	K2	N31	105.82(10)
07	K2	N94	88.46(9)
O7 ⁵	K2	N9 ⁴	143.94(9)
O7 ⁵	K2	N10 ⁵	22.45(9)
07	K2	N10 ⁵	145.74(9)
O8 ⁵	K2	K2 ⁴	144.66(7)
O8 ⁵	K2	N2 ³	92.23(10)
O8 ⁵	K2	N31	91.83(9)
O8 ⁵	K2	N9 ⁴	101.35(9)
O8 ⁵	K2	N10 ⁵	22.74(9)
N2 ³	K2	K2 ⁴	123.04(8)
N2 ³	K2	N31	161.10(9)
N2 ³	K2	N9 ⁴	137.32(10)
N2 ³	K2	N10 ⁵	73.46(10)
N31	K2	K2 ⁴	54.27(7)
N94	K2	K2 ⁴	55.36(6)
N94	K2	N31	59.42(9)
N94	K2	N10 ⁵	123.91(9)
N10 ⁵	K2	K2 ⁴	158.49(7)
N10 ⁵	K2	N31	105.38(9)
K1	01	K1 ²	104.80(10)
N4	01	K1	140.6(3)
N4	01	K1 ²	92.9(2)
N4	O2	K1 ²	97.4(2)
K1	O3	K11	108.92(10)
N5	O3	K1	144.9(3)
N5	O3	K11	99.3(2)
K2 ⁶	O4	K11	109.68(11)
N5	O4	K11	92.8(2)
N5	O4	K2 ⁶	111.2(2)
K1	05	K2 ⁵	111.40(11)
N9	05	K1	118.7(2)
N9	05	K2 ⁵	93.5(2)
K2	O6	K2 ⁵	109.51(9)
N9	O6	K2 ⁵	96.8(2)

Atom	Atom	Atom Angle/°	
N9	06	K2	141.9(2)
K2	O7	K2 ⁴	110.79(10)
N10	O7	K2	146.4(3)
N10	O7	K2 ⁴	97.4(2)
N10	08	K2 ⁴	89.1(2)
C3	N1	C2	116.2(3)
N3	N2	K2 ⁶	112.9(3)
C2	N2	K2 ⁶	125.2(3)
C2	N2	N3	117.6(3)
N2	N3	K2 ²	89.0(3)
C4	N3	K2 ²	120.3(3)
C4	N3	N2	119.8(3)
01	N4	K1 ²	64.5(2)
01	N4	C1	122.8(4)
O2	N4	K1 ²	60.19(19)
O2	N4	01	120.9(4)
O2	N4	C1	116.3(3)
C1	N4	K1 ²	160.9(3)
03	N5	K1 ¹	58.4(2)
O3	N5	O4	120.5(3)
O3	N5	C1	122.8(3)
O4	N5	K11	64.0(2)
04	N5	C1	116.6(3)
C1	N5	K11	168.1(3)
С9	N6	C8	116.2(4)
N8	N7	K1 ¹	69.2(2)
C8	N7	K11	172.3(3)
C8	N7	N8	117.7(4)
N7	N8	K1 ¹	84.7(2)
C10	N8	K1 ¹	155.5(3)
C10	N8	N7	119.7(4)
05	N9	K2 ⁵	63.3(2)
05	N9	C7	114.9(3)
O6	N9	K2 ⁵	60.7(2)
O6	N9	05	120.9(3)
O6	N9	C7	124.1(3)
C7	N9	K2 ⁵	162.7(3)
O7	N10	K2 ⁴	60.2(2)
O7	N10	08	120.5(4)
O7	N10	C7	123.0(4)
08	N10	K2 ⁴	68.1(2)
08	N10	C7	116.5(3)
C7	N10	K2 ⁴	152.4(3)
N4	C1	C2	116.9(4)
N5	C1	N4	121.4(3)
N5	C1	C2	121.7(4)
N1	C2	C1	115.6(3)

_

Atom	Atom	Atom	Angle/°	
N2	C2	N1	126.4(4)	
N2	C2	C1	118.1(4)	
N1	C3	C4	119.1(4)	
N1	C3	C5	118.8(4)	
C4	C3	C5	122.1(4)	
N3	C4	C3	120.9(4)	
N3	C4	C6	116.8(4)	
C3	C4	C6	122.3(4)	
N9	C7	N10	122.8(3)	
N9	C7	C8	118.3(4)	
N10	C7	C8	118.9(4)	
N6	C8	C7	117.0(3)	
N7	C8	N6	126.5(4)	
N7	C8	C7	116.5(4)	
N6	C9	C10	119.2(4)	
N6	C9	C31	118.7(4)	
C10	C9	C31	122.1(4)	
N8	C10	C9	120.7(4)	
N8	C10	C11	117.0(4)	
С9	C10	C11	122.3(4)	

 $--\!\!-^{1}\!-\!1/2+x,3/2-y,1-z;\ ^{2}1/2+\overline{x,3/2-y,1-z;}\ ^{3}\!+x,-1+y,+z;\ ^{4}\!-\!1/2+x,1/2-y,1-z;\ ^{5}1/2+x,1/2-y,1-z;\ ^{6}\!+x,1+y,+z;\ ^{4}\!-\!1/2+x,1/2-y,1-z;\ ^{5}1/2+x,1/2-y,1-z;\ ^{6}\!+x,1+y,+z;\ ^{4}\!-\!1/2+x,1/2-y,1-z;\ ^{5}1/2+x,1/2-y,1-z;\ ^{6}\!+x,1+y,+z;\ ^{4}\!+\!1/2+x,1/2-y,1-z;\ ^{5}1/2+x,1/2-y,1-z;\ ^{6}\!+x,1+y,+z;\ ^{6}\!+x,1+y,+z;$

Table S13: Torsion Angles in ° for 5 (Form ii).

Atom	Atom	Atom	Atom	Angle/°
K1	01	N4	K11	117.8(4)
K1	O1	N4	O2	139.6(4)
K11	O1	N4	O2	21.8(4)
K11	O1	N4	C1	-159.7(3)
K1	O1	N4	C1	-42.0(6)
K11	O2	N4	01	-22.7(4)
K 1 ¹	O2	N4	C1	158.7(3)
K1	O3	N5	K1 ²	143.4(5)
K1 ²	O3	N5	O4	16.5(4)
K1	O3	N5	O4	159.9(3)
K1 ²	O3	N5	C1	-166.0(3)
K1	O3	N5	C1	-22.5(7)
K1 ²	O4	N5	O3	-15.6(4)
K1 ²	O4	N5	C1	166.7(3)
K1	O5	N9	K2 ³	-116.8(2)
K1	O5	N9	O6	-96.8(4)
K1	O5	N9	C7	82.3(4)
K11	N4	C1	N5	-85.6(8)
K11	N4	C1	C2	94.1(8)
K1 ²	N5	C1	N4	-86.0(13
K1 ²	N5	C1	C2	94.3(12
K1 ²	N7	N8	C10	-177.3(5)

$K1^2$ N8 C10 C9 -171.3(5) $K1^2$ N8 C10 C11 8.7(10) $K2^4$ O4 N5 K12 112.39(18) $K2^4$ O4 N5 O3 96.8(3) $K2^4$ O4 N5 C1 -80.9(4) $K2^3$ O5 N9 O6 20.0(4) $K2^3$ O5 N9 C7 -160.9(3) $K2$ O6 N9 K23 -134.2(4) $K2$ O6 N9 C7 -26.2(6) $K2^3$ O6 N9 C7 160.5(3) $K2$ O7 N10 K25 -147.3(5) $K2$ O7 N10 C8 -33.2(4) $K2$ O7 N10 C7 0.3(7) $K2^5$ O7 N10 C7 -150.1(3) $K2^4$ N2 N3 K21 77.55(19) $K2^4$ N2 C2 N1 <td< th=""><th>Atom</th><th>Atom</th><th>Atom</th><th>Atom</th><th>Angle/°</th></td<>	Atom	Atom	Atom	Atom	Angle/°
$K1^2$ N8C10C118.7(10) $K2^4$ O4N5 $K1^2$ 112.39(18) $K2^4$ O4N5O396.8(3) $K2^4$ O4N5C1-80.9(4) $K2^3$ O5N9O620.0(4) $K2^3$ O5N9C7-160.9(3) $K2$ O6N9 $K2^3$ -134.2(4) $K2$ O6N9O5-154.8(3) $K2^3$ O6N9O5-20.5(4) $K2$ O6N9C726.2(6) $K2^3$ O6N9C7160.5(3) $K2$ O7N10K2 ⁵ -147.3(5) $K2$ O7N10O8-33.2(4) $K2$ O7N10C70.3(7) $K2^5$ O7N10C7-150.1(3) $K2^5$ O7N10C7-150.1(3) $K2^4$ N2N3K2 ¹ 77.55(19) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7N1096.6(9) $K2^5$ N10C7C8-101.2(6)O1N4C1C2-173.7(4)O2N4 <t< td=""><td>K1²</td><td>N8</td><td>C10</td><td>C9</td><td>-171.3(5)</td></t<>	K1 ²	N8	C10	C9	-171.3(5)
$K2^4$ O4N5 $K1^2$ $112.39(18)$ $K2^4$ O4N5O3 $96.8(3)$ $K2^4$ O4N5C1 $-80.9(4)$ $K2^3$ O5N9O6 $20.0(4)$ $K2^3$ O5N9C7 $-160.9(3)$ $K2$ O6N9C3 $-134.2(4)$ $K2$ O6N9O5 $-154.8(3)$ $K2^3$ O6N9O5 $-20.5(4)$ $K2$ O6N9C7 $26.2(6)$ $K2^3$ O6N9C7 $160.5(3)$ $K2$ O7N10 $K2^5$ $-147.3(5)$ $K2$ O7N10C7 $0.3(7)$ $K2^5$ O7N10O8 $-17.5(3)$ $K2^5$ O7N10C7 $0.3(7)$ $K2^5$ O7N10C7 $147.7(4)$ $K2^5$ O8N10C7 $-150.1(3)$ $K2^4$ N2N3 $K2^1$ $77.55(19)$ $K2^4$ N2N3C4 $-157.6(4)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4 $C6$ $-68.7(5)$ $K2^3$ N9C7C8 $-81.8(9)$ $K2^3$ N9C7C8 $-81.8(9)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4C6 $-68.7(5)$ $K2^3$ N9C7C8 $-101.2(6)$ O1N4C1C2	K1 ²	N8	C10	C11	8.7(10)
$K2^4$ O4N5O396.8(3) $K2^4$ O4N5C1-80.9(4) $K2^3$ O5N9O620.0(4) $K2^3$ O5N9C7-160.9(3) $K2$ O6N9K2^3-134.2(4) $K2$ O6N9O5-154.8(3) $K2^3$ O6N9O5-20.5(4) $K2$ O6N9C726.2(6) $K2^3$ O6N9C7160.5(3) $K2$ O7N10K25-147.3(5) $K2$ O7N10O8179.5(3) $K2^5$ O7N10C70.3(7) $K2^5$ O7N10C7147.7(4) $K2^5$ O8N10C7-150.1(3) $K2^4$ N2N3K2177.55(19) $K2^4$ N2N3C4-157.6(4) $K2^4$ N2C2N1151.9(3) $K2^4$ N2C2N1151.9(3) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^3$ N9C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1C2 </td <td>K2⁴</td> <td>O4</td> <td>N5</td> <td>K1²</td> <td>112.39(18)</td>	K2 ⁴	O4	N5	K1 ²	112.39(18)
$K2^4$ O4N5C1 $-80.9(4)$ $K2^3$ O5N9O620.0(4) $K2^3$ O5N9C7 $-160.9(3)$ $K2$ O6N9K2^3 $-134.2(4)$ $K2$ O6N9O5 $-154.8(3)$ $K2^3$ O6N9O5 $-20.5(4)$ $K2$ O6N9C726.2(6) $K2^3$ O6N9C726.2(6) $K2^3$ O6N9C7160.5(3) $K2$ O7N10K25 $-147.3(5)$ $K2$ O7N10O8 $-33.2(4)$ $K2$ O7N10C7 $0.3(7)$ $K2^5$ O7N10C7 $0.3(7)$ $K2^5$ O7N10C7 $147.7(4)$ $K2^5$ O8N10C7 $-150.1(3)$ $K2^4$ N2N3 $K2^4$ $77.55(19)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4C3 $110.0(4)$ $K2^1$ N3C4C3 $110.0(4)$ $K2^1$ N3C4C6 $-68.7(5)$ $K2^3$ N9C7C8 $-81.8(9)$ $K2^5$ N10C7C8 $-81.8(9)$ $K2^5$ N10C7C8 $-81.8(9)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1C2 $-158.9(4)$ O2N4C1N5 $-160.1(4)$	K2 ⁴	O4	N5	O3	96.8(3)
$K2^3$ O5N9O620.0(4) $K2^3$ O5N9C7-160.9(3) $K2$ O6N9 $K2^3$ -134.2(4) $K2$ O6N9O5-154.8(3) $K2^3$ O6N9C726.2(6) $K2^3$ O6N9C7160.5(3) $K2$ O7N10 $K2^5$ -147.3(5) $K2$ O7N10O8179.5(3) $K2$ O7N10O8179.5(3) $K2$ O7N10O8-33.2(4) $K2$ O7N10C70.3(7) $K2^5$ O7N10C7147.7(4) $K2^5$ O8N10C7-150.1(3) $K2^4$ N2N3 $K2^1$ 77.55(19) $K2^4$ N2N3C4-157.6(4) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-81.8(9) $K2^5$ N10C7C8-81.8(9) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1N5-160.1(4)O2N4C1<	K2 ⁴	O4	N5	C1	-80.9(4)
$K2^3$ O5N9C7 $-160.9(3)$ $K2$ O6N9 $K2^3$ $-134.2(4)$ $K2$ O6N9O5 $-154.8(3)$ $K2^3$ O6N9C7 $26.2(6)$ $K2^3$ O6N9C7 $160.5(3)$ $K2$ O7N10 $K2^5$ $-147.3(5)$ $K2$ O7N10O8 $179.5(3)$ $K2$ O7N10O8 $-33.2(4)$ $K2$ O7N10C7 $0.3(7)$ $K2^5$ O7N10C7 $0.3(7)$ $K2^5$ O8N10O7 $30.8(4)$ $K2^5$ O8N10C7 $-150.1(3)$ $K2^4$ N2N3 $K2^1$ $77.55(19)$ $K2^4$ N2N3C4 $-157.6(4)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4 $C6$ $-68.7(5)$ $K2^3$ N9C7C8 $-81.8(9)$ $K2^5$ N10C7C8 $-81.8(9)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1C2 $-173.7(4)$ O2N4C1C2 $-173.7(4)$ O4N5C1C4 $-176.3(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$	K2 ³	O5	N9	O6	20.0(4)
K206N9K23 $-134.2(4)$ K206N905 $-154.8(3)$ K2306N905 $-20.5(4)$ K206N9C7 $26.2(6)$ K2306N9C7 $160.5(3)$ K207N10K25 $-147.3(5)$ K207N1008 $179.5(3)$ K207N1008 $-33.2(4)$ K207N10C7 $0.3(7)$ K2507N10C7 $0.3(7)$ K2508N10C7 $-150.1(3)$ K2508N10C7 $-150.1(3)$ K24N2N3C4 $-157.6(4)$ K24N2C2N1 $151.9(3)$ K24N2C2C1 $-28.6(6)$ K21N3C4C3 $110.0(4)$ K24N2C2C1 $-28.6(6)$ K21N3C4C6 $-68.7(5)$ K23N9C7C8 $-81.8(9)$ K25N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O2N4C1N5 $21.4(6)$ O3N5C1C2 $-173.7(4)$ O4N5C1N4 $-0.6(6)$ O3N5C1N4 $-160.1(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ <td>K2³</td> <td>O5</td> <td>N9</td> <td>C7</td> <td>-160.9(3)</td>	K2 ³	O5	N9	C7	-160.9(3)
K206N905 $-154.8(3)$ K2306N905 $-20.5(4)$ K206N9C7 $26.2(6)$ K2306N9C7 $160.5(3)$ K207N10K25 $-147.3(5)$ K207N1008 $179.5(3)$ K207N1008 $-33.2(4)$ K207N10C7 $0.3(7)$ K2507N10C7 $147.7(4)$ K2508N10C7 $-150.1(3)$ K24N2N3K21 $77.55(19)$ K24N2N3C4 $-157.6(4)$ K24N2C2N1 $151.9(3)$ K24N2C2N1 $151.9(3)$ K24N2C2C1 $-28.6(6)$ K21N3C4C3 $110.0(4)$ K21N3C4C6 $-68.7(5)$ K23N9C7N1096.6(9)K23N9C7C8 $-81.8(9)$ K25N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1C2 $19.6(5)$ O3N5C1N4 $-60(6)$ O3N5C1C2 $4.0(6)$ O4N5C1C2 $4.0(6)$ O5N9C7C8 $-1.9(5)$ O6N9C7C8 $17.2(4)$ O4N5C1C2 $4.0(6)$ O	K2	O6	N9	K2 ³	-134.2(4)
$K2^3$ 06N905 $-20.5(4)$ $K2$ 06N9C726.2(6) $K2^3$ 06N9C7160.5(3) $K2$ 07N10 $K2^5$ $-147.3(5)$ $K2$ 07N1008179.5(3) $K2^5$ 07N1008 $-33.2(4)$ $K2$ 07N10C7 $0.3(7)$ $K2^5$ 07N10C7 $147.7(4)$ $K2^5$ 08N10C7 $-150.1(3)$ $K2^5$ 08N10C7 $-150.1(3)$ $K2^4$ N2N3 $K2^1$ 77.55(19) $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4C3 $110.0(4)$ $K2^1$ N3C4C6 $-68.7(5)$ $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8 $-81.8(9)$ $K2^5$ N10C7N9 $80.5(7)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1N5 $-160.1(4)$ O2N4C1N5 $-160.1(4)$ O2N4C1C2 $19.6(5)$ O3N5C1N4 $-160.6(6)$ O3N5C1N4 $-160.1(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$	K2	O6	N9	05	-154.8(3)
K206N9C726.2(6)K2306N9C7160.5(3)K207N10K25 $-147.3(5)$ K207N1008179.5(3)K207N1008 $-33.2(4)$ K207N10C7 $0.3(7)$ K2507N10C7 $147.7(4)$ K2508N1007 $30.8(4)$ K2508N10C7 $-150.1(3)$ K24N2N3K2177.55(19)K24N2C2N1 $151.9(3)$ K24N2C2C1 $-28.6(6)$ K21N3C4C3 $110.0(4)$ K21N3C4C6 $-68.7(5)$ K23N9C7N1096.6(9)K23N9C7C8 $-81.8(9)$ K25N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $-160.1(4)$ O2N4C1C2 $-173.7(4)$ O4N5C1C4 $-176.3(4)$ O4N5C1N4 $-176.3(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$ O4N5C1C2 $-173.7(4)$	K2 ³	O6	N9	05	-20.5(4)
$K2^3$ 06N9C7160.5(3) $K2$ 07N10 $K2^5$ -147.3(5) $K2$ 07N1008179.5(3) $K2^5$ 07N1008-33.2(4) $K2$ 07N10C70.3(7) $K2^5$ 07N10C7147.7(4) $K2^5$ 08N100730.8(4) $K2^5$ 08N10C7-150.1(3) $K2^4$ N2N3 $K2^1$ 77.55(19) $K2^4$ N2N3C4-157.6(4) $K2^4$ N2C2N1151.9(3) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1C2-160.1(4)O2N4C1C2-173.7(4)O4N5C1N4-60.6(6)O3N5C1N4-610.2(4)O4N5C1N4-176.3(4)O4N5C1N4-176.3(4)O4N5C1C24.0(6)O5N9C7C8-17.2(4)	K2	O6	N9	C7	26.2(6)
K2O7N10 $K2^{5}$ $-147.3(5)$ K2O7N10O8 $179.5(3)$ K2^{5}O7N10O8 $-33.2(4)$ K2O7N10C7 $0.3(7)$ K2^{5}O7N10C7 $147.7(4)$ K2^{5}O8N10O7 $30.8(4)$ K2^{5}O8N10C7 $-150.1(3)$ K2^{4}N2N3K2^1 $77.55(19)$ K2^4N2N3C4 $-157.6(4)$ K2^4N2C2N1 $151.9(3)$ K2^4N2C2C1 $-28.6(6)$ K2^1N3C4C3 $110.0(4)$ K2^1N3C4C6 $-68.7(5)$ K2^3N9C7N1096.6(9)K2^3N9C7N1096.6(9)K2^5N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $21.4(6)$ O2N4C1N5 $-160.1(4)$ O2N4C1C2 $19.6(5)$ O3N5C1C2 $-173.7(4)$ O4N5C1C2 $4.0(6)$ O5N9C7C8 $-17.2(4)$ O7N10C7C8 $-17.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7C8 $177.2(4)$ O7N10C7C8 $177.2(4)$ O7N10C7	K2 ³	O6	N9	C7	160.5(3)
K2O7N10O8 $179.5(3)$ K25O7N10O8 $-33.2(4)$ K2O7N10C7 $0.3(7)$ K25O7N10C7 $147.7(4)$ K25O8N10O7 $30.8(4)$ K25O8N10C7 $-150.1(3)$ K24N2N3K21 $77.55(19)$ K24N2C2N1 $151.9(3)$ K24N2C2C1 $-28.6(6)$ K21N3C4C3 $110.0(4)$ K22N3C4C6 $-68.7(5)$ K24N2C2C1 $-28.6(6)$ K21N3C4C6 $-68.7(5)$ K23N9C7N1096.6(9)K23N9C7C8 $-81.8(9)$ K25N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $21.4(6)$ O2N4C1N5 $-160.1(4)$ O2N4C1C2 $19.6(5)$ O3N5C1C2 $-173.7(4)$ O4N5C1C2 $4.0(6)$ O5N9C7C8 $-17.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $177.2(4)$ <td>K2</td> <td>07</td> <td>N10</td> <td>K2⁵</td> <td>-147.3(5)</td>	K2	07	N10	K2 ⁵	-147.3(5)
$K2^5$ $O7$ $N10$ $O8$ $-33.2(4)$ $K2$ $O7$ $N10$ $C7$ $0.3(7)$ $K2^5$ $O7$ $N10$ $C7$ $147.7(4)$ $K2^5$ $O8$ $N10$ $O7$ $30.8(4)$ $K2^5$ $O8$ $N10$ $C7$ $-150.1(3)$ $K2^4$ $N2$ $N3$ $K2^1$ $77.55(19)$ $K2^4$ $N2$ $N3$ $C4$ $-157.6(4)$ $K2^4$ $N2$ $C2$ $N1$ $151.9(3)$ $K2^4$ $N2$ $C2$ $C1$ $-28.6(6)$ $K2^1$ $N3$ $C4$ $C6$ $-68.7(5)$ $K2^3$ $N9$ $C7$ $N10$ $96.6(9)$ $K2^3$ $N9$ $C7$ $N9$ $80.5(7)$ $K2^5$ $N10$ $C7$ $C8$ $-101.2(6)$ $O1$ $N4$ $C1$ $N5$ $21.4(6)$ $O1$ $N4$ $C1$ $N5$ $21.4(6)$ $O1$ $N4$ $C1$ $C2$ $-158.9(4)$ $O2$ $N4$ $C1$ $N5$ $-160.1(4)$ $O2$ $N4$ $C1$ $C2$ $-173.7(4)$ $O4$ $N5$ $C1$ $N4$ $-176.3(4)$ $O4$ $N5$ $C1$ $N4$ $-176.3(4)$ $O4$ $N5$ $C1$ $C2$ $4.0(6)$ $O5$ $N9$ $C7$ $C8$ $-17.2(4)$ <td>K2</td> <td>07</td> <td>N10</td> <td>08</td> <td>179.5(3)</td>	K2	07	N10	08	179.5(3)
$K2$ $O7$ $N10$ $C7$ $0.3(7)$ $K2^5$ $O7$ $N10$ $C7$ $147.7(4)$ $K2^5$ $O8$ $N10$ $O7$ $30.8(4)$ $K2^5$ $O8$ $N10$ $C7$ $-150.1(3)$ $K2^4$ $N2$ $N3$ $K2^1$ $77.55(19)$ $K2^4$ $N2$ $N3$ $C4$ $-157.6(4)$ $K2^4$ $N2$ $C2$ $N1$ $151.9(3)$ $K2^4$ $N2$ $C2$ $C1$ $-28.6(6)$ $K2^1$ $N3$ $C4$ $C3$ $110.0(4)$ $K2^1$ $N3$ $C4$ $C6$ $-68.7(5)$ $K2^3$ $N9$ $C7$ $N10$ $96.6(9)$ $K2^3$ $N9$ $C7$ $R8$ $-81.8(9)$ $K2^5$ $N10$ $C7$ $R8$ $-101.2(6)$ $O1$ $N4$ $C1$ $N5$ $21.4(6)$ $O1$ $N4$ $C1$ $N5$ $-160.1(4)$ $O2$ $N4$ $C1$ $C2$ $-173.7(4)$ $O4$ $N5$ $C1$ $N4$ $-176.3(4)$ $O4$ $N5$ $C1$ $C4$ $C1$ $O5$ $N9$ $C7$ $N10$ $176.5(4)$ $O5$ $N9$ $C7$ $R8$ $-1.9(5)$ $O6$ $N9$ $C7$ $R8$ $-1.9(5)$ $O6$ $N9$ $C7$ $R8$ $177.2(4)$ $O7$ $N10$ $C7$ $R8$ $-1.9(5)$ $O6$ $N9$ $C7$ $R8$ $177.2(4)$ $O7$ $N10$ $C7$ $R8$ $177.2(4)$	K2 ⁵	07	N10	08	-33.2(4)
$K2^5$ O7N10C7147.7(4) $K2^5$ O8N10O730.8(4) $K2^5$ O8N10C7-150.1(3) $K2^4$ N2N3 $K2^1$ 77.55(19) $K2^4$ N2N3C4-157.6(4) $K2^4$ N2C2N1151.9(3) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1N521.4(6)O2N4C1C219.6(5)O3N5C1C24.0(6)O4N5C1N4-176.3(4)O4N5C1C24.0(6)O5N9C7C8-1.9(5)O6N9C7C8177.2(4)O7N10C7C8177.2(4)O7N10C7C8171.1(4)O8N10C7C8171.1(4)O8N10C7C8-8.0(6)N1C3C4N3-1.6(7)N1C3C4C6177.0(4)	K2	07	N10	C7	0.3(7)
$K2^5$ O8N10O7 $30.8(4)$ $K2^5$ O8N10C7 $-150.1(3)$ $K2^4$ N2N3 $K2^1$ $77.55(19)$ $K2^4$ N2N3C4 $-157.6(4)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4C3 $110.0(4)$ $K2^1$ N3C4C6 $-68.7(5)$ $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8 $-81.8(9)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $-160.1(4)$ O2N4C1C2 $-173.7(4)$ O4N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7C8 $-1.9(5)$ O6N9C7C8 $177.2(4)$ O7N10C7N9 $7.2(7)$ O7N10C7C8 $171.1(4)$ O8N10C7N9 $7.2(7)$ O7N10C7C8 $171.1(4)$ O8N10C7C8 $8.0(6)$ N1C3C4N3 $-1.6(7)$ N1C3C4C6 $177.0(4)$	K2 ⁵	07	N10	C7	147.7(4)
$K2^5$ $O8$ $N10$ $C7$ $-150.1(3)$ $K2^4$ $N2$ $N3$ $K2^1$ $77.55(19)$ $K2^4$ $N2$ $N3$ $C4$ $-157.6(4)$ $K2^4$ $N2$ $C2$ $N1$ $151.9(3)$ $K2^4$ $N2$ $C2$ $C1$ $-28.6(6)$ $K2^1$ $N3$ $C4$ $C3$ $110.0(4)$ $K2^1$ $N3$ $C4$ $C6$ $-68.7(5)$ $K2^3$ $N9$ $C7$ $N10$ $96.6(9)$ $K2^3$ $N9$ $C7$ $R8$ $-81.8(9)$ $K2^5$ $N10$ $C7$ $R8$ $-81.8(9)$ $K2^5$ $N10$ $C7$ $R8$ $-101.2(6)$ $O1$ $N4$ $C1$ $N5$ $21.4(6)$ $O1$ $N4$ $C1$ $N5$ $21.4(6)$ $O1$ $N4$ $C1$ $C2$ $-158.9(4)$ $O2$ $N4$ $C1$ $N5$ $-160.1(4)$ $O2$ $N4$ $C1$ $C2$ $-173.7(4)$ $O4$ $N5$ $C1$ $N4$ $-176.3(4)$ $O4$ $N5$ $C1$ $C2$ $4.0(6)$ $O5$ $N9$ $C7$ $N10$ $176.5(4)$ $O5$ $N9$ $C7$ $R8$ $-1.9(5)$ $O6$ $N9$ $C7$ $R8$ $177.2(4)$ $O7$ $N10$ $C7$ $R8$ $177.2(4)$ $O7$ $N10$ $C7$ $R8$ $171.1(4)$ $O8$ $N10$ $C7$ $R8$ $171.1(4)$ $O8$ $N10$ $C7$ $R8$ $R0(6)$ <	K2 ⁵	08	N10	O7	30.8(4)
$K2^4$ N2N3 $K2^1$ $77.55(19)$ $K2^4$ N2N3C4 $-157.6(4)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4C3 $110.0(4)$ $K2^1$ N3C4C6 $-68.7(5)$ $K2^3$ N9C7N10 $96.6(9)$ $K2^3$ N9C7C8 $-81.8(9)$ $K2^5$ N10C7N9 $80.5(7)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $-160.1(4)$ O2N4C1N5 $-160.1(4)$ O2N4C1N5 $-160.1(4)$ O3N5C1N4 $-6.0(6)$ O3N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7C8 $-1.9(5)$ O6N9C7C8 $177.2(4)$ O7N10C7C8 $177.2(4)$ O7N10C7C8 $177.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $177.0(4)$	K2 ⁵	08	N10	C7	-150.1(3)
$K2^4$ N2N3C4 $-157.6(4)$ $K2^4$ N2C2N1 $151.9(3)$ $K2^4$ N2C2C1 $-28.6(6)$ $K2^1$ N3C4C3 $110.0(4)$ $K2^1$ N3C4C6 $-68.7(5)$ $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8 $-81.8(9)$ $K2^5$ N10C7N9 $80.5(7)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1N5 $-160.1(4)$ O2N4C1C2 $19.6(5)$ O3N5C1N4 $-6.0(6)$ O3N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7C8 $-1.9(5)$ O6N9C7N10 $77.2(7)$ O7N10C7C8 $177.2(4)$ O7N10C7N9 $7.2(7)$ O7N10C7N9 $7.2(7)$ O7N10C7N9 $173.6(4)$ O8N10C7C8 $171.1(4)$ O8N10C7C8 $-8.0(6)$ N1C3C4C6 $177.0(4)$	K2 ⁴	N2	N3	K21	77.55(19)
$K2^4$ N2C2N1151.9(3) $K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1N5-160.1(4)O2N4C1N5-160.1(4)O2N4C1C219.6(5)O3N5C1N4-6.0(6)O3N5C1N4-176.3(4)O4N5C1C24.0(6)O5N9C7C8-1.9(5)O6N9C7C8177.2(4)O7N10C7C8177.2(4)O7N10C7C8177.2(4)O7N10C7C8171.1(4)O8N10C7N9-7.2(7)O7N10C7C8171.1(4)O8N10C7C8-8.0(6)N1C3C4C6177.0(4)	K2 ⁴	N2	N3	C4	-157.6(4)
$K2^4$ N2C2C1-28.6(6) $K2^1$ N3C4C3110.0(4) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1N5-160.1(4)O2N4C1C219.6(5)O3N5C1N4-6.0(6)O3N5C1N4-176.3(4)O4N5C1C24.0(6)O5N9C7N10176.5(4)O5N9C7C8-1.9(5)O6N9C7C8177.2(4)O7N10C7C8177.2(4)O7N10C7N9-7.2(7)O7N10C7C8171.1(4)O8N10C7C8171.1(4)O8N10C7C8-8.0(6)N1C3C4N3-1.6(7)N1C3C4C6177.0(4)	K2 ⁴	N2	C2	N1	151.9(3)
$K2^1$ N3C4C3110.0(4) $K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1C2-158.9(4)O2N4C1C219.6(5)O3N5C1C219.6(5)O3N5C1N4-6.0(6)O3N5C1C2-173.7(4)O4N5C1C24.0(6)O5N9C7N10176.5(4)O6N9C7C8-1.9(5)O6N9C7C8177.2(4)O7N10C7C8171.1(4)O8N10C7C8171.1(4)O8N10C7C8-8.0(6)N1C3C4C6177.0(4)	K2 ⁴	N2	C2	C1	-28.6(6)
$K2^1$ N3C4C6-68.7(5) $K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1N5-160.1(4)O2N4C1C219.6(5)O3N5C1N4-176.3(4)O4N5C1N4-176.3(4)O4N5C1C24.0(6)O5N9C7N10176.5(4)O6N9C7C8-1.9(5)O6N9C7C8177.2(4)O7N10C7N9-7.2(7)O7N10C7C8171.1(4)O8N10C7C8-8.0(6)N1C3C4C6177.0(4)	K21	N3	C4	C3	110.0(4)
$K2^3$ N9C7N1096.6(9) $K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1N5-160.1(4)O2N4C1C219.6(5)O3N5C1N46.0(6)O3N5C1C2-173.7(4)O4N5C1N4-176.3(4)O4N5C1C24.0(6)O5N9C7N10176.5(4)O5N9C7C8-1.9(5)O6N9C7N10-4.4(7)O6N9C7C8177.2(4)O7N10C7C8171.1(4)O8N10C7N9173.6(4)O8N10C7C8-8.0(6)N1C3C4C6177.0(4)	K21	N3	C4	C6	-68.7(5)
$K2^3$ N9C7C8-81.8(9) $K2^5$ N10C7N980.5(7) $K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1C2-160.1(4)O2N4C1C219.6(5)O3N5C1N46.0(6)O3N5C1C2-173.7(4)O4N5C1C24.0(6)O5N9C7N10176.5(4)O5N9C7C8-1.9(5)O6N9C7N104.4(7)O6N9C7C8177.2(4)O7N10C7C8171.1(4)O8N10C7C8-8.0(6)N1C3C4C6177.0(4)	K2 ³	N9	C7	N10	96.6(9)
$K2^5$ N10C7N9 $80.5(7)$ $K2^5$ N10C7C8 $-101.2(6)$ O1N4C1N5 $21.4(6)$ O1N4C1C2 $-158.9(4)$ O2N4C1N5 $-160.1(4)$ O2N4C1C2 $19.6(5)$ O3N5C1N4 $6.0(6)$ O3N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7N10 $176.5(4)$ O5N9C7C8 $-1.9(5)$ O6N9C7C8 $177.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7N9 $173.6(4)$ O8N10C7C8 $-8.0(6)$ N1C3C4C6 $177.0(4)$	K2 ³	N9	C7	C8	-81.8(9)
$K2^5$ N10C7C8-101.2(6)O1N4C1N521.4(6)O1N4C1C2-158.9(4)O2N4C1N5-160.1(4)O2N4C1C219.6(5)O3N5C1N46.0(6)O3N5C1C2-173.7(4)O4N5C1C24.0(6)O5N9C7N10176.5(4)O5N9C7N10176.5(4)O6N9C7C8-1.9(5)O6N9C7C8177.2(4)O7N10C7C8171.1(4)O8N10C7N9173.6(4)O8N10C7C8-8.0(6)N1C3C4C6177.0(4)	K2 ⁵	N10	C7	N9	80.5(7)
O1N4C1N5 $21.4(6)$ O1N4C1C2 $-158.9(4)$ O2N4C1N5 $-160.1(4)$ O2N4C1C2 $19.6(5)$ O3N5C1N4 $6.0(6)$ O3N5C1C2 $-173.7(4)$ O4N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7N10 $176.5(4)$ O5N9C7C8 $-1.9(5)$ O6N9C7C8 $177.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7C8 $-8.0(6)$ N1C3C4C6 $177.0(4)$	K2 ⁵	N10	C7	C8	-101.2(6)
O1N4 $C1$ $C2$ $-158.9(4)$ $O2$ N4 $C1$ N5 $-160.1(4)$ $O2$ N4 $C1$ $C2$ $19.6(5)$ $O3$ N5 $C1$ N4 $6.0(6)$ $O3$ N5 $C1$ C2 $-173.7(4)$ $O4$ N5 $C1$ C2 $-173.7(4)$ $O4$ N5 $C1$ C2 $4.0(6)$ $O5$ N9 $C7$ N10 $176.5(4)$ $O5$ N9C7C8 $-1.9(5)$ $O6$ N9C7N10 $-4.4(7)$ $O6$ N9C7C8 $177.2(4)$ $O7$ N10C7N9 $-7.2(7)$ $O7$ N10C7N9 $173.6(4)$ $O8$ N10C7C8 $-8.0(6)$ N1C3C4C6 $177.0(4)$	01	N4	C1	N5	21.4(6)
O2N4C1N5-160.1(4) $O2$ N4C1C219.6(5) $O3$ N5C1N46.0(6) $O3$ N5C1C2-173.7(4) $O4$ N5C1N4-176.3(4) $O4$ N5C1C24.0(6) $O5$ N9C7N10176.5(4) $O5$ N9C7C8-1.9(5) $O6$ N9C7C8179.2(4) $O7$ N10C7C8177.2(4) $O7$ N10C7C8171.1(4) $O8$ N10C7N9173.6(4) $O8$ N10C7C8-8.0(6)N1C3C4C6177.0(4)	01	N4	C1	C2	-158.9(4)
O2N4C1C219.6(5)O3N5C1N4 $6.0(6)$ O3N5C1C2 $-173.7(4)$ O4N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7N10 $176.5(4)$ O5N9C7C8 $-1.9(5)$ O6N9C7C8 $1.9(5)$ O6N9C7C8 $177.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7N9 $173.6(4)$ O8N10C7C8 $-8.0(6)$ N1C3C4C6 $177.0(4)$	O2	N4	C1	N5	-160.1(4)
O3N5C1N4 $6.0(6)$ O3N5C1C2 $-173.7(4)$ O4N5C1N4 $-176.3(4)$ O4N5C1C2 $4.0(6)$ O5N9C7N10 $176.5(4)$ O5N9C7C8 $-1.9(5)$ O6N9C7N10 $-4.4(7)$ O6N9C7C8 $177.2(4)$ O7N10C7C8 $171.1(4)$ O8N10C7C8 $-8.0(6)$ N1C3C4N3 $-1.6(7)$	O2	N4	C1	C2	19.6(5)
O3N5C1C2 $-173.7(4)$ $O4$ N5C1N4 $-176.3(4)$ $O4$ N5C1C2 $4.0(6)$ $O5$ N9C7N10 $176.5(4)$ $O5$ N9C7C8 $-1.9(5)$ $O6$ N9C7C8 $-1.9(5)$ $O6$ N9C7C8 $177.2(4)$ $O7$ N10C7C8 $171.1(4)$ $O8$ N10C7N9 $173.6(4)$ $O8$ N10C7C8 $-8.0(6)$ N1C3C4C6 $177.0(4)$	03	N5	C1	N4	6.0(6)
O4 N5 C1 N4 -176.3(4) O4 N5 C1 C2 4.0(6) O5 N9 C7 N10 176.5(4) O5 N9 C7 N10 176.5(4) O5 N9 C7 C8 -1.9(5) O6 N9 C7 C8 177.2(4) O7 N10 C7 C8 177.2(4) O7 N10 C7 C8 171.1(4) O8 N10 C7 C8 171.1(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O3	N5	C1	C2	-173.7(4)
O4 N5 C1 C2 4.0(6) O5 N9 C7 N10 176.5(4) O5 N9 C7 C8 -1.9(5) O6 N9 C7 N10 -4.4(7) O6 N9 C7 C8 177.2(4) O7 N10 C7 N9 -7.2(7) O7 N10 C7 C8 171.1(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O4	N5	C1	N4	-176.3(4)
O5 N9 C7 N10 176.5(4) O5 N9 C7 C8 -1.9(5) O6 N9 C7 N10 -4.4(7) O6 N9 C7 C8 177.2(4) O7 N10 C7 C8 177.2(4) O7 N10 C7 C8 171.1(4) O8 N10 C7 C8 171.1(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O4	N5	C1	C2	4.0(6)
O5 N9 C7 C8 -1.9(5) O6 N9 C7 N10 -4.4(7) O6 N9 C7 C8 177.2(4) O7 N10 C7 C8 177.2(4) O7 N10 C7 C8 171.1(4) O8 N10 C7 C8 171.1(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	05	N9	C7	N10	176.5(4)
O6 N9 C7 N10 -4.4(7) O6 N9 C7 C8 177.2(4) O7 N10 C7 C8 177.2(4) O7 N10 C7 N9 -7.2(7) O7 N10 C7 C8 171.1(4) O8 N10 C7 N9 173.6(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	05	N9	C7	C8	-1.9(5)
O6 N9 C7 C8 177.2(4) O7 N10 C7 N9 -7.2(7) O7 N10 C7 C8 171.1(4) O8 N10 C7 C8 171.3(64) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O6	N9	C7	N10	-4.4(7)
O7 N10 C7 N9 -7.2(7) O7 N10 C7 C8 171.1(4) O8 N10 C7 N9 173.6(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O6	N9	C7	C8	177.2(4)
O7 N10 C7 C8 171.1(4) O8 N10 C7 N9 173.6(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	07	N10	C7	N9	-7.2(7)
O8 N10 C7 N9 173.6(4) O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	07	N10	C7	C8	171.1(4)
O8 N10 C7 C8 -8.0(6) N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O8	N10	C7	N9	173.6(4)
N1 C3 C4 N3 -1.6(7) N1 C3 C4 C6 177.0(4)	O8	N10	C7	C8	-8.0(6)
N1 C3 C4 C6 177.0(4)	N1	C3	C4	N3	-1.6(7)
	N1	C3	C4	C6	177.0(4)

Atom	Atom	Atom	Atom	Angle/°
N2	N3	C4	C3	1.8(7)
N2	N3	C4	C6	-176.8(4)
N3	N2	C2	N1	-3.1(7)
N3	N2	C2	C1	176.4(4)
N4	C1	C2	N1	57.1(5)
N4	C1	C2	N2	-122.4(4)
N5	C1	C2	N1	-123.2(4)
N5	C1	C2	N2	57.3(6)
N6	С9	C10	N8	-1.6(7)
N6	С9	C10	C11	178.4(4)
N7	N8	C10	C9	2.3(7)
N7	N8	C10	C11	-177.8(4)
N8	N7	C8	N6	-0.3(7)
N8	N7	C8	C7	178.7(4)
N9	C7	C8	N6	83.7(5)
N9	C7	C8	N7	-95.5(5)
N10	C7	C8	N6	-94.8(5)
N10	C7	C8	N7	86.1(5)
C2	N1	C3	C4	-0.8(6)
C2	N1	C3	C5	179.6(4)
C2	N2	N3	K21	-124.5(4)
C2	N2	N3	C4	0.4(7)
C3	N1	C2	N2	3.2(7)
C3	N1	C2	C1	-176.2(4)
C5	C3	C4	N3	178.0(4)
C5	C3	C4	C6	-3.4(7)
C8	N6	С9	C10	0.0(6)
C8	N6	С9	C31	-179.4(4)
C8	N7	N8	K1 ²	176.0(4)
C8	N7	N8	C10	-1.3(6)
С9	N6	C8	N7	0.9(6)
С9	N6	C8	C7	-178.1(4)
C31	С9	C10	N8	177.9(4)
C31	C9	C10	C11	-2.1(7)
¹ 1/2+x,3/2-y,1-z; ² -1/2+x,3/2-	y,1-z; $^{3}1/2+x,1/2+x$	2-y, 1-z; 4+x, 1	+v,+z; 5-1/2	2+x,1/2-y,1-z

Table S14: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5 (Form ii)**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	у	Z	U_{eq}
H5A	10102.36	10581.61	1776.71	37
H5B	10507.8	11798.9	1781.91	37
H5C	8703.74	11396.38	1527.21	37
H6A	8298.65	13896.06	2822.09	43
H6B	8255.16	13308.23	2073.96	43
H6C	10004.24	13473.84	2477.19	43

Atom	X	У	Z	U_{eq}
H11A	5141.4	8879.62	2881.68	42
H11B	4949.64	8289.02	2138.75	42
H11C	6775.29	8475.9	2470.79	42
H31A	7215.39	5625.76	1836.37	42
H31B	7529.92	6853.21	1846.87	42
H31C	5769.63	6401.31	1576.67	42

Figure S6: Thermal ellipsoids shown at 50% 5c.

Figure S7: Ball-and-stick packing diagram of 5c viewed up the a axis.

Table S15: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5c**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U _{eq}
01	357.1(17)	5721.6(13)	7272.6(8)	27.7(2)
O2	-2414.0(16)	4278.5(13)	8327.8(8)	23.8(2)

Atom	X	У	Z	U_{eq}
03	2233.1(14)	4214.0(11)	5485.6(7)	18.0(2)
O4	1292.4(14)	1436.8(12)	5505.0(8)	19.8(2)
N1	-3288.7(17)	1005.5(14)	6790.9(9)	17.6(2)
N2	-4730.4(16)	-301.2(14)	7272.8(9)	17.0(2)
N3	-1436.1(16)	275.2(13)	8503.4(8)	14.9(2)
N4	-800.2(17)	4369.2(14)	7518.1(9)	17.2(2)
N5	1097.1(16)	2865.6(13)	5948.8(8)	14.4(2)
C1	-1793.5(19)	1288.6(16)	7435.0(10)	15.0(2)
C2	-4595.1(18)	-1260.9(16)	8350.4(10)	14.5(2)
C3	-2814.6(18)	-1033.5(15)	8966.9(10)	14.1(2)
C4	-409.4(19)	2875.2(16)	6944.8(10)	15.3(2)
C5	-6358.2(19)	-2565.1(17)	8878.7(11)	17.8(2)
C6	-2429.3(19)	-2265.2(16)	10122.3(10)	17.9(2)
N6	3704.7(17)	7622.8(14)	5668.7(9)	15.5(2)

Table S16: Anisotropic Displacement Parameters (×10⁴) for **5c**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	<i>U</i> ₁₂
01	36.1(5)	24.1(5)	26.5(5)	-12.2(4)	10.9(4)	-19.9(4)
O2	25.7(4)	21.8(4)	22.5(5)	-7.3(4)	10.3(4)	-7.5(3)
O3	19.0(4)	15.6(4)	18.9(4)	-2.8(3)	3.2(3)	-7.5(3)
O4	25.0(4)	15.8(4)	20.6(4)	-8.3(3)	0.7(3)	-5.0(3)
N1	19.4(5)	19.0(5)	15.4(5)	-2.3(4)	-2.6(4)	-7.1(4)
N2	18.7(5)	18.1(5)	15.4(5)	-2.8(4)	-2.3(4)	-6.6(4)
N3	16.7(4)	14.6(5)	13.8(5)	-2.7(4)	-1.3(3)	-3.7(4)
N4	20.3(5)	16.0(5)	15.2(5)	-3.0(4)	1.3(4)	-6.0(4)
N5	15.9(4)	13.3(4)	14.3(5)	-2.1(3)	-2.2(4)	-3.1(3)
C1	16.5(5)	14.7(5)	13.9(5)	-2.9(4)	-0.2(4)	-3.3(4)
C2	15.5(5)	13.5(5)	15.1(5)	-4.4(4)	-0.8(4)	-2.4(4)
C3	14.8(5)	12.4(5)	15.3(5)	-4.5(4)	-0.1(4)	-1.8(4)
C4	17.7(5)	14.7(5)	14.2(5)	-3.6(4)	-0.7(4)	-4.7(4)
C5	15.8(5)	18.8(5)	19.5(6)	-3.5(4)	-0.9(4)	-6.6(4)
C6	18.7(5)	18.4(5)	16.6(6)	0.2(4)	-4.0(4)	-5.7(4)
N6	18.7(5)	14.6(5)	14.1(5)	-3.6(4)	0.4(4)	-6.1(4)

Table	S17 :	Bond	Lengths	in	Å	for	5c
Table	BI 7.	Donu	Lenguis	ш.	\mathbf{n}	101	SC.

Atom	Atom	Length/Å
01	N4	1.2446(13)
O2	N4	1.2507(13)
O3	N5	1.2545(12)
O4	N5	1.2559(13)
N1	N2	1.3513(13)
N1	C1	1.3241(15)
N2	C2	1.3233(15)
N3	C1	1.3497(15)

Atom	Atom	Length/Å
N3	C3	1.3235(14)
N4	C4	1.3870(15)
N5	C4	1.3728(15)
C1	C4	1.4829(15)
C2	C3	1.4253(15)
C2	C5	1.4944(15)
C3	C6	1.4942(15)

Table S18: Bond Angles in $^{\circ}$ for 5c.

Atom	Atom	Atom	Angle/°
C1	N1	N2	117.82(10)
C2	N2	N1	119.80(9)
C3	N3	C1	116.25(9)
01	N4	O2	120.70(10)
01	N4	C4	123.79(10)
O2	N4	C4	115.51(9)
03	N5	O4	120.57(9)
03	N5	C4	122.43(10)
O4	N5	C4	117.00(9)
N1	C1	N3	125.80(10)
N1	C1	C4	117.07(10)
N3	C1	C4	117.13(9)
N2	C2	C3	120.14(10)
N2	C2	C5	117.63(10)
C3	C2	C5	122.23(10)
N3	C3	C2	119.69(10)
N3	C3	C6	118.71(10)
C2	C3	C6	121.59(10)
N4	C4	C1	116.37(10)
N5	C4	N4	122.90(10)
N5	C4	C1	120.68(10)

Table S19: Torsion Angles in ° for 5c.

Atom	Atom	Atom	Atom	Angle/°
01	N4	C4	N5	-9.02(18)
01	N4	C4	C1	173.62(10)
O2	N4	C4	N5	171.62(10)
O2	N4	C4	C1	-5.74(15)
03	N5	C4	N4	0.06(17)
O3	N5	C4	C1	177.30(9)
O4	N5	C4	N4	-179.53(10)
O4	N5	C4	C1	-2.28(15)
N1	N2	C2	C3	-5.26(16)
N1	N2	C2	C5	174.72(10)
N1	C1	C4	N4	113.45(12)

Atom	Atom	Atom	Atom	Angle/°
N1	C1	C4	N5	-63.97(14)
N2	N1	C1	N3	6.08(17)
N2	N1	C1	C4	-173.11(10)
N2	C2	C3	N3	6.72(16)
N2	C2	C3	C6	-172.13(10)
N3	C1	C4	N4	-65.81(14)
N3	C1	C4	N5	116.77(12)
C1	N1	N2	C2	-0.77(16)
C1	N3	C3	C2	-1.88(15)
C1	N3	C3	C6	177.00(10)
C3	N3	C1	N1	-4.58(17)
C3	N3	C1	C4	174.61(9)
C5	C2	C3	N3	-173.27(10)
C5	C2	C3	C6	7.88(17)

Table S20: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5c**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U _{eq}
H5A	-7197.06	-2181.22	9580.53	27
H5B	-5611.31	-3854.98	9085.66	27
H5C	-7422.48	-2514.2	8316.44	27
H6A	-3893.85	-2380.17	10618.73	27
H6B	-1416.05	-1706.22	10494.58	27
H6C	-1725.28	-3516.99	10011.51	27
H6D	3820(30)	8510(20)	6074(15)	26(4)
H6E	2770(30)	6750(20)	6023(15)	27(4)
H6F	3270(30)	8230(30)	4931(17)	33(4)
H6G	5100(40)	7030(30)	5503(17)	36(5)

Table S21: Hydrogen Bond information for 5c.

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N6	H6E	01	0.900(18)	2.000(18)	2.8312(13)	152.8(16)
N6	H6E	O3	0.900(18)	2.171(17)	2.8242(12)	128.9(15)

Figure S8: Thermal ellipsoids shown at 50% 5e.

Figure S9: Ball-and-stick packing diagram of 5e viewed up the b axis.

Atom	X	У	Z	U_{eq}
Nal	6599.1(6)	7500	6525.9(4)	15.87(18)
Na2	11948.0(6)	7500	3343.7(4)	15.67(18)
01	4741.0(8)	5473.5(12)	6278.8(6)	21.1(2)
O2	6299.4(7)	4243.1(12)	6499.7(6)	19.6(2)
O3	8234.2(7)	5741.5(12)	6880.8(6)	16.0(2)
O4	9766.2(7)	4528.2(12)	6549.7(6)	19.5(2)
N1	3385.5(13)	2500	5188.3(10)	18.8(3)
N2	2332.8(13)	2500	4967.1(10)	20.8(3)
N3	2936.3(12)	2500	6709.7(9)	15.0(3)
N4	5314.3(8)	4105.8(14)	6345.8(7)	15.2(2)
N5	10872.6(12)	7500	5326.4(10)	18.3(3)

Table S22: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5e**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
N6	11855.8(12)	7500	4955.3(10)	18.4(3)
N7	11638.0(12)	7500	6765.6(9)	15.1(3)
N8	9198.8(8)	5891.1(14)	6666.0(6)	13.8(2)
C1	3638.3(14)	2500	6036.9(11)	14.1(3)
C2	1605.6(15)	2500	5596.4(12)	19.0(4)
C3	1909.7(15)	2500	6480.4(12)	17.7(4)
C4	4800.2(14)	2500	6241.8(12)	15.4(4)
C5	10812.8(14)	7500	6198.9(11)	13.5(3)
C6	12705.1(15)	7500	5477.0(12)	18.1(4)
C7	12601.5(15)	7500	6390.5(11)	16.4(4)
C8	9704.1(14)	7500	6548.4(11)	13.3(3)

Table S23: Anisotropic Displacement Parameters (×10⁴) for **5e**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U ₁₁	U ₂₂	U33	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Nal	17.1(4)	14.8(3)	15.7(3)	0	0.9(3)	0
Na2	18.5(4)	14.0(3)	14.5(3)	0	0.5(3)	0
01	18.2(5)	11.7(4)	33.5(5)	1.1(4)	1.6(4)	4.2(4)
O2	11.4(4)	17.4(4)	30.0(5)	-0.8(3)	-1.7(3)	-2.3(3)
O3	11.1(4)	16.1(4)	20.7(4)	1.0(3)	1.6(3)	-1.6(3)
O4	17.3(4)	12.3(4)	29.0(5)	-1.8(3)	1.9(3)	3.8(4)
N1	16.7(7)	23.2(8)	16.6(7)	0	1.0(6)	0
N2	19.4(8)	25.3(8)	17.6(7)	0	-3.3(6)	0
N3	14.6(7)	15.0(7)	15.4(7)	0	0.2(5)	0
N4	12.5(5)	14.1(5)	19.1(5)	-0.4(4)	1.2(4)	0.2(4)
N5	14.8(7)	23.9(8)	16.3(7)	0	-0.3(6)	0
N6	14.3(7)	24.7(8)	16.1(7)	0	1.2(6)	0
N7	13.6(7)	15.8(7)	16.1(7)	0	-1.2(5)	0
N8	13.3(5)	13.8(5)	14.2(5)	-0.6(4)	-1.1(4)	0.9(4)
C1	13.7(8)	11.3(8)	17.2(8)	0	0.3(6)	0
C2	15.2(9)	22.8(9)	18.9(8)	0	-3.1(7)	0
C3	13.9(9)	20.8(9)	18.5(8)	0	1.8(7)	0
C4	13.2(8)	11.0(8)	21.8(8)	0	0.1(6)	0
C5	12.4(8)	11.8(8)	16.2(8)	0	0.5(6)	0
C6	13.9(8)	22.3(9)	18.1(8)	0	1.9(7)	0
C7	12.4(8)	19.3(8)	17.5(8)	0	-1.4(7)	0
C8	11.5(8)	12.2(8)	16.1(8)	0	-0.3(6)	0

Table S24: Bond Lengths in Å for 5e.

Atom	Atom	Length/Å
Nal	Na2 ¹	4.1732(4)
Na1	O1	2.7940(11)
Na1	O1 ²	2.7940(11)
Na1	O2	2.4751(9)
Na1	$O2^2$	2.4751(9)

Atom	Atom	Length/Å
Nal	O3 ²	2.4856(10)
Nal	O3	2.4856(10)
Nal	N1 ³	2.6132(16)
Nal	N2 ³	2.6358(17)
Nal	N4 ²	3.0220(11)
Nal	N4	3.0220(11)
Na1	N7 ⁴	2.6048(16)
Na2	O2 ⁵	2.5550(11)
Na2	O2 ⁶	2.5550(11)
Na2	O3 ⁶	2.4693(9)
Na2	O3 ⁵	2.4693(9)
Na2	O4 ⁶	2.6267(11)
Na2	O4 ⁵	2.6267(11)
Na2	N3 ⁷	2.4949(15)
Na2	N6	2.4593(16)
Na2	N8 ⁵	2.9199(11)
Na2	N8 ⁶	2.9199(11)
01	N4	1.2550(13)
02	N4	1.2525(14)
03	N8	1.2494(14)
O4	N8	1.2563(13)
N1	N2	1.353(2)
N1	C1	1.331(2)
N2	C2	1.319(3)
N3	C1	1.347(2)
N3	C3	1.325(2)
N4	C4	1.3747(13)
N5	N6	1.348(2)
N5	C5	1.332(2)
N6	C6	1.323(2)
N7	C5	1.342(2)
N7	C7	1.328(2)
N8	C8	1.3742(13)
C1	C4	1.479(2)
C2	C3	1.400(3)
C5	C8	1.479(2)
C6	C7	1.398(2)

 $---^{1}2-x, 2-y, 1-z; \ ^{2}+x, 3/2-y, +z; \ ^{3}\overline{1-x, 1-y, 1-z;} \ ^{4}-1/2+x, +y, 3/2-z; \ ^{5}2-x, 1-y, 1-z; \ ^{6}2-x, 1/2+y, 1-z; \ ^{7}3/2-x, 1-y, -1/2+z$

Table S25: Bond Angles in ° for 5e.

Atom	Atom	Atom	Angle/°
011	Na1	Na2 ²	82.80(2)
01	Na1	Na2 ²	148.80(3)
01	Na1	O11	66.03(4)
01	Na1	N4	24.52(3)
O11	Na1	N4	90.55(3)

Atom	Atom	Atom	Angle/°
$\frac{01^{1}}{01^{1}}$	Nal	N41	24 52(3)
01	Nal	N41	90 55(3)
02^{1}	Nal	Na22	34.56(2)
02	Nal	Na22	162.87(3)
02	Nal	Na2	102.87(3)
02	Na1	01	40.29(3)
02	Na1	01	40.20(3) 114 21(4)
02	INAI Nai	01	114.31(4)
02	INAI Nai	011	114.31(4) 162.57(5)
02	Na1	021	102.37(3)
021	Nal	031	66.52(3)
02	Nal	03	66.52(3)
02	Nal	031	130.70(4)
021	Nal	03	130.70(4)
$O2^1$	Nal	N13	89.14(3)
02	Na1	$N1^3$	89.14(3)
$O2^1$	Na1	$N2^3$	93.56(3)
02	Nal	$N2^3$	93.56(3)
$O2^1$	Na1	N4	138.83(4)
O2	Na1	N41	138.83(4)
O2	Na1	N4	23.78(3)
O21	Na1	N41	23.78(3)
02	Na1	$N7^4$	91.09(3)
O21	Nal	N7 ⁴	91.09(3)
03	Nal	Na2 ²	96.50(3)
O31	Na1	Na2 ²	32.50(2)
03	Na1	01	114.67(3)
O31	Na1	01	175.17(4)
03	Na1	O11	175.16(4)
O31	Na1	O11	114.67(3)
O31	Na1	03	64.21(4)
O31	Na1	N1 ³	102.21(4)
03	Na1	N1 ³	102.21(4)
O31	Na1	N2 ³	77.00(4)
03	Nal	$N2^3$	77.00(4)
03	Nal	N4 ¹	154.33(3)
O31	Nal	N4	154 33(3)
03 ¹	Nal	N41	90 26(3)
03	Nal	N4	90.26(3)
03	Nal	N74	76.54(4)
03 ¹	Nal	N74	76.54(4)
N13	Nal	$N_2 2^2$	9255(2)
N13	Na1	01	92.33(2) 82.60(4)
1N1° N13	INAI Nal	01	02.00(4) 82.61(4)
IN 1.º NI 1.3	INAI Nal	ND3	02.01(4) 20.97(5)
IN 1 3	INAI N1	INZ ³	29.87(3) 95.01(2)
INI ²	INA1	IN4	85.01(3)
NI ³	Nal	N41	85.01(3)
N23	Nal	$Na2^2$	79.78(2)
Atom	Atom	Atom	Angle/°
------------------	------	------------------	------------------------
	Nal	011	107.52(<i>A</i>)
1NZ- NI23	Na1	01	107.32(4) 107.52(4)
N23	Nal	UI N4	107.32(4)
N23	Nal	IN4 N141	100.86(3)
N2 ³	Nal	N4 ¹	100.86(3)
N4	Nal	Na ²²	173.16(3)
N4 ¹	Nal	Na2 ²	58.28(2)
N4 ¹	Nal	N4	115.07(5)
N74	Nal	Na2 ²	86.81(2)
N74	Nal	011	98.64(4)
N74	Nal	01	98.64(4)
N7 ⁴	Nal	N1 ³	178.51(6)
N74	Nal	N2 ³	148.64(6)
N7 ⁴	Na1	N41	95.78(3)
N7 ⁴	Nal	N4	95.78(3)
Na1 ²	Na2	Na1 ⁵	128.32(2)
O2 ⁶	Na2	Na1 ⁵	94.99(3)
O2 ⁵	Na2	Na1 ⁵	33.33(2)
O2 ⁶	Na2	Na1 ²	33.33(2)
O2 ⁵	Na2	Na1 ²	94.99(3)
O2 ⁶	Na2	O2 ⁵	61.66(4)
O2 ⁶	Na2	O4 ⁵	170.00(4)
O2 ⁵	Na2	O4 ⁵	112.97(3)
O^{2^6}	Na2	$O4^{6}$	112.97(3)
02^{5}	Na2	04^{6}	172.97(3) 170.00(4)
02^{5}	Na2	N85	88 32(3)
02^{6}	Na2	N85	149 86(3)
02^{6}	Na2	N86	88 32(3)
02^{5}	Na2	N86	1/0.52(5)
02	Na2	No15	1+9.80(3)
036	Na2	Na15	32.74(2)
03	Na2	Nal?	159.05(3)
036	Na2	Na12	137.03(3)
035	INa2	1Na1- 026	32.74(2)
03	INAZ	02*	120.03(4)
035	INAZ	025	05.54(3)
030	Na2	023	126.63(4)
030	Na2	020	65.54(3)
035	Na2	030	160.87(5)
035	Na2	O46	120.40(4)
O36	Na2	O4 ⁵	120.40(4)
O3 ⁶	Na2	O4 ⁶	50.36(3)
O3 ⁵	Na2	O4 ⁵	50.36(3)
O3 ⁶	Na2	N3 ⁷	82.36(3)
O3 ⁵	Na2	N3 ⁷	82.36(3)
O3 ⁵	Na2	N8 ⁶	144.56(4)
O3 ⁶	Na2	N8 ⁶	25.06(3)
O3 ⁶	Na2	N8 ⁵	144.56(4)
O3 ⁵	Na2	N8 ⁵	25.06(3)

Atom	Atom	Atom	Angle/°
$\overline{O4^5}$	Na2	Na15	80.03(2)
O4 ⁶	Na2	Na1 ²	80.03(2)
O4 ⁵	Na2	Na1 ²	150.58(3)
$O4^{6}$	Na2	Na15	150.58(3)
04^{5}	Na2	O46	70 91(4)
046	Na2	N85	96.28(4)
04	Na2	N86	25.28(4)
045	Na2	N0 N06	25.40(5)
045	Na2	1N0" N195	90.20(4)
N27	INa2	No ¹⁵	23.40(3)
N3 ⁷	Na2	Na1-	91.29(2)
N3' N27	Na2	Na1-	91.29(2)
N3′	Na2	025	92.52(4)
N37	Na2	026	92.52(4)
N3′	Na2	043	96.24(4)
N3′	Na2	04°	96.24(4)
N37	Na2	N86	91.33(3)
N37	Na2	N8 ⁵	91.33(3)
N6	Na2	Na1 ²	88.43(2)
N6	Na2	Na1 ⁵	88.43(2)
N6	Na2	O2 ⁵	86.93(4)
N6	Na2	$O2^6$	86.93(4)
N6	Na2	O3 ⁵	97.71(3)
N6	Na2	O36	97.71(3)
N6	Na2	O4 ⁵	84.28(4)
N6	Na2	O4 ⁶	84.28(4)
N6	Na2	N3 ⁷	179.37(6)
N6	Na2	N8 ⁵	88.98(3)
N6	Na2	N86	88.98(3)
N86	Na2	Na1 ⁵	175.69(3)
N8 ⁵	Na2	Na1 ²	175.69(3)
N8 ⁵	Na2	Na1 ⁵	55.03(2)
N86	Na2	Na1 ²	55.03(2)
N8 ⁵	Na2	N8 ⁶	121.48(5)
N4	01	Nal	87.96(7)
Nal	02	Na2 ⁵	112.11(4)
N4	02	Nal	103 41(7)
N4	02	Na2 ⁵	144 18(8)
Na25	03	Nal	114.75(4)
N8	03	Nal	132 99(7)
N8	03	Na25	98 08(7)
N8	04	Na25	90.42(7)
N2	N1	No13	75 00(0)
1N2	INI NI	No13	165 01(12)
	1N1 N11	INAI"	103.71(13) 110.11(15)
N1	INI ND	INZ	74.15(0)
	INZ	INd1 ³	(4.13(9))
C2	INZ	INAL'	100.90(13)
C2	N2	IN I	118.90(15)

Atom	Atom	Atom	Angle/°
$\overline{C1}$	N3	Na28	136 27(12)
C3	N3	Na2 ⁸	108.61(11)
C3	N3	C1	115 12(15)
01	N4	Na1	67 51(6)
01	N4	C4	11638(11)
02	N4	Na1	52 82(6)
02	N4	01	1202(0)
02	N4	C4	123.33(11)
C4	N4	Na1	175 64(9)
C5	N5	N6	118.02(15)
N5	N6	Na2	117 49(11)
C6	N6	Na2	124 29(12)
C6	N6	N5	118 22(15)
C5	N7	Na19	129.00(12)
C7	N7	Na1 ⁹	116 56(11)
C7	N7	C5	110.30(11) 114.44(15)
03	N8	Na25	56 85(6)
03	N8	04	12026(10)
03	N8	C8	123.57(11)
04	N8	Na2 ⁵	64.10(6)
04	N8	C8	116.17(11)
C8	N8	Na2 ⁵	172.01(9)
N1	C1	N3	125.90(16)
N1	C1	C4	115.86(15)
N3	C1	C4	118.24(15)
N2	C2	C3	120.98(17)
N3	C3	C2	120.99(17)
N4	C4	N4 ¹⁰	122.69(16)
N4	C4	C1	118.64(8)
N4 ¹⁰	C4	C1	118.64(8)
N5	C5	N7	126.86(16)
N5	C5	C8	114.31(15)
N7	C5	C8	118.83(15)
N6	C6	C7	121.67(17)
N7	C7	C6	120.79(16)
N8	C8	N81	123.16(15)
N8 ¹	C8	C5	118.29(8)
N8	C8	C5	118.29(8)

 $\underbrace{---^{1}+x,3/2-y,+z;}_{x,1-y,1-z;} \underbrace{^{2}-x,2-y,1-z;}_{y,1-z;} \underbrace{^{3}-x,1-y,1-z;}_{y,1-z;} \underbrace{^{4}-1/2+x,+y,3/2-z;}_{y,2-z;} \underbrace{^{5}-x,1-y,1-z;}_{y,2-x,1-y,1-z;} \underbrace{^{2}-x,1-y,1-z;}_{y,2-x,1-y,1-z;} \underbrace{^{3}-x,1-y,1-z;}_{y,2-x,1-y,1-z;} \underbrace{^{3}-x,1-y,1-z;}_{y,2-x,1-z;} \underbrace{^{3}-x,1-y,1-z;}_{y,2-x,1-z;} \underbrace{^{3}-x,1-y,1-z;}_{y,2-x,1-z;} \underbrace{^{3}-x,1-z;}_{y,2-x,1-z;} \underbrace{^{3}-x,1-z;}_{y,2-x,1$

Table S26: Torsion Angles in ° for 5e.

Atom	Atom	Atom	Atom	Angle/°
Nal	01	N4	O2	2.17(11)
Nal	O1	N4	C4	-177.84(11)
Nal	O2	N4	01	-2.52(13)

Atom	Atom	Atom	Atom	Angle/°
Nal	O2	N4	C4	177.49(12)
Nal	O3	N8	Na2 ¹	-135.27(10)
Nal	O3	N8	O4	-145.23(9)
Nal	O3	N8	C8	35.17(17)
Na1 ²	N1	N2	C2	180.000(0)
Na1 ²	N1	C1	N3	180.000(1)
Na1 ²	N1	C1	C4	0.000(1)
Na1 ²	N2	C2	C3	180.000(1)
Na1 ³	N7	C5	N5	180.000(0)
Na1 ³	N7	C5	C8	0.000(0)
Na1 ³	N7	C7	C6	180.000(0)
Na2 ¹	O2	N4	Na1	-172.53(16)
Na2 ¹	O2	N4	01	-175.05(9)
Na2 ¹	O2	N4	C4	5.0(2)
Na2 ¹	O3	N8	O4	-9.95(11)
Na2 ¹	O3	N8	C8	170.45(11)
Na2 ¹	O4	N8	03	9.26(10)
Na2 ¹	O4	N8	C8	-171.11(10)
Na2 ⁴	N3	C1	N1	180.000(0)
Na2 ⁴	N3	C1	C4	0.000(0)
Na2 ⁴	N3	C3	C2	180.000(0)
Na2	N6	C6	C7	180.000(0)
01	N4	C4	N4 ⁵	-176.30(11)
01	N4	C4	C1	1.7(2)
O2	N4	C4	N4 ⁵	3.7(3)
02	N4	C4	C1	-178.29(13)
03	N8	C8	N8 ⁶	0.8(2)
03	N8	C8	C5	-173.31(12)
04	N8	C8	N8 ⁶	-178.82(11)
04	N8	C8	C5	7.07(19)
N1	N2	C2	C3	0.000(0)
N1	C1	C4	N4 ⁵	-90.95(14)
N1	C1	C4	N4	90.95(14)
N2	N1	C1	N3	0.000(0)
N2	N1	C1	C4	180.000(0)
N2	C2	C3	N3	0.000(0)
N3	C1	C4	N4	-89.05(14)
N3	C1	C4	N4 ⁵	89.05(14)
N5	N6	C6	C7	0.000(0)
N5	C5	C8	N8	87.20(13)
N5	C5	C8	$N8^{6}$	-87.20(13)
N6	N5	C5	N7	0.000(0)
N6	N5	C5	C8	180.000(0)
N6	C6	C7	N7	0.000(0)
N7	C5	C8	N8	-92.80(13)
N7	C5	C8	N8 ⁶	92.80(13)
C1	N1	N2	Na1 ²	180.000(0)
CI	INI	INZ	INa1-	180.000(0)

Atom	Atom	Atom	Atom	Angle/°
C1	N1	N2	C2	0.000(0)
C1	N3	C3	C2	0.000(0)
C3	N3	C1	N1	0.000(0)
C3	N3	C1	C4	180.000(0)
C5	N5	N6	Na2	180.000(0)
C5	N5	N6	C6	0.000(0)
C5	N7	C7	C6	0.000(0)
C7	N7	C5	N5	0.000(0)
C7	N7	C5	C8	180.000(0)

-----¹2-x,1-y,1-z; ²1-x,1-y,1-z; ³1/2+x,+y,3/2-z; ⁴3/2-x,1-y,1/2+z; ⁵+x,1/2-y,+z; ⁶+x,3/2-y,+z

Table S27: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **5e**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U _{eq}
H2	880(20)	2500	5441(16)	26(6)
H3	1380(20)	2500	6954(16)	27(6)
H6	13402(19)	7500	5208(14)	17(5)
H7	13211(19)	7500	6744(15)	18(6)

Compound	9	11	12a
Formula	$C_9H_4F_5N_5O_4$	C ₅ H ₇ N ₁₁ O ₄	C ₇ H ₈ F ₃ N ₅ O ₅
$D_{calc.}$ / g cm ⁻³	1.952	1.669	1.714
μ/mm^{-1}	1.854	1.259	1.557
Formula Weight	341.17	285.22	299.18
Color	yellow	yellow	colorless
Shape	plate	plate	plate
Size/mm ³	0.26×0.17×0.08	0.31×0.24×0.07	0.48×0.34×0.08
T/\mathbf{K}	173(1)	172.99	173(1)
Crystal System	monoclinic	monoclinic	triclinic
Space Group	$P2_{1}/c$	C2/c	<i>P</i> -1
a/Å	14.2809(2)	27.0867(4)	7.6530(4)
<i>b</i> /Å	6.21890(10)	6.36110(10)	8.3737(4)
c/Å	14.2905(2)	13.7829(2)	10.1818(6)
$\alpha/^{\circ}$	90	90	108.537(4)
eta / $^{\circ}$	113.8050(10)	107.1240(10)	105.840(4)
$\gamma/^{\circ}$	90	90	96.862(3)
$V/Å^3$	1161.19(3)	2269.53(6)	579.73(6)
Ζ	4	8	2
Z'	1	1	1
Wavelength/Å	1.54178	1.54178	1.54178
Radiation type	CuK _a	CuK _a	CuK_{\Box}
$ heta_{min}/^{\circ}$	6.228	3.415	4.853
$ heta_{max}/^{\circ}$	72.357	70.052	68.151
Measured Refl's.	7683	7818	7520
Ind't Refl's	2246	2144	2067
Refl's with $I > 2(I)$	1966	1862	1816
R _{int}	0.0298	0.0292	0.0501
Parameters	221	193	213
Restraints	0	0	0
Largest Peak	0.321	0.207	0.290
Deepest Hole	-0.243	-0.228	-0.314
GooF	1.103	1.022	1.037
wR_2 (all data)	0.1100	0.1100	0.1142
wR_2	0.0962	0.1051	0.1105
R_I (all data)	0.0411	0.0445	0.0457
R_{I}	0.0352	0.0389	0.0415
CCDC	1975379	1975378	2154059

 Table S28. Crystallographic data and structure refinement details for 9, 11 and 12a

Figure S10: Thermal ellipsoids shown at 50% 9.

Figure S11: Ball-and-stick packing diagram of 9 viewed up the b axis

Table S29: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 9. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{ee}
F1	9495.0(8)	1963.0(18)	5453.1(8)	29.1(3)
F2	10962.8(8)	2684.2(18)	4777.0(9)	32.4(3)
F3	10457.6(9)	4105(2)	2824.7(9)	38.0(3)
F4	8466.3(9)	4778.8(19)	1578.1(8)	33.7(3)
F5	6994.9(7)	3915.1(17)	2197.3(7)	26.8(3)
01	2658.2(9)	3566(2)	2486.1(9)	28.7(3)
O2	2658.1(10)	5042(2)	3856.8(10)	29.2(3)
O3	3529.4(10)	2145(2)	5267.3(10)	28.5(3)
O4	5155.4(9)	2127(2)	5624.5(9)	24.4(3)
N1	5790.8(11)	2645(2)	4169.3(11)	20.5(3)
N2	6461.3(11)	2810(2)	3700.3(11)	22.0(3)
N3	3057.9(10)	3902(2)	3418.6(11)	20.6(3)
N4	4241.0(10)	2432(2)	5005.1(11)	19.2(3)
N5	4539.7(12)	3194(3)	2579.5(11)	24.7(3)
C1	4798.0(13)	2930(2)	3568.9(12)	18.9(3)
C2	4046.8(12)	3013(3)	4003.8(12)	19.0(3)
C3	7410.8(13)	2584(3)	4275.9(13)	21.4(4)

Atom	X	У	Z	Ue
C4	8177.6(13)	2906(2)	3857.5(13)	20.2(4)
C5	9217.8(13)	2600(3)	4478.6(13)	21.9(4)
C6	9982.2(13)	2979(3)	4150.1(14)	23.8(4)
C7	9726.7(13)	3713(3)	3164.3(14)	24.7(4)
C8	8719.7(14)	4043(3)	2530.7(13)	23.9(4)
C9	7958.4(13)	3618(3)	2865.5(13)	20.9(3)

Table S30: Anisotropic Displacement Parameters (×10⁴) for **9**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	<i>U</i> ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	<i>U</i> ₁₂
F1	24.7(6)	36.2(6)	22.4(5)	4.6(4)	5.4(4)	1.8(4)
F2	16.4(6)	38.8(6)	37.2(6)	-3.1(5)	5.9(4)	0.4(4)
F3	26.7(6)	50.5(8)	44.9(7)	2.4(5)	22.8(5)	-4.5(5)
F4	34.8(6)	45.2(7)	24.3(5)	3.4(5)	15.1(4)	-3.3(5)
F5	17.4(5)	36.1(6)	22.9(5)	1.3(4)	4.1(4)	0.6(4)
01	23.6(7)	35.7(7)	21.0(6)	2.0(5)	3.1(5)	3.4(5)
O2	23.5(7)	31.8(7)	32.9(7)	0.2(5)	12.0(5)	8.6(5)
O3	21.7(7)	39.2(7)	27.9(6)	6.1(5)	13.5(5)	-0.2(5)
O4	18.6(6)	31.1(7)	20.1(6)	2.1(5)	4.3(5)	1.5(5)
N1	17.2(7)	24.6(7)	20.6(7)	0.0(6)	8.6(5)	0.2(5)
N2	20.6(8)	22.9(7)	25.1(7)	-1.8(6)	12.0(6)	-1.5(5)
N3	16.0(7)	20.4(7)	23.7(7)	2.7(5)	6.2(5)	-0.1(5)
N4	16.2(7)	18.8(7)	21.2(7)	-0.6(5)	6.1(5)	-0.2(5)
N5	21.8(8)	32.1(8)	20.7(7)	1.5(6)	9.0(6)	1.3(6)
C1	19.7(8)	13.4(7)	22.1(8)	-0.7(6)	7.0(6)	-0.5(6)
C2	16.0(8)	18.8(8)	20.5(8)	0.4(6)	5.5(6)	0.3(6)
C3	19.9(9)	22.3(8)	22.9(8)	-1.7(6)	9.6(7)	1.0(6)
C4	19.9(9)	17.1(8)	23.0(8)	-3.2(6)	7.9(6)	-1.2(6)
C5	22.1(9)	20.1(8)	20.9(8)	-2.1(6)	6.1(7)	0.2(6)
C6	15.3(9)	21.8(8)	30.8(9)	-4.8(7)	5.6(7)	-1.1(6)
C7	22.3(9)	24.5(8)	32.6(9)	-4.5(7)	16.5(7)	-4.5(6)
C8	26.5(9)	24.4(8)	22.6(8)	-2.8(7)	11.7(7)	-2.8(6)
С9	18.8(8)	19.3(8)	22.2(8)	-3.5(6)	5.8(6)	-0.2(6)

Table S31: Bond Lengths in Å for 9.

Atom	Atom	Length/Å
F1	C5	1.345(2)
F2	C6	1.336(2)
F3	C7	1.3392(19)
F4	C8	1.340(2)
F5	С9	1.3335(19)
01	N3	1.2374(18)
O2	N3	1.2290(19)
03	N4	1.2298(19)
O4	N4	1.2616(19)

Atom	Atom	Length/Å
N1	N2	1.376(2)
N1	C1	1.340(2)
N2	C3 1.279(2)	
N3	C2	1.430(2)
N4	C2	1.391(2)
N5	C1	1.320(2)
C1	C2	1.442(2)
C3	C4	1.458(2)
C4	C5	1.402(2)
C4	C9	1.395(2)
C5	C6	1.372(2)
C6	C7	1.382(3)
C7	C8	1.371(3)
C8	C9	1.379(2)

Table S32: Bond Angles in $^{\circ}$ for 9.

Atom	Atom	Atom	Angle/°
C1	N1	N2	116.27(14)
C3	N2	N1	116.37(15)
01	N3	C2	118.82(14)
O2	N3	01	122.61(14)
O2	N3	C2	118.50(14)
O3	N4	O4	120.86(14)
O3	N4	C2	120.34(13)
O4	N4	C2	118.74(13)
N1	C1	C2	120.52(15)
N5	C1	N1	117.93(15)
N5	C1	C2	121.52(15)
N3	C2	C1	119.51(14)
N4	C2	N3	116.21(14)
N4	C2	C1	124.07(14)
N2	C3	C4	119.88(16)
C5	C4	C3	120.06(16)
C9	C4	C3	124.25(16)
C9	C4	C5	115.61(15)
F1	C5	C4	119.29(15)
F1	C5	C6	117.58(15)
C6	C5	C4	123.10(16)
F2	C6	C5	120.70(16)
F2	C6	C7	120.18(15)
C5	C6	C7	119.11(16)
F3	C7	C6	120.38(16)
F3	C7	C8	119.78(16)
C8	C7	C6	119.84(16)
F4	C8	C7	120.22(15)
F4	C8	C9	119.37(15)

Atom	Atom	Atom	Angle/°
C7	C8	С9	120.40(16)
F5	C9	C4	121.00(15)
F5	C9	C8	117.09(15)
C8	C9	C4	121.91(16)

Table S33: Torsion Angles in $^{\circ}$ for 9.

Atom	Atom	Atom	Atom	Angle/°
F1	C5	C6	F2	1.2(2)
F1	C5	C6	C7	-177.60(15)
F2	C6	C7	F3	1.0(3)
F2	C6	C7	C8	-178.98(15)
F3	C7	C8	F4	-0.7(3)
F3	C7	C8	C9	179.10(15)
F4	C8	C9	F5	1.8(2)
F4	C8	C9	C4	-178.25(15)
01	N3	C2	N4	-147.79(15)
01	N3	C2	C1	37.1(2)
O2	N3	C2	N4	35.2(2)
O2	N3	C2	C1	-139.91(16)
O3	N4	C2	N3	19.3(2)
O3	N4	C2	C1	-165.91(15)
O4	N4	C2	N3	-163.44(14)
O4	N4	C2	C1	11.4(2)
N1	N2	C3	C4	-175.07(13)
N1	C1	C2	N3	162.52(14)
N1	C1	C2	N4	-12.1(2)
N2	N1	C1	N5	4.5(2)
N2	N1	C1	C2	-173.49(13)
N2	C3	C4	C5	-178.18(15)
N2	C3	C4	C9	5.1(3)
N5	C1	C2	N3	-15.4(2)
N5	C1	C2	N4	169.94(15)
C1	N1	N2	C3	178.57(14)
C3	C4	C5	F1	1.4(2)
C3	C4	C5	C6	-176.61(15)
C3	C4	C9	F5	-4.8(2)
C3	C4	C9	C8	175.28(15)
C4	C5	C6	F2	179.24(14)
C4	C5	C6	C7	0.5(3)
C5	C4	C9	F5	178.32(14)
C5	C4	C9	C8	-1.6(2)
C5	C6	C7	F3	179.73(15)
C5	C6	C7	C8	-0.2(3)
C6	C7	C8	F4	179.21(15)
C6	C7	C8	С9	-0.9(3)
C7	C8	C9	F5	-178.00(14)

Atom	Atom	Atom	Atom	Angle/°
C7	C8	C9	C4	1.9(3)
С9	C4	C5	F1	178.45(14)
C9	C4	C5	C6	0.4(2)

Table S34: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **9**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
H1	5976(16)	2490(30)	4813(17)	23(5)
H5A	3900(20)	3240(50)	2160(20)	61(9)
H5B	5004(19)	3180(40)	2354(17)	28(5)
H3	7616.34	2206.58	4974.94	26

 Table S35: Hydrogen Bond information for 9.

D	Η	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N1	H1	O4	0.85(2)	1.97(2)	2.6028(19)	130.4(19)
N5	H5A	01	0.87(3)	2.01(3)	2.646(2)	129(3)
N5	H5A	O31	0.87(3)	2.55(3)	3.032(2)	116(2)
$\frac{1}{1+v} \frac{1}{2}$	$v_{1/2+\pi}$					

 $^{1}+x,1/2-y,-1/2+z$

Figure S12: Thermal ellipsoids shown at 50% 11.

Figure S13: Ball-and-stick packing diagram of **11** viewed up the b axis. Dashed lines indicate strong hydrogen bonding.

Figure S14: Ball-and-stick packing diagram of **11** viewed up the c axis. Dashed lines indicate strong hydrogen bonding.

Table S36: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **11**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
01	7316.3(4)	5326(2)	2245.0(8)	29.4(3)
O2	8143.2(4)	5280.4(19)	2484.3(9)	30.0(3)
O3	8492.2(5)	5705(2)	5379.8(9)	33.8(3)
O4	8576.8(5)	7460(2)	4094.1(9)	38.0(3)
N1	6950.8(5)	4782(2)	3748.0(10)	22.9(3)
N2	6591.0(5)	4376(2)	4258.9(10)	24.4(3)
N3	7535.1(6)	4976(2)	5318.4(10)	24.5(3)
N4	6054.8(6)	6132(2)	2132.7(11)	32.2(3)
N5	5818.3(6)	7686(2)	2309.6(11)	33.4(3)
N6	5626.9(7)	9207(3)	2410.0(16)	51.3(5)
N7	5293.5(6)	5051(3)	3980.1(13)	39.1(4)
N8	5344.4(5)	6723(3)	4453.7(13)	39.0(4)
N9	5334.0(8)	8284(3)	4822(2)	69.9(6)
N10	7770.7(5)	5383.0(19)	2823.9(10)	22.2(3)

Atom	X	У	Z	U_{eq}
N11	8336.4(5)	6231(2)	4472.1(10)	26.2(3)
C1	6124.5(6)	4089(2)	3718.7(12)	24.4(3)
C2	5928.3(6)	4141(2)	2573.2(12)	27.6(4)
C3	5743.9(6)	3607(3)	4298.0(13)	31.6(4)
C4	7440.8(6)	5073(2)	4325.1(11)	20.6(3)
C5	7843.4(6)	5485(2)	3870.2(11)	21.6(3)

Table S37: Anisotropic Displacement Parameters (×10⁴) for **11**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U ₁₁	U_{22}	<i>U</i> 33	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
01	22.9(5)	48.5(7)	16.6(5)	-1.1(5)	5.4(4)	-2.5(5)
O2	25.4(6)	46.0(7)	22.2(6)	-3.9(5)	12.5(5)	-1.2(5)
O3	33.0(6)	44.9(7)	18.6(6)	3.2(5)	-0.1(5)	-2.4(5)
O4	34.8(6)	52.7(7)	26.8(6)	0.1(6)	9.7(5)	-15.9(6)
N1	24.0(6)	30.2(7)	16.7(7)	0.3(5)	9.6(5)	0.3(5)
N2	28.5(7)	25.2(6)	23.9(7)	1.9(5)	14.4(6)	0.9(5)
N3	30.0(7)	27.3(7)	17.2(7)	0.8(5)	8.4(6)	-0.8(6)
N4	33.6(7)	37.9(8)	27.3(7)	5.6(6)	12.3(6)	1.8(6)
N5	33.7(8)	34.8(8)	29.4(8)	5.7(6)	5.8(6)	-2.0(6)
N6	55.4(11)	35.3(9)	64.1(12)	5.3(8)	19.0(9)	4.7(8)
N7	26.0(7)	54.5(9)	38.3(9)	-10.6(7)	11.9(6)	1.2(7)
N8	23.7(7)	46.0(9)	50.1(10)	-1.2(8)	14.9(7)	2.6(6)
N9	48.2(11)	51.2(11)	110.7(19)	-19.6(12)	24.1(11)	8.7(9)
N10	24.3(6)	25.2(6)	18.3(6)	-0.7(5)	8.3(5)	-0.4(5)
N11	25.8(7)	33.0(7)	19.6(6)	-1.1(5)	6.4(5)	-0.4(5)
C1	26.9(8)	21.7(7)	27.4(8)	0.2(6)	12.5(6)	1.4(6)
C2	27.5(8)	29.4(8)	27.3(8)	-0.8(7)	10.2(7)	-0.8(6)
C3	29.9(8)	35.4(8)	34.1(9)	0.8(7)	16.6(7)	-2.9(7)
C4	27.0(8)	17.5(6)	18.1(7)	-1.0(5)	8.1(6)	1.3(5)
C5	24.4(7)	24.9(7)	15.6(7)	-0.8(6)	6.1(6)	0.8(6)

Table S38: Bond Lengths in Å for 11.

Atom	Atom	Length/Å
01	N10	1.2550(17)
O2	N10	1.2326(17)
O3	N11	1.2427(18)
O4	N11	1.2275(18)
N1	N2	1.3843(18)
N1	C4	1.344(2)
N2	C1	1.277(2)
N3	C4	1.318(2)
N4	N5	1.241(2)
N4	C2	1.487(2)
N5	N6	1.126(2)
N7	N8	1.234(2)

Atom	Atom	Length/Å
N7	C3	1.486(2)
N8	N9	1.119(3)
N10	C5	1.3984(19)
N11	C5	1.430(2)
C1	C2	1.511(2)
C1	C3	1.510(2)
C4	C5	1.433(2)

Table S39: Bond Angles in $^{\circ}$ for 11.

Atom	Atom	Atom	Angle/°
C4	N1	N2	116.42(13)
C1	N2	N1	117.00(13)
N5	N4	C2	113.82(13)
N6	N5	N4	173.00(18)
N8	N7	C3	114.99(15)
N9	N8	N7	172.1(2)
01	N10	C5	118.09(12)
O2	N10	O1	121.09(12)
O2	N10	C5	120.78(13)
O3	N11	C5	118.50(13)
O4	N11	O3	122.23(14)
O4	N11	C5	119.12(13)
N2	C1	C2	126.13(14)
N2	C1	C3	115.68(15)
C3	C1	C2	118.18(14)
N4	C2	C1	113.13(13)
N7	C3	C1	110.35(14)
N1	C4	C5	120.82(14)
N3	C4	N1	117.64(14)
N3	C4	C5	121.54(15)
N10	C5	N11	115.95(13)
N10	C5	C4	123.26(14)
N11	C5	C4	120.53(13)

Table S40: Torsion Angles in $^{\circ}$ for 11.

Atom	Atom	Atom	Atom	Angle/°
01	N10	C5	N11	-160.17(13)
01	N10	C5	C4	14.0(2)
O2	N10	C5	N11	22.23(19)
O2	N10	C5	C4	-163.61(14)
O3	N11	C5	N10	-155.64(13)
O3	N11	C5	C4	30.0(2)
O4	N11	C5	N10	28.6(2)
O4	N11	C5	C4	-145.76(15)
N1	N2	C1	C2	0.3(2)

Atom	Atom	Atom	Atom	Angle/°
N1	N2	C1	C3	178.81(13)
N1	C4	C5	N10	-7.3(2)
N1	C4	C5	N11	166.63(13)
N2	N1	C4	N3	-0.8(2)
N2	N1	C4	C5	179.48(12)
N2	C1	C2	N4	-55.3(2)
N2	C1	C3	N7	127.85(15)
N3	C4	C5	N10	173.06(13)
N3	C4	C5	N11	-13.0(2)
N5	N4	C2	C1	-68.86(18)
N8	N7	C3	C1	-88.02(19)
C2	C1	C3	N7	-53.50(19)
C3	C1	C2	N4	126.19(15)
C4	N1	N2	C1	-179.77(13)

Table S41: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **11**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
H1	6868(9)	5000(30)	3103(18)	39(6)
H3A	7287(8)	4780(30)	5538(15)	26(5)
H3B	7838(9)	5020(30)	5706(17)	31(5)
H2A	6080.18	2948.34	2298.62	33
H2B	5548.63	3953.06	2358.4	33
H3C	5624.38	2134.72	4168.95	38
H3D	5915.16	3767.05	5035.05	38

 Table S42: Hydrogen Bond information for 11.

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N1	H1	01	0.86(2)	1.94(2)	2.5688(17)	129(2)
N1	H1	N4	0.86(2)	2.33(2)	2.899(2)	123.9(18)
N3	H3A	O11	0.83(2)	2.33(2)	2.8926(17)	125.9(17)
N3	H3B	O21	0.84(2)	2.35(2)	2.9590(19)	129.9(18)
N3	H3B	O3	0.84(2)	2.00(2)	2.610(2)	128.9(19)
1. 4	1 10					

 $^{1}+x, 1-y, 1/2+z$

Figure S15: Thermal ellipsoids shown at 50% 12a

Figure S16: Ball-and-stick packing diagram of 12a viewed up the a axis. Dashed lines indicate strong hydrogen bonding.

Table S43: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **12a**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
F1	6668.0(17)	5814.0(17)	4281.3(12)	43.5(3)
F2	7637.8(15)	7354.4(17)	3173.2(16)	47.4(4)
F3	6724.5(15)	4594.1(16)	2109.6(12)	38.0(3)
01	4252.2(17)	6325.4(16)	1040.6(13)	24.6(3)
O2	-977.9(18)	3122.3(17)	46.9(15)	31.9(3)
O3	-2295.7(17)	1172.0(17)	704.5(16)	32.3(3)
04	176(2)	73.0(19)	2448.2(16)	37.3(4)
05	3074.3(18)	1332.0(18)	2947.6(15)	34.1(3)
N1	3014(2)	4753.8(18)	2298.2(15)	23.0(3)
N2	2047(2)	5246(2)	3311.5(16)	26.5(4)

Atom	X	У	Z	U_{eq}
N3	3070(2)	2602(2)	211.1(17)	26.4(4)
N4	-877(2)	2056.7(19)	709.6(16)	24.9(3)
N5	1368(2)	1076.1(19)	2302.3(16)	26.3(4)
C1	4412(2)	6236(2)	2394.0(19)	23.5(4)
C2	4034(3)	7746(2)	3525(2)	28.6(4)
C3	2634(3)	6884(2)	4002.6(19)	27.8(4)
C4	6387(3)	5980(2)	2994(2)	29.5(4)
C5	1936(3)	7823(3)	5189(2)	38.5(5)
C6	2415(2)	3167(2)	1282.9(19)	23.6(4)
C7	894(2)	1978(2)	1370.4(19)	23.6(4)

Table S44: Anisotropic Displacement Parameters (×10⁴) for **12a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{II} + ... + 2hka^* \times b^* \times U_{I2}]$

Atom	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	<i>U</i> ₁₂
F1	45.7(7)	57.2(8)	24.3(6)	17.3(5)	0.2(5)	20.0(6)
F2	21.4(6)	45.3(7)	61.0(9)	19.0(6)	-3.2(5)	-4.0(5)
F3	29.9(6)	45.3(7)	30.6(6)	6.9(5)	2.7(5)	15.8(5)
01	20.6(6)	31.0(7)	23.1(7)	13.5(5)	4.6(5)	4.9(5)
O2	27.6(7)	37.9(8)	34.3(8)	21.0(6)	6.8(6)	9.0(5)
O3	21.5(6)	29.8(7)	42.6(8)	11.1(6)	10.3(6)	1.1(5)
O4	39.8(8)	37.8(8)	37.7(8)	21.7(6)	12.3(6)	0.7(6)
05	30.2(7)	37.2(7)	29.2(7)	14.8(6)	-1.3(6)	5.7(5)
N1	23.2(7)	24.7(8)	19.9(7)	8.4(6)	5.9(6)	2.9(6)
N2	26.0(7)	31.9(8)	19.3(8)	8.5(6)	6.0(6)	4.6(6)
N3	25.3(8)	24.6(8)	24.7(8)	4.9(6)	8.5(7)	-0.6(6)
N4	24.3(7)	24.6(7)	22.3(8)	5.5(6)	6.4(6)	4.1(6)
N5	30.5(8)	24.4(8)	20.7(8)	7.1(6)	6.1(7)	3.6(6)
C1	22.4(8)	23.2(8)	20.7(9)	8.3(6)	2.0(7)	1.3(6)
C2	30.8(9)	24.7(9)	24.2(9)	6.6(7)	3.1(8)	4.7(7)
C3	27.2(9)	31.7(9)	19.5(9)	7.7(7)	1.6(7)	7.5(7)
C4	26.7(9)	31.6(10)	22.8(9)	9.0(7)	-0.6(8)	3.7(7)
C5	37.2(11)	40.2(12)	27.6(11)	0.9(8)	8.8(9)	6.9(9)
C6	22.9(8)	24.8(8)	21.5(9)	10.3(7)	3.1(7)	4.3(6)
C7	23.8(8)	24.3(9)	21.5(9)	9.0(7)	5.5(7)	3.7(7)

	Table S4	5: Bond	Lengths	in Å	for	12a
--	----------	---------	---------	------	-----	-----

Atom	Atom	Length/Å
F1	C4	1.324(2)
F2	C4	1.335(2)
F3	C4	1.326(2)
01	C1	1.377(2)
O2	N4	1.276(2)
O3	N4	1.237(2)
O4	N5	1.237(2)
O5	N5	1.248(2)

Atom	Atom	Length/Å
N1	N2	1.415(2)
N1	C1	1.498(2)
N1	C6	1.329(2)
N2	C3	1.283(2)
N3	C6	1.301(2)
N4	C7	1.359(2)
N5	C7	1.391(2)
C1	C2	1.533(2)
C1	C4	1.537(2)
C2	C3	1.493(3)
C3	C5	1.487(3)
C6	C7	1.480(2)

Table S46: Bond Angles in ° for 12a.

Atom	Atom	Atom	Angle/°
N2	N1	C1	112.89(13)
C6	N1	N2	117.84(14)
C6	N1	C1	128.51(14)
C3	N2	N1	107.04(14)
O2	N4	C7	113.97(14)
O3	N4	O2	121.37(15)
O3	N4	C7	124.65(15)
O4	N5	O5	123.11(15)
O4	N5	C7	121.88(15)
05	N5	C7	114.99(14)
01	C1	N1	112.32(13)
01	C1	C2	117.65(15)
01	C1	C4	105.88(14)
N1	C1	C2	100.82(13)
N1	C1	C4	109.30(14)
C2	C1	C4	110.76(15)
C3	C2	C1	103.61(14)
N2	C3	C2	115.31(16)
N2	C3	C5	121.14(18)
C5	C3	C2	123.55(17)
F1	C4	F2	108.25(15)
F1	C4	F3	107.42(15)
F1	C4	C1	110.90(15)
F2	C4	C1	109.42(15)
F3	C4	F2	107.64(16)
F3	C4	C1	113.05(15)
N1	C6	C7	117.82(15)
N3	C6	N1	124.09(16)
N3	C6	C7	118.09(16)
N4	C7	N5	124.43(15)
N4	C7	C6	116.73(15)

Atom	Atom	Atom	Angle/°
N5	C7	C6	118.01(15)

Table S47: Torsion Angles in ° for 12a.

Atom	Atom	Atom	Atom	Angle/°
01	C1	C2	C3	127.80(15)
01	C1	C4	F1	-77.75(14)
01	C1	C4	F2	62.91(18)
01	C1	C4	F3	-57.03(19)
O2	N4	C7	N5	171.86(15)
O2	N4	C7	C6	2.5(2)
O3	N4	C7	N5	-9.4(3)
O3	N4	C7	C6	-78.77(15)
O4	N5	C7	N4	10.0(3)
O4	N5	C7	C6	179.20(15)
05	N5	C7	N4	-71.35(16)
05	N5	C7	C6	-2.2(2)
N1	N2	C3	C2	1.9(2)
N1	N2	C3	C5	-78.26(17)
N1	C1	C2	C3	5.34(17)
N1	C1	C4	F1	-56.55(19)
N1	C1	C4	F2	-75.89(14)
N1	C1	C4	F3	64.17(19)
N1	C6	C7	N4	86.3(2)
N1	C6	C7	N5	-83.7(2)
N2	N1	C1	O1	-30.98(15)
N2	N1	C1	C2	-4.88(18)
N2	N1	C1	C4	111.82(15)
N2	N1	C6	N3	173.73(16)
N2	N1	C6	C7	-5.5(2)
N3	C6	C7	N4	-93.0(2)
N3	C6	C7	N5	97.0(2)
C1	N1	N2	C3	2.15(19)
C1	N1	C6	N3	4.5(3)
C1	N1	C6	C7	-74.75(15)
C1	C2	C3	N2	-4.9(2)
C1	C2	C3	C5	175.23(18)
C2	C1	C4	F1	53.7(2)
C2	C1	C4	F2	-65.7(2)
C2	C1	C4	F3	174.38(15)
C4	C1	C2	C3	-10.28(16)
C6	N1	N2	C3	-68.71(15)
C6	N1	C1	01	38.7(2)
C6	N1	C1	C2	164.78(16)
C6	N1	C1	C4	-78.5(2)

Table S48: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **12a**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
H2A	3510(30)	8520(30)	3080(20)	28(5)
H2B	5180(40)	8410(30)	4380(30)	43(6)
H5A	910(30)	7090(30)	5320(30)	35(6)
H5B	2990(40)	8350(40)	6080(30)	53(7)
H5C	1440(40)	8800(40)	4980(30)	45(7)
H3A	3880(40)	3120(30)	30(30)	32(6)
H3B	2640(40)	1580(40)	-320(30)	37(6)
H1	3230(40)	6550(30)	670(30)	43(7)

 Table S49: Hydrogen Bond information for 12a.

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
N3	H3A	F3	0.81(3)	2.43(2)	2.8682(19)	115(2)
N3	H3A	O11	0.81(3)	2.11(3)	2.889(2)	161(2)
N3	H3A	O1	0.81(3)	2.50(2)	2.913(2)	113.2(19)
N3	H3B	O3 ²	0.82(3)	2.18(3)	2.930(2)	152(2)
01	H1	O2 ³	0.85(3)	1.77(3)	2.6090(18)	174(2)

¹1-x,1-y,-z; ²-x,-y,-z; ³-x,1-y,-z

4. NMR Spectra

Figure S17: ¹H NMR-Compound 3

Figure S18: ¹³C NMR-Compound 3

Figure S19: ¹H NMR-Compound 5

Figure S20: ¹³C NMR-Compound 5

Figure S21: ¹H NMR-Compound 5a

Figure S22: ¹³C NMR-Compound 5a

Figure S23: ¹H NMR-Compound 5b

Figure S24: ¹³C NMR-Compound 5b

Figure S25: ¹H NMR-Compound 5c

Figure S26: ¹³C NMR-Compound 5c

Figure S27: ¹H NMR-Compound 5d

Figure S28: ¹³C NMR-Compound 5d

Figure S29: ¹H NMR-Compound 5e

Figure S30: ¹³C NMR-Compound 5e

Figure S31: ¹H NMR-Compound 5f

Figure S32: ¹³C NMR-Compound 5f

Figure S33: ¹H NMR-Compound 6

Figure S34: ¹³C NMR-Compound 6

Figure S35: ¹H NMR-Compound 9

3

2

0 ppm

Figure S37: ¹H NMR-Compound 10

Figure S38: ¹³C NMR-Compound 10

Figure S39: ¹H NMR-Compound 11

Figure S40: ¹³C NMR-Compound 11

Figure S41: ¹H NMR-Compound 12a

Figure S43: ¹⁹F NMR-Compound 12a

Figure S44: ¹H NMR-Compound 12b in Acetone-d₆

Figure S45: ¹³C NMR-Compound 12b in DMSO-d₆

Figure S46: ¹⁹F NMR-Compound 12b in DMSO-d₆

5. References

(1) Bellamy, A. J.; Contini, A. E.; Latypov, N. V. 1-Amino-1-hydrazo-2,2-dinitroethene - a hazard warning, *Propellants, Explos., Pyrotech.* 2008, *33*, 87–88.

(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. G.; Scuseria, G. E.; Robb, M. A.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, A. L. G.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, **2004**.

(3) Westwell, M. S.; Searle, M. S.; Wales, D. J.; Williams, D. H. Empirical correlations between thermodynamic properties and intermolecular forces. *J. Am. Chem. Soc.* **1995**, *117*, 5013–5015.

(4) Gao, H.; Ye, C.; Piekarski, C. M.; Shreeve, J. M. Computational characterization of energetic salts. *J. Phys. Chem. C* **2007**, *111*, 10718–10731.

(5) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, **2009**, *42*, 339-341.

(6) Sheldrick, G.M., A short history of ShelX, Acta Cryst., 2008, A64, 112-122.

- (7) Twin reference: Parsons, S. Introduction to twinning Acta Cryst. 2003, D59, 1995-2003.
- (8) CrysAlisPro (ROD), Rigaku Oxford Diffraction, Poland (?).
- (9) CrysAlisPro Software System, Rigaku Oxford Diffraction, (2020).

(10) Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., 2015, C71, 3-8.

(11) Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, **2015**, *A71*, 3-8.