Mononuclear nickel(II) complexes as electrocatalyst in hydrogen evolution reactions: Effect of alkyl side chain length

Arpita Barma,[†] Malay Chakraborty,[†] Swapan Kumar Bhattacharya,^{*,†} Pritam Ghosh^{*,‡} and Partha Roy^{*,†}

[†]Department of Chemistry, Jadavpur University, Kolkata 700 032, India E-mail: partha.roy@jadavpuruniversity.in (P.R.)

skbhatt7@yahoo.co.in (S.K.B.)

[‡] Department Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany

E-mail: ppritamghosh@gmail.com (P.G.)

Scheme S1: Synthetic route to Complexes 1, 2 and 3.

Fig. S1 Mass spectrum of HL^1 in methanol.

Fig. S2 Mass spectrum of HL^2 in methanol.

Fig. S3 Mass spectrum of HL³ in methanol.

Fig. S4 ¹H NMR spectrum of HL^1 in DMSO-d₆.

Fig. S5 ¹H NMR spectrum of HL² in DMSO-d₆.

Fig. S6 ¹H NMR spectrum of HL^3 in DMSO-d₆.

Fig. S7 A perspective view of complex 1 with displacement ellipsoids drawn at the 50% probability level. Symmetry code; (a) -x, 1-y, 1-z

Fig. S8 A perspective view of complex 2 with displacement ellipsoids drawn at the 50% probability level. Symmetry code; (a) -x, 1-y, 1-z

Fig. S9 A perspective view of complex **3** with displacement ellipsoids drawn at the 50% probability level. Symmetry code; (a) 1 - x, -y, 2-z

Fig. S10 Mass spectrum of Complex 1 in methanol.

Fig. S11 Mass spectrum of Complex 2 in methanol.

Fig. S12 Mass spectrum of Complex 3 in methanol.

Fig. S13 FT-IR spectrum of Complex 1.

Fig. S14 FT-IR spectrum of Complex 2.

Fig. S15 FT-IR spectrum of Complex 3.

Fig. S16 UV-vis spectrum of complex 1 in DMF

Fig. S17 UV-vis spectrum of complex 2 in DMF

Fig. S18 UV-vis spectrum of complex 3 in DMF

Fig. S19 ¹H NMR spectrum of complex 1 in DMSO-d₆.

Fig. S20 ¹H NMR spectrum of complex 2 in DMSO-d₆.

Fig. S21 ¹H NMR spectrum of complex 3 in DMSO-d₆.

Calculation of $E_{1/2}\, with \, respect \, to \, nHE$ of Fc/Fc^{+}

= [0.535 + 0.224 - 0.200] V

E vs. nHE = [value obtained against Ag/AgCl, $Cl^- + 0.224$ V (Potential of Ag/AgCl, Cl⁻electrode) – 0.200 V (Liquid junction potential of saturated aqueous KCl solution with DMF)]

Fig. S22 Scan rate dependence of precatalytic waves for 5.36 μ M solutions of complexes (A)1, (B)2 and (C)3 at scan rate from 20 to 200 mV/s inair free DMF solutions with 0.1M [n-Bu₄N]Bras supporting electrolyte and Cottrell plot of peak current versus the square root of scan rate for complexes (D) 1, (E) 2 and (F) 3.

Determination of Diffusion Coefficient (D) for complex 1, 2 and 3

Using the Randles-Sevcik equation,

$$i_P = 0.4463 \left(\frac{n^3 F^3}{RT}\right)^{1/2} A[cat](Dv)^{1/2}....(1)$$

Where, i_p = Peak current (amperes), n = Number of electrons transferred in a redox cycle, F = Faraday's constant (96485C/mol), R = Universal gas constant (8.314 J.K⁻¹.mol⁻¹), T = Absolute temperature (298 K), A = The electrode surface area in working (0.07 cm²), C = Molar concentration of redox-active species (mol/cm³), D = The diffusion coefficient (cm²/s), v = Scan rate in V/s.

Plotting peak current (i_p) versus the square root of the scan rate $(v)^{1/2}$

$$Slope = 0.4463 \left(\frac{n^{3}F^{3}}{RT}\right)^{1/2} A[cat](D)^{1/2}....(2)$$

Complex	Slope	Diffusion coefficient (cm ² /s)
1	$1.31 imes 10^{-5}$	$1.07 imes 10^{-5}$
2	$1.11 imes 10^{-5}$	$0.77 imes10^{-5}$
3	$1.08 imes 10^{-5}$	$0.72 imes 10^{-5}$

Fig. S23 Plot of i_{cat}/i_p vs [Acid] for 5.36 μ M of complexes 1, 2 and 3.

Over potential Calculations:

Calculations of $E_{1/2}^{T}$ (= E_{ref}) and η using $E_{H^{+}/H_{2}}^{0}$, pKa, \mathcal{E}_{D} and $\mathcal{C}_{H_{2}}^{0}$ using Fourmond's approach.¹

$$E_{1/2}^{T} = E_{H^{+}/H_{2}}^{0} - 2.303 \frac{RT}{F} pK_{a} + \mathcal{E}_{D} - \frac{RT}{2F} ln \frac{C_{0}}{C_{H_{2}}^{0}}$$

$\underline{E_{1/2}^{T}}$ for Complexes1, 2, 3 with 24.00 mM CH₃COOH in DMF

$$E_{1/2}^{T} = (-0.62) - 2.303 \frac{8.314 \times 298}{96485} 13.5 + 0.04 - \frac{8.314 \times 298}{2 \times 96485} ln \frac{24}{1.9}$$
$$E_{1/2}^{T} = -1.41 \text{ vs Fc}^{+}/Fc$$

Complex	Overpotential
1	-1.41 - (-0.888) = -0.52
2	-1.41 - (-0.853) = -0.55
3	-1.41 - (-0.849) = -0.56

$\underline{E_{1/2}^{T}}$ for Complexes 1, 2, 3 with 24.00 mM CF₃COOH in DMF

$$E_{1/2}^{T} = (-0.62) - 2.303 \frac{8.314 \times 298}{96485} 6.0 + 0.04 - \frac{8.314 \times 298}{2 \times 96485} ln \frac{24}{1.9}$$

$$E_{1/2}^T = -0.96 vs Fc^+/Fc$$

Complex	Overpotential
1	-0.96 - (-0.733) = -0.22
2	-0.96 - (-0.723) = -0.23
3	-0.96 - (-0.713) = -0.24

Fig. S24 Photograph of the customized, one-compartment, three-neck cell with a glassy carbon working electrode. H_2 gas bubbles are appeared on the surface of the working electrode.

Fig. S25 Gas chromatogram of the headspace gas obtained after bulk electrolysis of a N_2 saturated 0.5 mM solution of complex 1 containing 24 mM TFA. The headspace gas was analyzed after 30 min of electrolysis. Inset: Detection region of evolved H_2 gas.

Fig. S26 Plot of i_{cat}/i_p vs. $1/(1+exp[(F/RT)(E-E_{1/2})]$ using FOWA of 5.36 µM of (A) complex **1** (B) complex **2** and (C) complex **3** with 24 mM CH₃COOH in DMF.

Fig. S27 Plot of i_{cat}/i_p vs. $1/(1+exp[(F/RT)(E-E_{1/2})]$ using FOWA of 5.36 μ M of (A) complex 1 (B) complex 2 and (C) complex 3 with 24 mM CF₃COOH in DMF.

Fig. S28 CVs showing blank DMF with 24 mM CH₃COOH added (black) and with 24 mM CH₃COOH in the presence of 5.36 μ M complex 1 (red), complex 2 (green), complex 3 (blue). Conditions: room temperature, 0.1 M [n-Bu₄N]Br as supporting electrolyte, scan rate = 50 mV/s, glassy carbon working electrode, Pt wire counter electrode and the potential is referenced against Fc/Fc⁺.

Fig. S29 CVs showing blank DMF with 24 mM CF₃COOH added (black) and with 24 mM CH₃COOH in the presence of 5.36 μ M complex **1** (red), complex **2** (green), complex **3** (blue). Conditions: room temperature, 0.1 M [n-Bu₄N]Br as supporting electrolyte, scan rate = 50 mV/s, glassy carbon working electrode, Pt wire counter electrode and the potential is referenced against Fc/Fc⁺.

Fig. S30 UV-Vis spectra of complex 1 in DMF during electrolysis under -1.50 V versus Fc/Fc⁺.

Fig. S31 TDDFTUV-Vis spectra of (A) complex 1 and (B) complex 2 (blue: calculated and red: experimental).

Fig. S32 (a) Plausible mechanistic pathway of HER by complexes 1, 2 and 3 (n = 4, 5 and 6); (b-d) HOMO-LUMO electronic distribution for complexes 1, 2 and 3 and their hydride complex derivative.

	0		
Table S1 Selected bond le	engths (Å) and bon	d angles (°) of cor	nplexes 1, 2 and 3.

Complex 1

Ni1-O1	1.8261
Ni1–O1 ^a	1.8261
Ni1–N1	1.9106
Ni1–N1 ^a	1.9106
O1–Ni1–O1 ^a	180.00
O1 ^a –Ni1–N1 ^a	92.14
O1 ^a –Ni1–N1	87.86
O1–Ni1–N1 ^a	87.86
O1-Ni1-N1	92.14
N1–Ni1–N1 ^a	180.00

Complex 2

Ni1–O1	1.8226
Ni1–O1 ^a	1.8226
Ni1–N1	1.9164
Ni1–N1 ^a	1.9164
O1–Ni1–O1 ^a	180.00
O1-Ni1-N1	92.13
O1–Ni1–N1 ^a	87.87
O1 ^a –Ni1–N1	87.87
O1 ^a –Ni1–N1 ^a	92.13
N1–Ni1–N1 ^a	180.00

Complex 3

Ni1–O1 ^a	1.8310
Ni1–O1	1.8310
Ni1–N1 ^a	1.9162
Ni1–N1	1.9162
O1–Ni1–O1 ^a	180.00
O1–Ni1–N1 ^a	88.44
O1-Ni1-N1	91.56
O1 ^a –Ni1–N1 ^a	91.56
O1 ^a –Ni1–N1	88.44
N1–Ni1–N1 ^a	180.00

Complex	v (cm ⁻¹)	Assigned for
1	3536	O–H stretching
2	3316	
3	3272	
1	2939	aromatic C-H
2	2933	bond
3	2934	
1	2855	aliphatic C-H
2	2854	bond
3	2851	
1	1657	azomethine
2	1658	group
3	1642	
1	486	metal-nitrogen
2	485	
3	479	
1	562	metal-oxygen
2	534	
3	532	

Table S2 Assignment of different IR spectral bands of Complexes 1, 2 and 3

Table S3 Assignment of different UV-vis spectral bands of Complexes 1, 2 and 3

Complex	$\pi - \pi^*$ (phenolic	ε (M ⁻¹	π-π*	ε (M ⁻¹	n – π *	ε (M ⁻¹	LMCT	ε (M ⁻¹	d–d	ε (M ⁻¹
	chromophore)	cm^{-1})	(C=N and	cm^{-1})	(C=N)	cm^{-1})		cm^{-1})		cm^{-1})
			benzene							
			ring)							
1	275	10500	312	4000	348	2000	424	1500	600	30
2	279	9500	310	5700	345	2500	420	1800	596	30
3	274	9600	307	4200	347	2000	421	1900	592	30

Entry	Complex	Medium	Source	Overpotential
				(V)
1		DMF	CH ₃ COOH	0.320
	(Int. J. Hydrogen Energy 2014 , 39, 10980)			
2		DMF	CH ₃ COOH	0.85
			CF ₃ COOH	
	(Inorg. Chem. 2018, 57, 21, 13486)			
			CH ₃ COOH	0.53
		ACN	CF ₃ COOH	0.67
3	HOOC N HOOC HOOC HOOC HOOC HOOC HOOC HOO	ACN	CF ₃ COOH	0.93
	(Dalton Trans., 2019, 48, 14653)			
4	$\left[\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		H ₂ - saturated basic (1.0 M KOH)	0.364
	(morg. Chem. 2020 , <i>37</i> , 1036)			

Table S4 Few parameters of recently published complexes used for hydrogen evolution reaction

5			Neutral	0.837
			buffer	
	(Int. J. Hydrogen Energy 2018 , 43, 19047)			
6	$\begin{bmatrix} NC & S & CN \\ NC & S & S & CN \end{bmatrix}^{2\Theta}$		Neutral buffer	0.837.6
	(Applied Catalysis B 2017, 219, 353–361)			
7	$\left[\begin{array}{c} & & \\ & &$	ACN	HClO ₄	1.07
8	Complex 1	DMF	CH ₃ COOH	0.52
	(Present study)		CF ₃ COOH	0.22
9	Complex 2	DMF	CH ₃ COOH	0.55
	(Present study)		CF ₃ COOH	0.23
10	Complex 3	DMF	CH ₃ COOH	0.56
	(Present study)		CF ₃ COOH	0.24

Proton source	$q_{total} = q_{cat}$	Theoretical	Moles of	TON =
	$-q_{blank}$	moles of	catalyst	Theoretical
		hydrogen	used	moles of H_2 /
		produced ₌		Moles of
		q _{total} (1 mol		catalyst used
		e ⁻ / 96485 C)		
		\times (1 mol H ₂ /		
		2 mol e ⁻)		
Acetic acid	0.62	3.21×10^{-6}	1.34×10^{-7}	23.95
Acetic acid	0.40	$2.07\times 10^{\text{-6}}$		15.45
Acetic acid	0.33	$1.71\times10^{\text{-}6}$		12.76
Trifluoroacetic acid	1.30	$6.74 imes 10^{-6}$		50.30
Trifluoroacetic acid	0.50	$2.59\times10^{\text{-}6}$		19.33
Trifluoroacetic acid	0.38	$1.97\times10^{\text{-}6}$		14.70
	Proton source Acetic acid Acetic acid Acetic acid Trifluoroacetic acid Trifluoroacetic acid	Proton source $q_{total}=q_{cat}$ $-q_{blank}$ Acetic acid0.62Acetic acid0.40Acetic acid0.33Trifluoroacetic acid1.30Trifluoroacetic acid0.50Trifluoroacetic acid0.38	$\begin{array}{c cccc} Proton \ source & q_{total} = q_{cat} & Theoretical \\ & -q_{blank} & moles \ of \\ & hydrogen \\ & produced \\ = \\ & q_{total} \ (1 \ mol \\ e^{-} \ / \ 96485 \ C) \\ & \times \ (1 \ mol \ H_2 \ / \\ & 2 \ mol \ e^{-} \) \\ & Xcetic \ acid & 0.62 & 3.21 \times 10^{-6} \\ & Acetic \ acid & 0.40 & 2.07 \times 10^{-6} \\ & Acetic \ acid & 0.33 & 1.71 \times 10^{-6} \\ & Trifluoroacetic \ acid & 0.50 & 2.59 \times 10^{-6} \\ & Trifluoroacetic \ acid & 0.38 & 1.97 \times 10^{-6} \end{array}$	Proton source $q_{total}=q_{cat}$ Theoretical moles of hydrogenMoles of catalyst used $-q_{blank}$ moles of moles of hydrogenusedproduced = $q_{total} (1 \text{ mol})$ $e^-/96485 \text{ C}$) × (1 mol H2 / 2 mol e ⁻)Acetic acid0.62 3.21×10^{-6} Acetic acid0.62 3.21×10^{-6} Acetic acid0.40 2.07×10^{-6} Acetic acid0.33 1.71×10^{-6} Trifluoroacetic acid1.30 6.74×10^{-6} Trifluoroacetic acid0.50 2.59×10^{-6} Trifluoroacetic acid0.38 1.97×10^{-6}

Table S5 TON Calculations

Faradaic Efficiency

Faradaic Efficiency =	Quantified moles of $H_2 \times 100\%$	v 10006
	Theoretical moles of H_2 × 100%	

Complex	Proton Source	Quantified moles of H ₂	Theoretical moles of $H_2 (\times 10^{-6})$	Faradaic Efficiency (%)
1	Acetic Acid	2.17	3.21	67.56
2		1.01	2.07	48.64
3		0.71	1.71	41.35
1	Trifluoroacetic	5.51	6.74	81.78
2	acid	1.59	2.59	61.41
3		1.17	1.97	59.58

Table S6 Calculations of Faradaic Efficiency

TOF Calculations:

For homogenous, diffusion controlled process the peak current can be given by Randle Sevcik equation

$$i_{p} = 0.4463FSC_{p}^{0}\sqrt{\frac{FvD}{RT}}.....(3)$$

$$i_{cat} = \frac{2FSC_{p}^{0}\sqrt{\frac{FvD}{RT}}}{1 + exp^{\left[\frac{F}{RT}(E-E_{1})}{2}\right]}....(4)$$

where, F is the Faraday's constant, S is the surface of electrode, C_p^{0} is the concentration of the complex in solution, D is the diffusion coefficient, $E_{1/2}$ the half-wave potential of the redox couple triggering catalysis, R is the gas constant and T is the absolute temperature. Combining the equation (3) and (4) we get the equation (5). The plot of $i_{ca}t/i_p$ vs $1/(1+exp[(F/RT)(E-E_{1/2})]$ gives access of the observed rate constant (k_{obs}).

$$\frac{i_{cat}}{i_p} = \frac{2}{0.4463} \sqrt{\frac{RT(K_{obs})}{Fv}} \frac{1}{1 + exp^{\left[\frac{F}{RT}(E-E_1)\right]}}....(5)$$

$$Slope = \frac{2}{0.4463} \sqrt{\frac{RT(K_{obs})}{Fv}}....(6)$$

Complex	Proton Source	Slope	$K_{obs}(s^{-1})$	$C_{\rm H}^{0}({\rm M})$	K _{cat} =	$TOF(s^{-1})$
					$(K_{obs}/$	
					$C_{\rm H}$)	
					$(M^{-1}s^{-1})$	
1	Acetic Acid	2.48	6.03	0.024	251.25	251.25
2		1.81	3.21		133.75	133.75
3		1.51	2.23		92.92	92.92
1	Trifluoroacetic	3.23	10.24		426.67	426.67
2	acid	2.15	4.53		188.75	188.75
3		1.76	3.04		126.67	126.67

Table S7 TOF Calculations

Bond	X-ray	DFT
Complex 1		
Ni01-O002	1.83	1.85
Ni01-N004	1.91	1.92
Ni01-O002	1.83	1.85
Ni01-N004	1.91	1.92
Complex 2		
Ni01-O003	1.82	1.85
Ni01-N1	1.92	1.92
Ni01-O003	1.82	1.85
Ni01-N1	1.92	1.92
Complex 3		
Ni01-O005	1.83	1.85
Ni01-N004	1.92	1.92
Ni01-O005	1.83	1.85
Ni01-N004	1.92	1.92

Table S8 Bond length comparison of complex 1, 2 and 3 as obtained from X-ray analysis with DFT calculation.

Table S9 Geometry optimized coordinates of complex 1.

total energy	= -3079.28092039001	Hartree

69

- Ni -0.1812007 2.4970776 11.9076476
- O -0.1749657 0.9775928 12.9577034
- O 4.9815981 5.0736901 8.1282899
- H 5.3534333 4.7096971 7.3081285
- N 1.3862858 3.1624347 12.8003888
- C 2.8962795 3.5539209 10.8696046
- H 2.1166079 3.1085832 10.2297787
- Н 3.5699795 2.7322229 11.1736389
- C 1.7708520 2.7666758 13.9777065
- H 2.6618940 3.2574726 14.3851504
- $C \quad 1.6080544 \quad 1.5219652 \quad 16.1463630$
- C 3.6722377 4.6039554 10.0729258
- H 3.0031725 5.4421519 9.8058481
- H 4.4872369 5.0296167 10.6869702
- C 1.1862177 1.7310688 14.7760899
- $C \quad 0.2658074 \quad 0.8411647 \quad 14.1686448 \\$
- C 1.1175796 0.3811674 16.8592170
- C 2.2330970 4.1455430 12.1162939

- H 3.0068039 4.5068858 12.8153854
- H 1.6059371 4.9975978 11.8244853
- C -0.1890558 -0.3028732 14.9110897
- Н -0.8773667 -0.9872557 14.4110496
- C 0.2198540 -0.5160514 16.1981676
- Н -0.1460374 -1.3866080 16.7500841
- C 2.4820072 2.4009654 16.8416029
- H 2.8605607 3.3003030 16.3544382
- C 1.5170697 0.1531166 18.2000571
- Н 1.1263285 -0.7269400 18.7186467
- C 2.3802028 1.0214512 18.8444480
- H 2.6835455 0.8384065 19.8782439
- C 4.2702256 4.0400804 8.7925157
- H 4.9408838 3.1905143 9.0354396
- H 3.4581771 3.6416538 8.1498632
- C 2.8602986 2.1551103 18.1522634
- H 3.5338067 2.8537574 18.6560815
- O -0.1902210 4.0173296 10.8582303
- O -5.3498185 -0.0624068 15.6858335
- Н -5.7295643 0.3065195 16.5001442
- N -1.7470957 1.8303848 11.0124663

- C -3.2623440 1.4476508 12.9406905
- Н -2.4834184 1.8960306 13.5793451
- Н -3.9362473 2.2676655 12.6325104
- C -2.1252851 2.2212012 9.8315378
- Н -3.0146340 1.7295000 9.4213646
- C -1.9467572 3.4554095 7.6579756
- C -4.0381218 0.4004094 13.7412013
- Н -3.3669425 -0.4331880 14.0173465
- Н -4.8485455 -0.0328837 13.1264388
- C -1.5356560 3.2535785 9.0324509
- C -0.6221092 4.1481814 9.6433647
- C -1.4536135 4.5944195 6.9441067
- C -2.5976425 0.8510724 11.6971957
- Н -3.3704544 0.4893968 10.9972873
- Н -1.9730149 -0.0014961 11.9929661
- C -0.1650794 5.2907115 8.8999796
- Н 0.5171228 5.9792740 9.4026163
- C -0.5642246 5.4972546 7.6087075
- Н -0.1965393 6.3666641 7.0561885
- C -2.8122209 2.5705601 6.9595506
- Н -3.1920352 1.6723211 7.4478086

- C -1.8424729 4.8151075 5.5989074
- Н -1.4500762 5.6939796 5.0795634
- C -2.6974489 3.9411291 4.9512764
- Н -2.9924236 4.1183655 3.9140518
- C -4.6442884 0.9708672 15.0148371
- Н -5.3205699 1.8131750 14.7625247
- Н -3.8372640 1.3809656 15.6565002
- C -3.1800080 2.8091665 5.6445784
- H -3.8469351 2.1060688 5.1382044

Table S10 geometry optimized coordinates of complex 1- hydride.

total energy = -3079.81651912751 Hartree

70

- Ni 0.1281212 1.6906863 11.0899346
- O 0.2440406 0.0328020 12.1607019
- O 5.8170364 5.2031510 8.5006166
- N 1.5683283 2.4645438 12.0848730
- C 3.4882352 3.2393094 10.7134221
- C 1.9655396 2.0493760 13.2543230
- C 2.0507501 0.6589466 15.3226817
- C 4.0977977 4.4291359 9.9713255
- C 1.5612350 0.8799794 13.9719368
- C 0.7597647 -0.1130363 13.3319337
- C 1.7720478 -0.5859449 15.9718513
- C 2.2485265 3.6373375 11.5200452
- C 0.5203910 -1.3556628 14.0210545
- C 1.0043294 -1.5760101 15.2785635
- C 2.7937106 1.6212486 16.0585970
- C 2.2459079 -0.8299883 17.2846173
- $C \quad 2.9801440 \quad 0.1235811 \quad 17.9675820 \\$
- C 5.3181879 4.0425484 9.1487250

- C 3.2492148 1.3595315 17.3417823
- O 0.8415700 2.3300392 9.3496838
- O -4.9848889 -0.2535563 15.2038851
- N -1.5032624 1.1240193 10.2525524
- C -2.9084583 0.9695007 12.3115914
- C -1.8968535 1.4963518 9.0673885
- C -1.8712761 2.6585825 6.8624121
- C -3.7449613 0.0282364 13.1797019
- C -1.1954627 2.2738515 8.0915468
- C 0.1831504 2.5980603 8.2787576
- C -1.1255646 3.3088535 5.8272381
- C -2.3964084 0.2759037 11.0472787
- C 0.8919293 3.2439995 7.2011647
- C 0.2655625 3.5786326 6.0356391
- C -3.2543713 2.4374263 6.6195569
- C -1.7577318 3.6850396 4.6164803
- C -3.1034761 3.4400797 4.4068542
- C -4.2329788 0.6925857 14.4587544
- C -3.8516207 2.8126695 5.4256481
- H 6.5930643 4.9492850 7.9744671
- H 3.1928475 2.4634264 9.9909168

- H 4.2353681 2.7931192 11.3956903
- H 2.7410309 2.6643856 13.7266601
- H 3.3442871 4.8722175 9.2938258
- H 4.3892233 5.2220916 10.6844252
- H 2.5319506 4.3234877 12.3374010
- H 1.5400667 4.1588510 10.8644992
- Н -0.0744644 -2.1068913 13.4969909
- Н 0.8010926 -2.5236242 15.7859642
- H 3.0083119 2.5998611 15.6288283
- Н 2.0168682 -1.7921583 17.7514556
- Н 3.3413242 -0.0724423 18.9801605
- H 6.0887262 3.5963370 9.8106199
- Н 5.0354844 3.2657795 8.4087947
- H 3.8176102 2.1265317 17.8748082
- Н -5.2972929 0.1768061 16.0167078
- Н -2.0473237 1.3364313 12.8947305
- H -3.5022991 1.8562137 12.0240940
- Н -2.8847046 1.1273324 8.7707724
- Н -3.1453206 -0.8596389 13.4533277
- Н -4.6216018 -0.3405496 12.6159248
- Н -3.2490754 -0.0353731 10.4192391

- Н -1.8339281 -0.6236469 11.3358871
- H 1.9503502 3.4592591 7.3646476
- H 0.8239502 4.0730603 5.2353004
- Н -3.8833917 1.9767863 7.3817540
- Н -1.1575329 4.1780878 3.8466010
- Н -3.5838043 3.7339390 3.4703189
- H -4.8496785 1.5796232 14.2069540
- H -3.3626742 1.0558954 15.0435131
- H -4.9187155 2.6244164 5.2791068
- Н -0.6475886 2.8274268 11.5657552

 Table S11 geometry optimized coordinates of complex 2.

total energy	= -3157.79871580081	Hartree

75

- Ni 0.8165806 8.8677585 8.4053141
- O -0.6261819 8.0654392 7.5644028
- O 3.9575507 14.4013472 9.6922124
- H 3.3750181 13.9255175 10.3085343
- N 1.5671993 9.3522104 6.7024184
- C 0.3201433 7.7043135 5.3950781
- C -0.6478166 7.4833127 6.4059200
- C 1.7846953 11.7956486 7.0589440
- H 1.1844043 11.5898029 7.9603744
- H 1.0735334 12.1067945 6.2722161
- C 1.2882772 8.7443893 5.5892295
- H 1.8196674 9.0965738 4.6974360
- C 0.2461423 6.9854099 4.1402257
- C 2.7761308 12.9175212 7.3761056
- H 3.5618690 12.5179079 8.0382189
- H 3.2876099 13.2547828 6.4550861
- C 2.4817093 10.4963172 6.6410980
- H 2.8882770 10.5861352 5.6193489
- H 3.3145678 10.3017683 7.3290134
- C -1.7474844 6.5979168 6.1284864
- H -2.5072563 6.4785002 6.9019343
- C 2.1284634 14.1152904 8.0788642
- H 1.4983226 14.6911025 7.3765771
- H 1.4467828 13.7483516 8.8719810
- C -0.8485170 6.0915531 3.9124734
- C 3.1422220 15.0571279 8.7260253
- H 3.8371380 15.4582609 7.9684167
- H 2.6133216 15.9190709 9.1800116
- C -1.8376929 5.9361099 4.9341684
- H -2.6830964 5.2686048 4.7423357
- C 1.2168509 7.1073761 3.1098289
- H 2.0861108 7.7515533 3.2473274
- C -0.9449589 5.3799535 2.6903117
- H -1.7930957 4.7052226 2.5434014
- C 0.0104379 5.5309170 1.7013697
- $H \quad -0.0704048 \quad 4.9789791 \quad 0.7617002$
- C 1.0995546 6.4029450 1.9220645
- H 1.8656946 6.5208251 1.1509653
- O 2.2607900 9.6669095 9.2471505

- O -2.3276432 3.3428523 7.1219887
- H -1.7426285 3.8178951 6.5074202
- N 0.0640011 8.3870712 10.1086916
- C 1.3077396 10.0410965 11.4111980
- C 2.2800765 10.2544759 10.4029253
- C -0.1548395 5.9426890 9.7581463
- H 0.4462980 6.1463486 8.8567940
- Н 0.5552735 5.6322673 10.5460798
- C 0.3393333 9.0007531 11.2195345
- Н -0.1946347 8.6532594 12.1116694
- C 1.3778529 10.7672424 12.6619822
- C -1.1474097 4.8214778 9.4419986
- Н -1.9328799 5.2215780 8.7798522
- H -1.6591304 4.4853220 10.3632832
- C -0.8509947 7.2435423 10.1726485
- Н -1.2580540 7.1566614 11.1944571
- H -1.6834743 7.4366736 9.4838912
- C 3.3817890 11.1371767 10.6808092
- H 4.1454285 11.2497204 9.9101188
- C -0.5013817 3.6225375 8.7396374
- H 0.1258411 3.0444705 9.4426756

- H 0.1828773 3.9882668 7.9481663
- C 2.4743138 11.6588562 12.8898105
- C -1.5163759 2.6840408 8.0895102
- Н -2.2142694 2.2844317 8.8451913
- H -0.9889853 1.8208115 7.6362101
- C 3.4689421 11.8049573 11.8720339
- H 4.3160820 12.4701208 12.0643556
- C 0.4014309 10.6547406 13.6880337
- Н -0.4692802 10.0126243 13.5498467
- C 2.5668976 12.3775367 14.1081267
- H 3.4165692 13.0502694 14.2553867
- C 1.6058299 12.2358830 15.0929524
- H 1.6836183 12.7933825 16.0295929
- C 0.5148490 11.3662464 14.8719419
- Н -0.2557749 11.2558903 15.6396778

Table S12 geometry optimized coordinates of complex 2-hydride.

total energy = -3158.33873725985 Hartree

76

- Ni 0.7532230 8.8267596 8.0910436
- O 0.6791842 6.9723589 7.3820444
- O 3.5963649 14.0832388 10.5173322
- N 1.4701748 9.4805888 6.4491180
- $C \quad 0.7387869 \quad 7.6103998 \quad 5.0571563$
- C 0.4596802 6.7130405 6.1371227
- $C \quad 1.4362199 \quad 11.7148261 \quad 7.4992525 \\$
- C 1.3537114 8.8856830 5.3042231
- C 0.4699259 7.2048117 3.6883084
- C 2.3107578 12.8094928 8.1126667
- C 2.1992452 10.7399048 6.5930959
- C -0.0761303 5.4111211 5.8232242
- C 1.5723421 13.6026693 9.1951707
- C -0.0507582 5.8960036 3.4304035
- $C \quad 2.4404384 \quad 14.6407033 \quad 9.9040768$
- C -0.3139525 5.0257230 4.5352174
- C 0.6819511 8.0478880 2.5625790
- C -0.3141305 5.4774658 2.1024419

- C -0.0782104 6.3173138 1.0285755
- C 0.4225210 7.6146328 1.2714936
- O 2.5169192 8.9357453 8.9933134
- O -1.8627914 2.8388474 7.7155685
- N -0.1050914 8.6042589 9.7924357
- C 1.5661338 9.9664550 10.9454555
- C 2.6442809 9.6440927 10.0650688
- C -0.7172046 6.2388836 10.1341287
- C 0.3292120 9.2414734 10.8370112
- C 1.7721531 10.8874388 12.0403784
- C -1.7222363 5.1753916 9.6907778
- C -1.2264016 7.6737907 9.9214639
- C 3.9608607 10.1236931 10.4033302
- C -1.2066157 3.7484214 9.9065665
- C 3.0869320 11.3901029 12.3000295
- C -1.9902228 2.6930798 9.1282919
- C 4.1680522 10.9558915 11.4661257
- C 0.7146663 11.3593357 12.8625032
- C 3.2995269 12.3108233 13.3580241
- C 2.2479540 12.7450677 14.1469745
- C 0.9469066 12.2609561 13.8899226

- H 3.3133477 13.3981867 11.1467431
- H 0.9854255 11.1442114 8.3352521
- H 0.5849977 12.1509883 6.9481184
- H 1.7933811 9.4094989 4.4464955
- H 3.2060301 12.3494724 8.5644758
- H 2.6719444 13.4957839 7.3237616
- H 2.3932555 11.1799642 5.5996761
- H 3.1718150 10.5061919 7.0575725
- H -0.3037184 4.7512827 6.6622307
- H 0.6954028 14.1183839 8.7620200
- H 1.1749156 12.8980875 9.9511310
- H 2.8138460 15.3837084 9.1785787
- H 1.8274747 15.1882700 10.6482610
- H -0.7280429 4.0342019 4.3291163
- Н 1.0451265 9.0672277 2.6958295
- Н -0.7120417 4.4712902 1.9427948
- Н -0.2830761 5.9870561 0.0072758
- H 0.6025050 8.2936367 0.4335085
- Н -0.9450574 2.6319834 7.4722034
- H 0.1991024 6.1133859 9.5385404
- Н -0.4432129 6.1027951 11.1967958

- Н -0.2842889 9.1632588 11.7459248
- Н -1.9315576 5.3211595 8.6162346
- H -2.6858145 5.3035271 10.2200966
- Н -1.8768772 7.9871870 10.7573649
- Н -1.8123113 7.7235252 8.9926700
- H 4.7818135 9.8154494 9.7525964
- Н -1.2297513 3.4920554 10.9818589
- H -0.1446465 3.6852316 9.5977969
- H -3.0687716 2.7843768 9.3427920
- H -1.6749177 1.6791544 9.4421959
- H 5.1738689 11.3272826 11.6813081
- Н -0.3099506 11.0356351 12.6731239
- H 4.3136831 12.6789218 13.5364808
- H 2.4200755 13.4589244 14.9559115
- H 0.1082855 12.6085043 14.4990758
- Н -0.5539050 9.1265765 7.5207964

Table S13 geometry optimized coordinates of complex 3.

total energy = -3236.30986835935 Hartre	e
---	---

81

- Ni 2.9592812 9.3157424 8.5153814
- O 1.3247962 9.1326881 7.6754186
- N 2.7242049 11.2208208 8.6360988
- O 3.9847335 10.8407220 16.2812925
- H 3.6563115 10.6394550 17.1730610
- C 1.9030749 11.8978500 7.8891336
- H 1.8960805 12.9834137 8.0408531
- C -1.0287187 10.3171287 5.2375378
- Н -1.8093566 9.9131540 4.5866762
- C -0.7597998 11.7216992 5.1862438
- C 3.4347912 11.9236195 13.5725719
- H 2.3837252 12.2392407 13.7196528
- H 3.4513815 10.8275594 13.7058054
- C 4.3095063 12.5697393 14.6508154
- Н 5.3596929 12.2468728 14.5197787
- H 4.2991459 13.6691036 14.5339574
- C 3.8748581 12.2424927 16.0724021
- H 4.5108575 12.7971612 16.7918213

- H 2.8298049 12.5813921 16.2286792
- C 0.5038797 13.6621197 5.9469678
- H 1.2842356 14.1223671 6.5536901
- $C \quad 3.0114155 \quad 11.6105437 \quad 11.0722512$
- Н 1.9542007 11.9096270 11.1969481
- Н 3.0492374 10.5152278 11.1958646
- C 0.9803186 11.3785599 6.9242887
- C 3.4685404 11.9687424 9.6553762
- H 3.3317216 13.0500969 9.4822637
- H 4.5345288 11.7336726 9.5457797
- C 0.7077924 9.9879608 6.9222526
- C 3.8750722 12.2727634 12.1482682
- H 3.8557125 13.3715267 12.0162089
- H 4.9282485 11.9643527 12.0071465
- C 0.2562242 12.2654560 6.0361109
- C -0.3328342 9.4835271 6.0681137
- H -0.5383501 8.4119887 6.1034449
- C -1.4829299 12.5682457 4.3087999
- Н -2.2528687 12.1240886 3.6715635
- C -0.2195838 14.4701041 5.0838148
- H -0.0019511 15.5408510 5.0427585

- C -1.2251597 13.9264048 4.2543012
- Н -1.7875628 14.5720699 3.5752865
- O 4.5952881 9.4968729 9.3536084
- N 3.1936623 7.4101027 8.3966962
- O 1.9643932 7.8021848 0.7477133
- Н 2.2917286 8.0048260 -0.1441435
- C 4.0077409 6.7333827 9.1513965
- H 4.0145398 5.6474052 9.0023253
- C 6.9283296 8.3162785 11.8134676
- Н 7.7071386 8.7204933 12.4663666
- C 6.6515677 6.9135758 11.8725175
- C 2.5049619 6.7141959 3.4560959
- H 3.5565087 6.3984743 3.3127519
- H 2.4892834 7.8104473 3.3242568
- C 1.6343466 6.0698011 2.3734924
- H 0.5835761 6.3920099 2.5014344
- H 1.6447021 4.9702262 2.4883314
- C 2.0737850 6.3999640 0.9540455
- H 1.4402241 5.8467364 0.2314159
- H 3.1194258 6.0615234 0.8005499
- C 5.3818978 4.9749909 11.1166597

- H 4.6024503 4.5153332 10.5082861
- C 2.9180311 7.0237275 5.9586936
- H 3.9759164 6.7256567 5.8373972
- H 2.8797802 8.1192907 5.8372924
- C 4.9244832 7.2543113 10.1212711
- C 2.4555914 6.6622298 7.3729896
- H 2.5937717 5.5808702 7.5450444
- H 1.3886044 6.8949924 7.4781434
- C 5.2036429 8.6435926 10.1162528
- C 2.0588140 6.3631776 4.8781098
- H 2.0774855 5.2642166 5.0086571
- H 1.0051004 6.6715566 5.0154659
- C 5.6380296 6.3696205 11.0198360
- C 6.2419920 9.1480506 10.9730785
- H 6.4536428 10.2181570 10.9318987
- C 7.3644715 6.0688935 12.7600908
- H 8.1327611 6.5130108 13.3993461
- C 6.0954950 4.1688056 11.9896368
- H 5.8716357 3.0995843 12.0365638
- C 7.0989289 4.7125351 12.8217759
- H 7.6534789 4.0683230 13.5085891

mplex **3**-hydride. Т

Tal	Table S14 geometry optimized coordinates of con							
tota	total energy = -3236.84578928266 Hartree							
82								
Ni	3.0622614	9.7162009	8.3876950					
0	2.3679192	9.8195747	6.5258323					
N	2.7673679	11.5954709	8.6359946					
0	3.8168998	10.2368398	16.2183368					
С	1.9910885	12.3258060	7.8873266					
С	0.1584712	11.3631719	4.1563785					
С	-0.1884138	12.5969422	4.7955918					
С	3.1816825	11.6276878	13.6692865					
С	3.9199207	12.2190897	14.8738101					
С	3.4961166	11.6219484	16.2081003					
С	-0.0120744	14.1269594	6.6791138					
С	2.8951891	11.6315921	11.1301208					
С	1.3079112	11.9620572	6.6827555					
С	3.3943116	12.2150291	9.8062342					
С	1.5946970	10.7214263	6.0347284					
С	3.6378207	12.2185410	12.3327095					
С	0.3825069	12.9031928	6.0727640					
С	1.0058469	10.4678070	4.7423108					
С	-1.0890337	13.4994061	4.1777881					

- C -0.8934093 14.9962308 6.0543007
- C -1.4404174 14.6896330 4.7900362
- O 4.8572508 9.8076507 9.2047799
- N 3.1312135 7.8054394 8.3758186
- O 2.2790060 5.9751695 0.8775138
- C 3.9408306 7.0908431 9.1043060
- C 7.3400660 8.3504171 11.3496517
- C 6.9065608 6.9907768 11.4657031
- C 2.2906214 5.7692607 3.8404887
- C 1.2409782 5.1860958 2.8900657
- C 1.7922707 4.8059991 1.5234508
- C 5.3323456 5.2173170 10.9177523
- C 2.7691190 6.7307708 6.1602015
- C 5.0259075 7.5303125 9.9273789
- C 2.1740347 7.0836574 7.5264932
- C 5.4645121 8.8874307 9.8723027
- C 1.7217080 6.1444504 5.2113323
- C 5.7367331 6.5701309 10.7555252
- C 6.6575995 9.2569506 10.5901579
- C 7.6205383 6.0734109 12.2759612
- C 6.0485316 4.3366064 11.7139353

- C 7.2061209 4.7592483 12.4018943
- Н 3.4927790 9.8549898 17.0504889
- H 1.8815653 13.3674472 8.2101372
- Н -0.2815648 11.1427467 3.1792879
- H 2.0940768 11.7938148 13.7931421
- H 3.3294183 10.5331767 13.6583774
- H 5.0095420 12.0691272 14.7524101
- H 3.7535552 13.3112691 14.9169512
- H 4.0156910 12.1503630 17.0330523
- H 2.4067947 11.7739726 16.3548233
- H 0.3630001 14.4017008 7.6651573
- H 1.8095084 11.8174406 11.2236931
- H 3.0315373 10.5365363 11.1183690
- Н 3.2050904 13.3023714 9.7807864
- H 4.4789694 12.0520867 9.7296025
- H 3.5048336 13.3172469 12.3515065
- H 4.7229988 12.0408734 12.2078489
- H 1.2624433 9.5220629 4.2592609
- Н -1.5054058 13.2336374 3.2019749
- Н -1.1712893 15.9276665 6.5552435
- H -2.1364942 15.3801130 4.3074671

- H 2.6738894 5.7124429 0.0299080
- Н 3.7831206 6.0070205 9.0467920
- H 8.2367023 8.6576546 11.8958521
- H 3.1089005 5.0352064 3.9715932
- H 2.7448114 6.6601676 3.3717334
- H 0.4214974 5.9157900 2.7482610
- H 0.7876032 4.2838162 3.3402683
- H 0.9931981 4.3288588 0.9205028
- H 2.6032686 4.0583924 1.6451113
- H 4.4337134 4.8463401 10.4247839
- Н 3.5974127 6.0114656 6.3005504
- Н 3.1952905 7.6459271 5.7206348
- H 1.8485448 6.1647515 8.0459273
- H 1.2951869 7.7251758 7.3855678
- H 1.2584515 5.2514480 5.6733957
- H 0.9058014 6.8803742 5.0780868
- H 6.9824847 10.2965212 10.5099729
- H 8.5101546 6.4273277 12.8045136
- H 5.7044321 3.3034739 11.8125004
- H 7.7616454 4.0581465 13.0295713
- H 1.8295050 9.5477962 9.1443270

 Table S15 Summary of Natural Population Analysis for complex 1.

Natural Population

Atom No	Charg	ge Core	Valenc	e Rydber	rg Total
1 ni	0.96584	17.99557	9.00160	0.03699	27.03416
2 o	-0.73757	1.99971	6.72504	0.01282	8.73757
3 o	-0.77419	1.99978	6.76384	0.01057	8.77419
4 h	0.46969	0.00000	0.52874	0.00157	0.53031
5 n	-0.55602	1.99920	5.53384	0.02297	7.55602
6 c	-0.42321	1.99912	4.40941	0.01468	6.42321
7 h	0.21476	0.00000	0.78132	0.00393	0.78524
8 h	0.21218	0.00000	0.78463	0.00319	0.78782
9 c	0.17229	1.99906	3.80414	0.02451	5.82771
10 h	0.20359	0.00000	0.79414	0.00227	0.79641
11 c	-0.02615	1.99888	4.01154	0.01573	6.02615
12 c	-0.43647	1.99914	4.42270	0.01463	6.43647
13 h	0.20740	0.00000	0.78829	0.00431	0.79260
14 h	0.21062	0.00000	0.78526	0.00412	0.78938
15 c	-0.21652	1.99882	4.20069	0.01701	6.21652
16 c	0.43659	1.99877	3.53154	0.03311	5.56341

17 c	-0.09750	1.99884	4.08294	0.01571	6.09750
18 c	-0.19353	1.99911	4.17537	0.01906	6.19353
19 h	0.20440	0.00000	0.79308	0.00252	0.79560
20 h	0.22958	0.00000	0.76666	0.00376	0.77042
21 c	-0.26538	1.99890	4.24854	0.01794	6.26538
22 h	0.23160	0.00000	0.76606	0.00234	0.76840
23 c	-0.15819	1.99893	4.14273	0.01653	6.15819
24 h	0.23213	0.00000	0.76590	0.00197	0.76787
25 c	-0.22303	1.99894	4.20850	0.01559	6.22303
26 h	0.22399	0.00000	0.77396	0.00205	0.77601
27 c	-0.18760	1.99893	4.17194	0.01673	6.18760
28 h	0.22761	0.00000	0.77048	0.00191	0.77239
29 c	-0.24139	1.99894	4.22584	0.01662	6.24139
30 h	0.22910	0.00000	0.76923	0.00167	0.77090
31 c	-0.01634	1.99914	3.99987	0.01733	6.01634
32 h	0.17156	0.00000	0.82568	0.00276	0.82844
33 h	0.17131	0.00000	0.82585	0.00284	0.82869
34 c	-0.20715	1.99895	4.19169	0.01651	6.20715
35 h	0.22884	0.00000	0.76945	0.00171	0.77116
36 o	-0.73757	1.99971	6.72507	0.01280	8.73757
37 o	-0.77422	1.99978	6.76388	0.01057	8.77422

38 h	0.46972	0.00000	0.52872	0.00157	0.53028
39 n	-0.55578	1.99920	5.53361	0.02297	7.55578
40 c	-0.42319	1.99912	4.40940	0.01467	6.42319
41 h	0.21480	0.00000	0.78126	0.00393	0.78520
42 h	0.21213	0.00000	0.78467	0.00320	0.78787
43 c	0.17240	1.99906	3.80404	0.02450	5.82760
44 h	0.20365	0.00000	0.79408	0.00227	0.79635
45 c	-0.02617	1.99888	4.01156	0.01573	6.02617
46 c	-0.43648	1.99914	4.42271	0.01464	6.43648
47 h	0.20741	0.00000	0.78826	0.00432	0.79259
48 h	0.21059	0.00000	0.78529	0.00412	0.78941
49 c	-0.21643	1.99882	4.20060	0.01702	6.21643
50 c	0.43627	1.99877	3.53185	0.03312	5.56373
51 c	-0.09746	1.99884	4.08291	0.01571	6.09746
52 c	-0.19348	1.99911	4.17532	0.01905	6.19348
53 h	0.20442	0.00000	0.79306	0.00252	0.79558
54 h	0.22947	0.00000	0.76676	0.00377	0.77053
55 c	-0.26553	1.99890	4.24867	0.01796	6.26553
56 h	0.23157	0.00000	0.76608	0.00234	0.76843
57 c	-0.15805	1.99893	4.14259	0.01653	6.15805
58 h	0.23213	0.00000	0.76590	0.00197	0.76787

59	c	-0.22305	1.99894	4.20851	0.01559	6.22305
60	h	0.22401	0.00000	0.77394	0.00205	0.77599
61	c	-0.18759	1.99893	4.17194	0.01673	6.18759
62	h	0.22762	0.00000	0.77047	0.00191	0.77238
63	c	-0.24140	1.99894	4.22585	0.01662	6.24140
64	h	0.22910	0.00000	0.76923	0.00167	0.77090
65	c	-0.01634	1.99914	3.99987	0.01732	6.01634
66	h	0.17165	0.00000	0.82559	0.00276	0.82835
67	h	0.17123	0.00000	0.82593	0.00284	0.82877
68	с	-0.20715	1.99895	4.19169	0.01651	6.20715
69	h	0.22884	0.00000	0.76945	0.00171	0.77116

* Total * -0.00000 89.96186 195.27925 0.75889 286.00000

 Table S16 Summary of Natural Population Analysis for complex 1-hydride.

Natural Population

Atom No	Charg	ge Core	Valenc	e Rydber	rg Total
1 ni	1.06646	17.99438	8.89038	0.04878	26.93354
2 o	-0.79076	1.99973	6.77573	0.01530	8.79076
3 o	-0.77423	1.99978	6.76388	0.01057	8.77423
4 n	-0.55579	1.99920	5.53234	0.02425	7.55579
5 c	-0.42315	1.99912	4.41023	0.01381	6.42315
6 c	0.17486	1.99905	3.80108	0.02500	5.82514
7 c	-0.02562	1.99888	4.01094	0.01580	6.02562
8 c	-0.43823	1.99914	4.42428	0.01481	6.43823
9 c	-0.21373	1.99882	4.19794	0.01697	6.21373
10 c	0.45208	1.99881	3.51381	0.03530	5.54792
11 c	-0.09680	1.99884	4.08219	0.01577	6.09680
12 c	-0.19477	1.99912	4.17623	0.01943	6.19477
13 c	-0.26835	1.99890	4.25146	0.01799	6.26835
14 c	-0.15674	1.99893	4.14127	0.01654	6.15674
15 c	-0.22222	1.99894	4.20774	0.01554	6.22222
16 c	-0.18785	1.99893	4.17215	0.01677	6.18785

17 c	-0.23999	1.99894	4.22442	0.01664	6.23999
18 c	-0.01631	1.99914	3.99993	0.01724	6.01631
19 c	-0.20652	1.99895	4.19106	0.01651	6.20652
20 o	-0.77833	1.99973	6.76343	0.01517	8.77833
21 o	-0.77422	1.99978	6.76387	0.01057	8.77422
22 n	-0.55150	1.99919	5.52850	0.02380	7.55150
23 c	-0.42467	1.99912	4.41130	0.01426	6.42467
24 c	0.17825	1.99905	3.79795	0.02474	5.82175
25 c	-0.02550	1.99889	4.01085	0.01577	6.02550
26 c	-0.43701	1.99914	4.42318	0.01468	6.43701
27 c	-0.21992	1.99883	4.20408	0.01701	6.21992
28 c	0.45323	1.99882	3.51258	0.03537	5.54677
29 c	-0.09852	1.99884	4.08392	0.01576	6.09852
30 c	-0.19473	1.99911	4.17628	0.01935	6.19473
31 c	-0.26894	1.99890	4.25196	0.01808	6.26894
32 c	-0.15822	1.99893	4.14276	0.01654	6.15822
33 c	-0.22370	1.99894	4.20927	0.01549	6.22370
34 c	-0.18784	1.99893	4.17216	0.01676	6.18784
35 c	-0.24152	1.99894	4.22593	0.01666	6.24152
36 c	-0.01667	1.99915	4.00022	0.01730	6.01667
37 c	-0.20696	1.99895	4.19149	0.01651	6.20696

38	h	0.46969	0.00000	0.52874	0.00157	0.53031
39	h	0.22531	0.00000	0.77027	0.00442	0.77469
40	h	0.20860	0.00000	0.78863	0.00276	0.79140
41	h	0.20323	0.00000	0.79435	0.00242	0.79677
42	h	0.20769	0.00000	0.78778	0.00453	0.79231
43	h	0.20983	0.00000	0.78601	0.00416	0.79017
44	h	0.20882	0.00000	0.78858	0.00260	0.79118
45	h	0.22760	0.00000	0.76956	0.00284	0.77240
46	h	0.23237	0.00000	0.76504	0.00259	0.76763
47	h	0.23178	0.00000	0.76620	0.00202	0.76822
48	h	0.22306	0.00000	0.77482	0.00212	0.77694
49	h	0.22777	0.00000	0.77032	0.00191	0.77223
50	h	0.22924	0.00000	0.76910	0.00166	0.77076
51	h	0.17179	0.00000	0.82547	0.00274	0.82821
52	h	0.17092	0.00000	0.82636	0.00272	0.82908
53	h	0.22894	0.00000	0.76935	0.00171	0.77106
54	h	0.47003	0.00000	0.52841	0.00156	0.52997
55	h	0.21648	0.00000	0.78016	0.00336	0.78352
56	h	0.21358	0.00000	0.78326	0.00317	0.78642
57	h	0.20263	0.00000	0.79503	0.00233	0.79737
58	h	0.20933	0.00000	0.78633	0.00434	0.79067

59 h	0.21082	0.00000	0.78509	0.00410	0.78918
60 h	0.20868	0.00000	0.78879	0.00253	0.79132
61 h	0.23078	0.00000	0.76518	0.00405	0.76922
62 h	0.22832	0.00000	0.76900	0.00267	0.77168
63 h	0.23160	0.00000	0.76639	0.00201	0.76840
64 h	0.22283	0.00000	0.77505	0.00212	0.77717
65 h	0.22751	0.00000	0.77057	0.00192	0.77249
66 h	0.22898	0.00000	0.76936	0.00167	0.77102
67 h	0.17227	0.00000	0.82498	0.00275	0.82773
68 h	0.17112	0.00000	0.82611	0.00277	0.82888
69 h	0.22871	0.00000	0.76958	0.00172	0.77129
70 h	-0.05587	0.00000	1.05330	0.00257	1.05587

* Total * -0.00000 89.96081 196.25395 0.78524 287.00000

 Table S17 Summary of Natural Population Analysis for complex 2.

Natural Population

Atom No	Charg	ge Core	Valenc	e Rydber	rg Total
1 ni	0.96856	17.99558	8.99989	0.03596	27.03144
2 o	-0.73833	1.99971	6.72590	0.01272	8.73833
3 o	-0.77415	1.99979	6.76364	0.01073	8.77415
4 h	0.45912	0.00000	0.53889	0.00199	0.54088
5 n	-0.55235	1.99920	5.53011	0.02303	7.55235
6 c	-0.21323	1.99882	4.19739	0.01702	6.21323
7 c	0.43505	1.99876	3.53299	0.03320	5.56495
8 c	-0.41799	1.99912	4.40419	0.01468	6.41799
9 h	0.21096	0.00000	0.78528	0.00376	0.78904
10 h	0.21163	0.00000	0.78531	0.00306	0.78837
11 c	0.17278	1.99906	3.80371	0.02445	5.82722
12 h	0.20504	0.00000	0.79271	0.00225	0.79496
13 c	-0.02550	1.99888	4.01085	0.01577	6.02550
14 c	-0.41996	1.99913	4.40537	0.01546	6.41996
15 h	0.20739	0.00000	0.78753	0.00508	0.79261
16 h	0.21080	0.00000	0.78641	0.00279	0.78920

17 c	-0.19406	1.99911	4.17587	0.01908	6.19406
18 h	0.20533	0.00000	0.79222	0.00245	0.79467
19 h	0.22825	0.00000	0.76817	0.00358	0.77175
20 c	-0.26885	1.99890	4.25108	0.01888	6.26885
21 h	0.23541	0.00000	0.76200	0.00259	0.76459
22 c	-0.44439	1.99914	4.43290	0.01235	6.44439
23 h	0.22127	0.00000	0.77601	0.00272	0.77873
24 h	0.20283	0.00000	0.79377	0.00340	0.79717
25 c	-0.09556	1.99884	4.08084	0.01589	6.09556
26 c	-0.02363	1.99914	4.00544	0.01904	6.02363
27 h	0.18864	0.00000	0.80896	0.00240	0.81136
28 h	0.17868	0.00000	0.81881	0.00251	0.82132
29 c	-0.18009	1.99892	4.16421	0.01696	6.18009
30 h	0.23414	0.00000	0.76364	0.00222	0.76586
31 c	-0.22215	1.99894	4.20754	0.01567	6.22215
32 h	0.22445	0.00000	0.77352	0.00203	0.77555
33 c	-0.18743	1.99893	4.17178	0.01673	6.18743
34 h	0.22830	0.00000	0.76980	0.00191	0.77170
35 c	-0.23959	1.99894	4.22403	0.01662	6.23959
36 h	0.22948	0.00000	0.76885	0.00167	0.77052
37 c	-0.20597	1.99895	4.19053	0.01649	6.20597

38	h	0.22935	0.00000	0.76895	0.00171	0.77065
39	0	-0.73816	1.99971	6.72574	0.01271	8.73816
40	0	-0.77409	1.99979	6.76358	0.01073	8.77409
41	h	0.45914	0.00000	0.53887	0.00200	0.54086
42	n	-0.55233	1.99920	5.53010	0.02303	7.55233
43	c	-0.21316	1.99882	4.19731	0.01703	6.21316
44	c	0.43489	1.99876	3.53313	0.03322	5.56511
45	c	-0.41797	1.99912	4.40418	0.01467	6.41797
46	h	0.21104	0.00000	0.78519	0.00377	0.78896
47	h	0.21160	0.00000	0.78534	0.00306	0.78840
48	c	0.17273	1.99906	3.80377	0.02444	5.82727
49	h	0.20528	0.00000	0.79247	0.00224	0.79472
50	c	-0.02550	1.99888	4.01084	0.01578	6.02550
51	c	-0.41996	1.99913	4.40538	0.01545	6.41996
52	h	0.20731	0.00000	0.78761	0.00508	0.79269
53	h	0.21081	0.00000	0.78640	0.00279	0.78919
54	c	-0.19399	1.99911	4.17580	0.01908	6.19399
55	h	0.20533	0.00000	0.79222	0.00245	0.79467
56	h	0.22811	0.00000	0.76831	0.00358	0.77189
57	c	-0.26860	1.99890	4.25082	0.01889	6.26860
58	h	0.23533	0.00000	0.76210	0.00257	0.76467

59	c	-0.44444	1.99914	4.43295	0.01235	6.44444
60	h	0.22131	0.00000	0.77597	0.00272	0.77869
61	h	0.20286	0.00000	0.79375	0.00340	0.79714
62	c	-0.09554	1.99884	4.08082	0.01589	6.09554
63	c	-0.02364	1.99914	4.00546	0.01904	6.02364
64	h	0.18859	0.00000	0.80901	0.00240	0.81141
65	h	0.17868	0.00000	0.81880	0.00251	0.82132
66	с	-0.18041	1.99892	4.16450	0.01698	6.18041
67	h	0.23414	0.00000	0.76365	0.00221	0.76586
68	с	-0.22214	1.99894	4.20753	0.01568	6.22214
69	h	0.22448	0.00000	0.77349	0.00203	0.77552
70	с	-0.18751	1.99893	4.17185	0.01673	6.18751
71	h	0.22828	0.00000	0.76981	0.00191	0.77172
72	с	-0.23957	1.99894	4.22401	0.01662	6.23957
73	h	0.22949	0.00000	0.76884	0.00166	0.77051
74	с	-0.20596	1.99895	4.19051	0.01649	6.20596
75	h	0.22935	0.00000	0.76894	0.00171	0.77065

* Total * 0.00000 93.96014 207.23812 0.80174 302.00000

 Table S18 Summary of Natural Population Analysis for complex 2-hydride.

Natural Population

Atom No	Charg	ge Core	Valenc	e Rydber	rg Total
1 ni	1.08871	17.99447	8.86569	0.05113	26.91129
2 o	-0.75088	1.99973	6.73714	0.01401	8.75088
3 o	-0.77983	1.99978	6.76951	0.01055	8.77983
4 n	-0.54586	1.99917	5.52233	0.02436	7.54586
5 c	-0.22444	1.99883	4.20854	0.01707	6.22444
6 c	0.44421	1.99881	3.52138	0.03560	5.55579
7 c	-0.41160	1.99911	4.39796	0.01453	6.41160
8 c	0.18764	1.99904	3.78899	0.02433	5.81236
9 c	-0.02560	1.99888	4.01098	0.01574	6.02560
10 c	-0.41798	1.99913	4.40267	0.01618	6.41798
11 c	-0.19741	1.99913	4.17893	0.01936	6.19741
12 c	-0.26749	1.99889	4.25035	0.01826	6.26749
13 c	-0.44290	1.99913	4.43128	0.01250	6.44290
14 c	-0.09877	1.99884	4.08416	0.01577	6.09877
15 c	-0.02582	1.99913	4.00733	0.01936	6.02582
16 c	-0.15960	1.99892	4.14414	0.01653	6.15960

17 c	c -0	.22493	1.99894	4.21048	0.01551	6.22493
18 c	e -0	.18804	1.99893	4.17237	0.01675	6.18804
19 c	e -0	.24272	1.99894	4.22712	0.01667	6.24272
20 c	с -0	.20739	1.99895	4.19191	0.01653	6.20739
21 0	o- c	0.78825	1.99974	6.77422	0.01430	8.78825
22 0	о- с	0.77553	1.99979	6.76490	0.01085	8.77553
23 r	n -0	0.56633	1.99920	5.54186	0.02527	7.56633
24 c	с -0	.22859	1.99879	4.21241	0.01739	6.22859
25 c	c 0	.43775	1.99880	3.52650	0.03695	5.56225
26 c	с -0	.42125	1.99911	4.40861	0.01353	6.42125
27 c	c 0	.17538	1.99904	3.80075	0.02483	5.82462
28 c	с -0	.02605	1.99885	4.01088	0.01631	6.02605
29 c	с -0	.41913	1.99914	4.40457	0.01542	6.41913
30 c	с -0	.19034	1.99913	4.17140	0.01981	6.19034
31 c	с -0	.26544	1.99887	4.24809	0.01848	6.26544
32 c	с -0	.44289	1.99914	4.43086	0.01289	6.44289
33 c	с -0	.12582	1.99884	4.11010	0.01688	6.12582
34 c	с -0	.02372	1.99914	4.00565	0.01893	6.02372
35 c	с -0	.16569	1.99892	4.14928	0.01749	6.16569
36 c	с -0	.22119	1.99893	4.20650	0.01576	6.22119
37 c	с -0	.20606	1.99892	4.18932	0.01781	6.20606

38	c	-0.23576	1.99893	4.21993	0.01690	6.23576
39	c	-0.20182	1.99895	4.18635	0.01651	6.20182
40	h	0.46667	0.00000	0.53103	0.00230	0.53333
41	h	0.18823	0.00000	0.80746	0.00430	0.81177
42	h	0.22268	0.00000	0.77422	0.00310	0.77732
43	h	0.20643	0.00000	0.79135	0.00222	0.79357
44	h	0.21195	0.00000	0.78312	0.00493	0.78805
45	h	0.21330	0.00000	0.78389	0.00281	0.78670
46	h	0.21718	0.00000	0.78050	0.00233	0.78282
47	h	0.22551	0.00000	0.77086	0.00364	0.77449
48	h	0.22388	0.00000	0.77087	0.00525	0.77612
49	h	0.22015	0.00000	0.77703	0.00282	0.77985
50	h	0.20310	0.00000	0.79294	0.00397	0.79690
51	h	0.18920	0.00000	0.80845	0.00235	0.81080
52	h	0.17804	0.00000	0.81940	0.00256	0.82196
53	h	0.22991	0.00000	0.76795	0.00213	0.77009
54	h	0.22274	0.00000	0.77516	0.00210	0.77726
55	h	0.22729	0.00000	0.77079	0.00192	0.77271
56	h	0.22873	0.00000	0.76960	0.00167	0.77127
57	h	0.22844	0.00000	0.76984	0.00172	0.77156
58	h	0.46486	0.00000	0.53338	0.00176	0.53514

59	h	0.22858	0.00000	0.76722	0.00420	0.77142
60	h	0.20776	0.00000	0.78942	0.00282	0.79224
61	h	0.21125	0.00000	0.78635	0.00240	0.78875
62	h	0.20971	0.00000	0.78527	0.00501	0.79029
63	h	0.20702	0.00000	0.79014	0.00284	0.79298
64	h	0.21114	0.00000	0.78635	0.00251	0.78886
65	h	0.21925	0.00000	0.77831	0.00244	0.78075
66	h	0.23587	0.00000	0.76147	0.00266	0.76413
67	h	0.21817	0.00000	0.77904	0.00278	0.78183
68	h	0.20426	0.00000	0.79218	0.00356	0.79574
69	h	0.18801	0.00000	0.80959	0.00241	0.81199
70	h	0.18133	0.00000	0.81638	0.00229	0.81867
71	h	0.23614	0.00000	0.76180	0.00206	0.76386
72	h	0.22762	0.00000	0.77042	0.00195	0.77238
73	h	0.23399	0.00000	0.76405	0.00196	0.76601
74	h	0.23164	0.00000	0.76671	0.00165	0.76836
75	h	0.23098	0.00000	0.76731	0.00170	0.76902
76	h	-0.06955	0.00000	1.06840	0.00115	1.06955
						-

* Total * 0.00000 93.95900 208.20372 0.83728 303.00000

 Table S19 Summary of Natural Population Analysis for complex 3.

Natural Population

Atom No	Charg	ge Core	Valenc	e Rydber	rg Total
1 ni	0.96653	17.99557	9.00081	0.03709	27.03347
2 o	-0.73758	1.99971	6.72507	0.01280	8.73758
3 n	-0.55498	1.99921	5.53276	0.02301	7.55498
4 o	-0.77697	1.99978	6.76646	0.01074	8.77697
5 h	0.46897	0.00000	0.52956	0.00146	0.53103
6 c	0.17126	1.99906	3.80511	0.02457	5.82874
7 h	0.20288	0.00000	0.79484	0.00228	0.79712
8 c	-0.15889	1.99893	4.14342	0.01654	6.15889
9 h	0.23183	0.00000	0.76620	0.00198	0.76817
10 c	-0.09765	1.99884	4.08308	0.01572	6.09765
11 c	-0.41313	1.99915	4.39852	0.01545	6.41313
12 h	0.20349	0.00000	0.79346	0.00305	0.79651
13 h	0.21013	0.00000	0.78568	0.00419	0.78987
14 c	-0.43448	1.99915	4.42154	0.01380	6.43448
15 h	0.20618	0.00000	0.78975	0.00407	0.79382
16 h	0.21557	0.00000	0.78205	0.00238	0.78443

17	c	-0.02107	1.99915	4.00414	0.01777	6.02107
18	h	0.17641	0.00000	0.82111	0.00248	0.82359
19	h	0.17047	0.00000	0.82660	0.00292	0.82953
20	c	-0.22250	1.99894	4.20795	0.01561	6.22250
21	h	0.22356	0.00000	0.77437	0.00207	0.77644
22	c	-0.41718	1.99912	4.40331	0.01474	6.41718
23	h	0.20912	0.00000	0.78781	0.00307	0.79088
24	h	0.21290	0.00000	0.78338	0.00373	0.78710
25	c	-0.21662	1.99882	4.20077	0.01704	6.21662
26	c	-0.19465	1.99911	4.17655	0.01899	6.19465
27	h	0.20318	0.00000	0.79429	0.00253	0.79682
28	h	0.22935	0.00000	0.76685	0.00380	0.77065
29	c	0.43597	1.99877	3.53212	0.03314	5.56403
30	c	-0.40866	1.99914	4.39580	0.01371	6.40866
31	h	0.20590	0.00000	0.79114	0.00296	0.79410
32	h	0.20454	0.00000	0.79230	0.00315	0.79546
33	c	-0.02626	1.99888	4.01166	0.01572	6.02626
34	c	-0.26469	1.99890	4.24792	0.01788	6.26469
35	h	0.23168	0.00000	0.76600	0.00232	0.76832
36	c	-0.18763	1.99893	4.17194	0.01676	6.18763
37	h	0.22746	0.00000	0.77063	0.00191	0.77254

38 c	-0.20739	1.99895	4.19196	0.01648	6.20739
39 h	0.22874	0.00000	0.76955	0.00171	0.77126
40 c	-0.24169	1.99894	4.22615	0.01660	6.24169
41 h	0.22903	0.00000	0.76930	0.00167	0.77097
42 o	-0.73761	1.99971	6.72513	0.01277	8.73761
43 n	-0.55468	1.99921	5.53247	0.02301	7.55468
44 o	-0.77711	1.99978	6.76660	0.01073	8.77711
45 h	0.46904	0.00000	0.52950	0.00146	0.53096
46 c	0.17140	1.99906	3.80499	0.02455	5.82860
47 h	0.20298	0.00000	0.79474	0.00228	0.79702
48 c	-0.15872	1.99893	4.14324	0.01654	6.15872
49 h	0.23180	0.00000	0.76623	0.00198	0.76820
50 c	-0.09764	1.99884	4.08308	0.01572	6.09764
51 c	-0.41313	1.99915	4.39853	0.01545	6.41313
52 h	0.20354	0.00000	0.79341	0.00305	0.79646
53 h	0.21006	0.00000	0.78575	0.00419	0.78994
54 c	-0.43449	1.99915	4.42155	0.01379	6.43449
55 h	0.20618	0.00000	0.78975	0.00407	0.79382
56 h	0.21561	0.00000	0.78201	0.00238	0.78439
57 c	-0.02108	1.99915	4.00417	0.01777	6.02108
58 h	0.17650	0.00000	0.82102	0.00248	0.82350

59 h	0.17046	0.00000	0.82662	0.00293	0.82954
60 c	-0.22256	1.99894	4.20801	0.01561	6.22256
61 h	0.22362	0.00000	0.77431	0.00206	0.77638
62 c	-0.41715	1.99912	4.40328	0.01474	6.41715
63 h	0.20910	0.00000	0.78782	0.00308	0.79090
64 h	0.21293	0.00000	0.78333	0.00374	0.78707
65 c	-0.21654	1.99882	4.20068	0.01704	6.21654
66 c	-0.19463	1.99911	4.17654	0.01898	6.19463
67 h	0.20323	0.00000	0.79424	0.00253	0.79677
68 h	0.22922	0.00000	0.76697	0.00381	0.77078
69 c	0.43568	1.99877	3.53240	0.03315	5.56432
70 c	-0.40866	1.99914	4.39581	0.01372	6.40866
71 h	0.20589	0.00000	0.79115	0.00296	0.79411
72 h	0.20455	0.00000	0.79230	0.00316	0.79545
73 c	-0.02631	1.99888	4.01170	0.01572	6.02631
74 c	-0.26473	1.99890	4.24794	0.01789	6.26473
75 h	0.23161	0.00000	0.76607	0.00232	0.76839
76 c	-0.18762	1.99893	4.17193	0.01676	6.18762
77 h	0.22746	0.00000	0.77063	0.00191	0.77254
78 c	-0.20739	1.99895	4.19195	0.01649	6.20739
79 h	0.22875	0.00000	0.76954	0.00171	0.77125

- 80 c -0.24172 1.99894 4.22618 0.01661 6.24172
- 81 h 0.22903 0.00000 0.76930 0.00167 0.77097

* Total * 0.00000 97.95850 219.20283 0.83868 318.00000
Table S20 Summary of Natural Population Analysis for complex 3-hydride.

Natural Population

Natural -----

Atom No	Charg	ge Core	Valenc	e Rydber	rg Total
1 ni	1.06583	17.99441	8.89065	0.04911	26.93417
2 o	-0.77567	1.99973	6.76089	0.01505	8.77567
3 n	-0.54932	1.99919	5.52623	0.02390	7.54932
4 o	-0.77783	1.99978	6.76734	0.01072	8.77783
5 c	0.17777	1.99905	3.79840	0.02478	5.82223
6 c	-0.15882	1.99892	4.14335	0.01655	6.15882
7 c	-0.09879	1.99884	4.08418	0.01577	6.09879
8 c	-0.41324	1.99915	4.39870	0.01539	6.41324
9 c	-0.43504	1.99915	4.42204	0.01386	6.43504
10 c	-0.02143	1.99915	4.00453	0.01775	6.02143
11 c	-0.22392	1.99894	4.20948	0.01550	6.22392
12 c	-0.41876	1.99912	4.40528	0.01436	6.41876
13 c	-0.22085	1.99883	4.20495	0.01707	6.22085
14 c	-0.19547	1.99911	4.17700	0.01937	6.19547
15 c	0.45223	1.99882	3.51347	0.03548	5.54777
16 c	-0.40895	1.99915	4.39593	0.01387	6.40895

17 c	-0.02567	1.99889	4.01100	0.01579	6.02567
18 c	-0.26945	1.99890	4.25242	0.01813	6.26945
19 c	-0.18805	1.99893	4.17239	0.01674	6.18805
20 c	-0.20735	1.99895	4.19185	0.01654	6.20735
21 c	-0.24201	1.99894	4.22639	0.01668	6.24201
22 o	-0.79300	1.99973	6.77784	0.01543	8.79300
23 n	-0.55487	1.99921	5.53128	0.02439	7.55487
24 o	-0.77715	1.99978	6.76665	0.01072	8.77715
25 c	0.17440	1.99905	3.80160	0.02495	5.82560
26 c	-0.15689	1.99893	4.14144	0.01652	6.15689
27 с	-0.09679	1.99884	4.08223	0.01572	6.09679
28 c	-0.41272	1.99915	4.39818	0.01538	6.41272
29 c	-0.43436	1.99915	4.42137	0.01385	6.43436
30 c	-0.02114	1.99915	4.00422	0.01777	6.02114
31 c	-0.22202	1.99894	4.20759	0.01549	6.22202
32 c	-0.41764	1.99912	4.40469	0.01383	6.41764
33 c	-0.21338	1.99883	4.19765	0.01691	6.21338
34 c	-0.19562	1.99912	4.17705	0.01946	6.19562
35 c	0.45129	1.99881	3.51465	0.03525	5.54871
36 c	-0.41027	1.99915	4.39722	0.01390	6.41027
37 c	-0.02588	1.99888	4.01125	0.01575	6.02588

38 c	-0.26730	1.99890	4.25042	0.01798	6.26730
39 c	-0.18784	1.99893	4.17217	0.01674	6.18784
40 c	-0.20674	1.99895	4.19128	0.01651	6.20674
41 c	-0.24001	1.99894	4.22445	0.01663	6.24001
42 h	0.46952	0.00000	0.52903	0.00145	0.53048
43 h	0.20255	0.00000	0.79511	0.00234	0.79745
44 h	0.23151	0.00000	0.76647	0.00202	0.76849
45 h	0.20414	0.00000	0.79281	0.00304	0.79586
46 h	0.20935	0.00000	0.78642	0.00423	0.79065
47 h	0.20633	0.00000	0.78959	0.00408	0.79367
48 h	0.21610	0.00000	0.78153	0.00237	0.78390
49 h	0.17675	0.00000	0.82078	0.00247	0.82325
50 h	0.17106	0.00000	0.82602	0.00291	0.82894
51 h	0.22291	0.00000	0.77499	0.00211	0.77709
52 h	0.21118	0.00000	0.78577	0.00305	0.78882
53 h	0.21394	0.00000	0.78284	0.00322	0.78606
54 h	0.20740	0.00000	0.79007	0.00253	0.79260
55 h	0.23018	0.00000	0.76582	0.00400	0.76982
56 h	0.20615	0.00000	0.79089	0.00296	0.79385
57 h	0.20663	0.00000	0.79023	0.00314	0.79337
58 h	0.22820	0.00000	0.76913	0.00266	0.77180

59	h	0.22735	0.00000	0.77073	0.00192	0.77265
60	h	0.22849	0.00000	0.76979	0.00172	0.77151
61	h	0.22878	0.00000	0.76956	0.00166	0.77122
62	h	0.46913	0.00000	0.52942	0.00146	0.53087
63	h	0.20329	0.00000	0.79430	0.00241	0.79671
64	h	0.23176	0.00000	0.76622	0.00202	0.76824
65	h	0.20370	0.00000	0.79326	0.00304	0.79630
66	h	0.20932	0.00000	0.78660	0.00408	0.79068
67	h	0.20600	0.00000	0.78994	0.00406	0.79400
68	h	0.21566	0.00000	0.78196	0.00237	0.78434
69	h	0.17663	0.00000	0.82090	0.00247	0.82337
70	h	0.17049	0.00000	0.82659	0.00292	0.82951
71	h	0.22299	0.00000	0.77488	0.00213	0.77701
72	h	0.20625	0.00000	0.79110	0.00265	0.79375
73	h	0.22333	0.00000	0.77241	0.00426	0.77667
74	h	0.20842	0.00000	0.78898	0.00261	0.79158
75	h	0.22580	0.00000	0.77144	0.00275	0.77420
76	h	0.20519	0.00000	0.79180	0.00301	0.79481
77	h	0.20478	0.00000	0.79187	0.00335	0.79522
78	h	0.23233	0.00000	0.76509	0.00258	0.76767
79	h	0.22779	0.00000	0.77030	0.00191	0.77221

* Total *	-0.00000	97.95747	220.177	10 0.865	43 319.0000	0
82 h	-0.05686	0.00000	1.05434	0.00252	1.05686	
81 h	0.22928	0.00000	0.76905	0.00166	0.77072	
80 h	0.22891	0.00000	0.76938	0.00171	0.77109	

Table S21. Dipole moment of complexes (1, 2 and 3)

Complex 1	\$dipole from dscf
	x -0.00594651188212 y 0.00130130527805 z -0.01100192940339 a.u.
	dipole = 0.0319592898 debye
Complex 2	\$dipole from dscf
	x -0.00445480443091 y 0.00240391006082 z 0.00209883938714
	a.u.
	dipole $ = 0.0139285960$ debye
Complex 3	\$dipole from dscf
	x -0.00320946676061 y 0.00006161043984 z 0.00221978258378 a.u.
	dipole = 0.0099200225 debye