Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Pyridoxal-based low molecular weight pro-gelator as a new chemosensor for recognition of Ag⁺ and Hg²⁺ under different conditions

Saswati Ghosh Roy^a, Abhishek Kumar^b, Neeraj Misra^b and Kumaresh Ghosh^{*a}

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, Email: <u>ghosh_k2003@yahoo.co.in</u>, <u>kumareshchem18@klyuniv.ac.in</u> ^bDepartment of Physics, University of Lucknow, Lucknow-226007, India

Table S1. Results of gelation test of compounds 1 and 2 alone and in presence of metal ions

Solvents	Compound 1	Compound 2
Tolune	S	S
Benzene	S	S
1,2 dichlorovenzene	S	S
Petether	S	S
Ethylacetate	S	S
Acetonitrile	S	S
THF	S	S
Dioxane	S	S
DMSO	S	S
DMF	S	S
Methanol	S	S
Dioxane + $H_2O(1:1, v/v)$	Р	Р
$DMF + H_2O(1:1, v/v)$	Р	Р
DMSO+ $H_2O(1:1, v/v)$	Р	Р
Methanol + $H_2O(1:1, v/v)$	Р	Р
Acetonitrile + $H_2O(1:1, v/v)$	Р	Р
$Dioxane + H_2O + Ag^+(1:1, v/v)$	G	Р
$DMF + H_2O + Ag^+(1:1, v/v)$	G	Р
$DMSO+ H_2O + Ag^+(1:1, v/v)$	G	Р
$Methanol + H_2O + Ag^+(1:1, v/v)$	Р	Р
Acetonitrile + $H_2O + Ag^+(1:1, v/v)$	Partial Gelation	Р

S = Solution; G = Gel (mgc); P = Precipitation. Gelation tests were carried out at a concentration 10 mg/mL in different solvents. Gels were primarily characterized by inversion of vial method after \sim 5 min of sample preparation.

Figure S1.¹H NMR spectrum of compound 1 in CDCl₃.

Figure S2.¹³C NMR spectrum of compound 1 in CDCl₃.

Figure S3.High resolution mass spectrum of compound 1.Assignment of the main peak: m/z 435.3009 [M+H]⁺ (Calcd. 435.3012).

Figure S4.¹H NMR spectrum of compound 2 in CDCl₃.

Figure S5.¹³C NMR spectrum of compound 2 in CDCl₃.

Figure S6. Gelation study of compound 1 (5 mg/mL) in DMSO-H₂O (v/v, 1/1) in presence of AgNO₃: (a) in presence of 1 equiv. of Ag⁺ (1 : Ag⁺ = 1:2) and (b) 0.5 equiv. of Ag⁺ ion (1 : Ag⁺ = 2:1).

Figure S7. FT IR spectra of compound 1 in amorphous (black line) and gel state (red line).

Figure S8.Photograph showing the interaction of **2** (c = 0.023 mmol) upon addition of 1 equivalent amount of various metal analytes ($c = 1 \times 10^{-3}$ mmol) in DMSO/H₂O (1:1, v/v). All metal salts were taken as their nitrate salts (NO₃⁻), and Hg²⁺, Fe²⁺ and Al³⁺ were taken as their perchlorate salts (ClO₄⁻).

Figure S9. UV-Vis spectra of the aggregated form (shown at the right side) in DMSO-water.

Figure S10. UV-Vis spectra of the form 1 (left) and its phenoxide form (right) in DMSO.

Figure S11. HOMO-LUMO plot of compound 1.

Figure S12. HOMO-LUMO plot of dimer of compound 1 with silver ion.

Figure S13. HOMO-LUMO plot of tetramer of compound 1 with two silver ion.

Figure S14.Temperature induced gel to sol transition of compound 1 in presence of Ag^+ in (a) DMF/H₂O and in (b) DMSO/H₂O system.

Figure S15. Transmission electron microscopy (TEM) images of xerogel of compound 1 prepared in DMSO/H₂O (1:1, v/v) in presence of 2 equivalent amounts of Ag⁺ ion.

Figure S16.Optical image of solution of compound 1 prepared in (a) DMF (b) DMF-H₂O (v/v, 1/1) (c) DMF-H₂O in presence of 1 equiv. of Ag⁺ and (d) DMF-H₂O in presence of 2 equivalent amount of Ag⁺ ion.

Figure S17. CD spectra of compound 1: (a) at different concentrations of compound 1 (5 mg/mL) in DMSO:H₂O (1:1,v/v) in absence of Ag⁺ ion, gel and in presence of Ag⁺ ion with decreasing concentration from 1×10^{-3} to 1×10^{-5} M and (b) Expanded CD spectra of the same in small scale of Y-axis.

Figure S18. Rheological behaviour of supramolecular gel of **1** in presence of silver acetate (AgOAc): (a) Storage modulus G' and loss modulus G'' of gel on strain sweep prepared in DMSO/H₂O (1:1, v/v), and (b) storage modulus G'versus frequency sweep (strain: 0.1 %) of gel in DMSO/H₂O (1:1, v/v).

Solvent system	Critical	Crossover (%	G' _{av} (Pa)	G''_{av} (Pa)	Tan δ
(1:1, v/v)	strain (%)	strain)			(G''_{av}/G'_{av})
DMSO-H ₂ O	0.13	0.45	112	91	0.74

	Table S2	. Rheology	data for	Ag(OAc)) gel
--	----------	------------	----------	---------	-------

Figure S19.Change in absorption spectra of compound 1 ($c = 2.5 \times 10^{-4}$ M) in presence of 3 equivalent of (a) Cu²⁺, (b) Zn²⁺, (c) Cd²⁺, (d) Ni²⁺, (e) Co²⁺, (f) Pb²⁺, (g) Fe³⁺, (g) Hg²⁺, (i) Al³⁺, (j) Ca²⁺, (k) Fe²⁺, (l) Ag⁺ metal ions ($c = 1 \times 10^{-3}$ M) in DMSO/H₂O (v/v, 1/1).

Figure S20.Change in emission spectra of compound 1 (c = 2.5×10^{-4} M) in presence of 3 equivalent of (a) Cu²⁺, (b) Zn²⁺, (c) Cd²⁺, (d) Ni²⁺, (e) Co²⁺, (f) Pb²⁺, (g) Fe³⁺, (g) Hg²⁺, (i) Al³⁺, (j) Ca²⁺, (k) Fe²⁺, (l) Ag⁺ metal ions (c = 1×10^{-3} M) in DMSO/H₂O (v/v, 1/1).

Figure S21. (a) Absorption, (b) emission titration spectra of compound 1 in DMSO/H₂O (1:1, v/v) (c = 1×10^{-5} M) in presence of Hg²⁺ ion (c = 1×10^{-3} M) (Hg²⁺is taken as HgClO₄), and (c) Fluorescence spectra of compound 1 in different concentrations.

Figure S22. Partial ¹H NMR spectra of receptor 1 ($c = 2.5 \times 10^{-3}$ M) (a) in absence and in presence of (b) 1 equiv. and (c) 2 equiv. of Hg²⁺ ion in d_6 -DMSO.

Figure S23.UV-Vis Benesi-Hildebrand plot for 1 ($c = 2.5 \times 10^{-4}$ M) with Hg²⁺ ($c = 1 \times 10^{-3}$ M) at 420 nm.

Figure S24. Detection limit for receptor 1 (c = 2.5×10^{-4} M) with Hg²⁺ (c = 1×10^{-3} M) at 420 nm.

Entry	Structure	Solvent	Phase transformat ion in presence of Ag ⁺ ions	Interfering metal ions	Detection limit for Ag ⁺ (M)	Ref.
1	$\begin{array}{c} C_{18}H_{17} \\ C_{18}H_{17} \\ N \\ N \\ C_{18}H_{17} \\ C_{18}H_{17} \\ C_{18}H_{17} \\ C_{18}H_{17} \end{array}$	EtOH	Gel to sol	-	-	<i>Tetrahedron</i> <i>Lett.</i> 2012, 53 , 1840.
2		МеОН	Sol to gel	-	-	<i>Chem.</i> <i>Commun.</i> 2013, 49 , 4181.
3	-O HO V C ₁₇ H ₃₅	MeOH:H ₂ O (1:1, v/v)	Sol to gel	-	-	<i>Supramol.</i> <i>Chem.</i> 2014, 26 , 39.
4		THF/ H ₂ O	Sol to gel	-	-	<i>Soft Matter</i> , 2011, 7 , 2412.
5		H ₂ O	Sol to gel	-	-	<i>Soft Matter</i> , 2012, 8 , 6557.
6		DMF: H ₂ O (2:3, v/v)	Sol to gel	-	-	<i>Cryst.</i> <i>Growth Des.</i> 2015, 15 , 4635.
7	$\begin{array}{c} & & & \\ C_{12}H_{25}HN & & & \\ & & & \\ C_{12}H_{25}HN & & \\ & & & \\ C_{12}H_{25}HN & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$	CH ₂ Cl ₂ , CHCl ₃ , THF	Sol to gel	-	-	<i>Langmuir</i> , 2012, 28 , 27.
8	$R = \underbrace{\begin{array}{c} HO \\ R \to N \end{array}}_{R = I \to I$	Toluene: EtOH (99:1, v/v)	Sol to gel	-	-	Chem. Commun. 2015, 51 , 13929.
9	$R = \frac{\int_{H}^{0} \int_{H}^{N} \int_{H}^{N} \int_{H}^{N} \int_{H}^{0} \int_{H}^{N} \int_{H}^{0} \int_{H}^{0} \int_{H}^{N} \int_{H}^{0} \int_{H}^{N} \int_{H}^{0} \int_{H}^{N} \int_{H}^{0} \int_{H}^{N} \int_{H}^{0} \int_{H}^{N} \int_{H}^{0} \int_{H}^{0$	DMF, DMF/ H ₂ O, DMSO/ H ₂ O	Sol to gel	-	-	<i>Cryst.</i> <i>Growth Des.</i> 2015, 15 , 5360.

Table S3. List of different Ag^+ ion responsive supramolecular gelators

10	$\begin{array}{c} 0 \\ R \\ R \\ R \\ H \\ H \\ O \\ R \\ H \\ O \\ H \\ O \\ R \\ H \\ O \\ R \\ H \\ O \\ R \\ H \\ O \\ H \\$	EtOAc	Gel to sol	Li+	-	<i>Chem.</i> <i>Commun.</i> 2012, 48 , 2767.
11	$R = C_{2}H_{15} \longrightarrow C_{2}H_{15} \longrightarrow C_{1}H_{15} \longrightarrow C_{1}H_{15$	DMF : H ₂ O (1:1, v/v)	Sol to gel		4.31 x 10 ⁻⁵	<i>ChemistrySel</i> <i>ect</i> , 2017, 2 , 959.
12	$\begin{array}{c} X \\ Y \\ Z \\ 0 \\ 0 \\ N \\ N$	DMSO: H ₂ O	Sol to gel	-	-	Dalton Trans., 2017, 46 , 2793.
13	N N N N N N N N N N N N N N N N N N N	Toluene/ethano l (10:1, v/v)	Sol to gel	-	-	<i>Langmuir,</i> 2007, 23 , 8217.
14	$R = \begin{pmatrix} H & H \\ H & H \\ H & H \end{pmatrix} = \begin{pmatrix} H & H \\ H & H \\ H & H \end{pmatrix}$	Diphenyl ether	Sol to gel	-	-	<i>Chem. Lett.</i> , 2003, 32 , 12.
15	N N N N N N N N N N N N N N N N N N N	THF-H ₂ O (3 : 2)	Sol to gel	-	-	New J. Chem., 2010, 34 , 2261.
16		H ₂ O	Sol to gel	-	-	New J. Chem., 2014, 38 , 2470.
17	$R = \frac{1}{2} O - \left(\begin{array}{c} N & N \\ N & N \\ N & 0 \\ N & $	CHCl ₃ :CH ₃ OH (2:1, v/v)	Gel to Sol	Cu ²⁺ , Hg ²⁺	-	New. J. Chem., 2016, 40 , 3476.
18		DMSO: H ₂ O (1:1, v/v)	Sol to gel	Cu ²⁺	-	New. J. Chem., 2018, 42 , 6488.

19	N-	DMSO: H ₂ O	Gel to sol	Cu ²⁺	3.69 x 10 ⁻⁶	
	$\begin{array}{c} \overbrace{N}^{N} \xrightarrow{N} $	DMSO: H ₂ O	Gel to sol	Cu ²⁺ , Hg ²⁺	3.34 x 10 ⁻⁶	Mater. Chem.
		DMSO: H ₂ O DMSO: H ₂ O	Sol to gel	-	1.93 x 10 ⁻⁷	<i>Front.</i> , 2018, 2 , 385.
			Sol to gel	_	1 28 x 10 ⁻⁶	
20		1,4-dioxane- MeOH (1:1, v/v)	Gel to sol	-	3.27 x 10 ⁻⁵	New J.
		1,4-dioxane- H ₂ O (1:1, v/v)	Sol to gel	-	9.27 x 10 ⁻⁵	<i>Chem.</i> , 2019, 43 , 5139
	$R = -\xi \left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & H \end{array} \right) \left(\begin{array}{c} & & \\ & $					
21	$R = \frac{2}{2} \left(\begin{array}{c} R \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} R \\ H \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} R \\ R \\ H \\$	CHCl ₃ /CH ₃ OH (3:1, v/v)	Visual detection through sol-to-gel transition	Fe ³⁺	9.35 x 10 ⁻⁶	Mater. Chem. Front.,2018, 2 , 2286
22	O H O O N H N O	DMSO-H ₂ O (1:2, v/v)	Visual detection through sol-to-gel transition	-	5.95 x 10 ⁻⁵	New J. Chem., 2019 , 43, 934
23	$R=C_{12}H_{25}$ $R \xrightarrow{S} \xrightarrow{S} R$ $N \xrightarrow{N} OH$ $N \xrightarrow{N} OH$ 1	DMSO-H ₂ O (1:1, v/v)	Sol-to-Gel transition	Ag^+ (Different modes of interaction, Hg^{2+} and Ag^+ ions are discriminated with the aid of different chelating agents)	1.1 x 10 ⁻⁶	<i>ChemistrySel</i> <i>ect</i> , 2019 , <i>4</i> , 11564.

24		1,4- dioxane- MeOH (1:1, v/v)	Gel to sol	-	3.27 x 10 ⁻⁵	New J. Chem., 2 019, 43, 5139.
	$R = \frac{1}{2}$	1,4- dioxane- H2O (1:1,v/v)	Sol to gel	-	9.27 x 10 ⁻⁵	
25		Nitrobenzene	Gel to Sol	-	-	New J. Chem., 2 019, 43, 10509.
26	$\begin{array}{c} & 1. X = -NMe_2 \\ 2. X = -N \\ & 3. X = -N \end{array}$	DMF-H ₂ O (1 : 1, v/v)	Sol to gel	-	-	<i>ChemistrySel</i> <i>ect</i> , 2021 , <i>6</i> , 11696.
27		$DMF-H_2O \\ (1:1, v/v) \\ DMSO-H_2O \\ (1:1, v/v) \\ Dioxan-H_2O \\ (1:1, v/v) \\ $	Sol to gel	-	-	Present work