Supplementary Information

Capacitance and electric field-induced polarization behaviour of polymer functionalized palladium iodide nanoparticles

Figure S1: Particle size as a function of particle frequency histogram of the palladium iodide nanoparticles

Table S1: Fitting parameters (R_0 , R_1 , R_2 , Q_1 , Q_2 , α_1 and α_2) extracted from the equivalent electrical circuits (figure 4, A and B, in-set) for the POT, PIOT-5 and PIOT based device under ambient temperature (30°C).

Device	$R_0(\Omega)$	$Q_1(nF)$	α_1	$R_1(\Omega)$	$Q_2(nF)$	$R_{2}(\Omega)$	α_2
POT	3.59	0.170	0.93		0.57	82.14	0.98
PIOT-5	16.56	0.77	0.67		0.91	122.1	0.94
PIOT	1.73	0.89	0.75	85.90	0.97	110.6	0.97

Complex dielectric constant (ϵ *) within the model of modified Cole-Cole relation, represented by using the following equation:

$$\varepsilon^* = \varepsilon_{\infty} + \frac{(\varepsilon_s - \varepsilon_{\infty})}{1 + i(\omega\tau)^{1-\alpha}}$$
(S1)

Where, ε_s is the static part of the dielectric constant, ε_{∞} is dielectric constant at infinite high frequency. The parameter α was related to the width of the relaxation time distribution and ' τ ' is the relaxation time.

Separating the real (ϵ') and imaginary (ϵ'') part of the dielectric constant from the above equation:

$$\varepsilon' = \varepsilon_{\infty} + \frac{(\varepsilon_{s} - \varepsilon_{\infty})\{1 + (\omega\tau)^{1 - \alpha} \sin\left(\frac{\alpha\pi}{2}\right)\}}{1 + 2(\omega\tau)^{1 - \alpha} \sin\left(\frac{\alpha\pi}{2}\right) + (\omega\tau)^{2n}}$$
(S2)
$$\varepsilon'' = \varepsilon_{\infty} + \frac{(\varepsilon_{s} - \varepsilon_{\infty})\{(\omega\tau)^{1 - \alpha} \cos\left(\frac{\alpha\pi}{2}\right)\}}{1 + 2(\omega\tau)^{1 - \alpha} \sin\left(\frac{\alpha\pi}{2}\right) + (\omega\tau)^{2n}}$$
(S3)

Where, $n = 1 - \alpha$, and α represents the tilt angle $(\alpha \pi/2)$ of the semicircular arc. Larger the value of α , means the broader distribution of relaxation times.^{R1} For an ideal Debye model, n = 1, $(\alpha = 0)$ and for a non-Debye condition $0 \le \alpha \le 1$ [1]. The

extracted ' α ' parameter are 0.10, 0.11 and 0.13 for POT, PIOT-5 and PIOT, respectively.

Figure S2: The dielectric constant (ϵ') for POT, PIOT-5 and PIOT under ambient temperature (30 °C). The curves are fitted according to the modified Cole-Cole equation S2 (green colour line).

regions (I, II and III) for POT, PIOT-5 and PIOT based devices, respectively.	

Table S2: Fitting parameters, α_1 , α_2 and α_3 , extracted from SCLC model, for the three different

Device	α_1	α_2	α_3	
	Region (I)	Region (II)	Region (III)	
POT	1.5	2.2	1.2	
PIOT-5	1.6	3.6	1.4	
PIOT	2.2	4.8	1.8	

Figure S3: Electrical breakdown strength (kV/mm) with respect to time (s) for PIOT based device.

References:

R1. G. Govinda Raju, Dielectric loss and relaxation-I from: Dielectrics in electric fields, CRC press, London, UK, second edition, 2016.