Supplementary Information for

Facile Supramolecular Strategy to Construct Solid Fluorophore@Metal-Organic Framework Composites

Lavinia A. Trifoi, Gregory K. Hodgson, Nicholas P. Dogantzis, Sumaiya A. Soha, Roya M. Dayam, Costin N. Antonescu, Roberto J. Botelho, R. Stephen Wylie and Stefania Impellizzeri^{*}

Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.

Content

Fig. S1 ¹ H and ¹³ C NMR spectra of FMe520	S2
Fig. S2 Calculation of the molar extinction coefficient of FMe520	S 3
Synthesis of FMe520@ZIF-8 and calculation of the encapsulation efficiency (Fig. S3)	S4
Calculation of the adsorption efficiency of FMe520 on pre-formed ZIF-8 (Fig. S4)	S 5
Fig. S5 Emission spectra and photographs of FMe520@ZIF-8 in CH ₃ OH stirred for 7 days	S6
Fig. S6 Scanning Electron Microscopy (SEM) and size distribution of ZIF-8 particles	S7
Fig. S7 Scanning Electron Microscopy (SEM) and size distribution of FMe520@ZIF-8 particles	S8
Fig. S8 FTIR-ATR spectra of ZIF-8, FMe520 and FMe520@ZIF-8	S9
Fig. S9 Electrospray ionization mass spectrometry of FMe520, ZIF-8, and FMe520@ZIF-8	S10
Fig. S10 Absorption spectra of FMe520@ZIF-8 before and after addition of HCl	S11
Fig. S11 Absorption spectra of FMe520 before and after addition of HCl	S11
Fig. S12 Photographs of FMe520@ZIF-8, FMe520, and ZIF-8 powders under ultraviolet light	S12
Table S1 Average fluorescence lifetimes of FMe520 and FMe520@ZIF-8	S12
Fig. S13 Raw FLIM data for FMe520	S13
Fig. S14 Raw FLIM data for FMe520@ZIF-8	S13
Fig. S15 Emission spectra of FMe520@ZIF-8 and FMe520 before and after irradiation at 455 nm	S14
Table S2 Zn-N bond distances in ZIF-8	S15
Fig. S16 Four conformers of FMe520	S15
Table S3 Boltzmann-averaged fractional abundances of FeMe520 conformers	S16
Table S4 Energy differences (SCC-DFTB) between optimized FMeF520 conformer-cage complexes and the sums of the separated components	S17
Fig. S17 Four examples of stabilized ZIF-8 cage complexes of FMe520	S18

Figure S1. ¹H and ¹³C NMR of FMe520 in CD₃OD.

Figure S2. Absorption spectra of a CH₃OH solution of **FMe520** (20°C) at variable concentrations and molar extinction coefficient calculation ($\lambda_{Abs} = 455$ nm, the green line represents linear fitting).

Synthesis of FMe520@ZIF-8 and Calculation of the Encapsulation Efficiency

20.7 mg (0.058 mmol) of FMe520 were placed in a 100 mL round bottom flask. Using a graduated glass pipette, 25 mL of CH₃OH were added to obtain a 2.3 mM stock solution. 12 µL of this solution were then used to prepare 10 mL of a 2.75 μ M solution (mass of FMe520 = 9.9 μ g) for spectra analysis (*a* in Figure S3). In a round bottom flask, we then recombined the diluted solution with the stock to obtain a total volume of 35 mL. To this, 205 mg (2.5 mmol) of 2-methylimidazole were added and the solution was sonicated. In a separate vessel, 246 mg (1.3 mmol) of Zn(NO₃)₂ were dissolved in 30 mL of CH₃OH and added to the solution containing the dye and ligand. The mixture was undisturbed for 48 hours to obtain FMe520@ZIF-8, which was purified via centrifugation (4 × 9000 rpm, CH₃OH) until no trace of residual dye was detected in the supernatants using absorption and emission spectroscopy. The mass of FMe520@ZIF-8 obtained was 43.7 mg. The recovered supernatants were combined, dried under reduced pressure, and diluted as described above (25 mL CH₃OH, of which 12 µL were diluted up to 10 mL for spectral analysis, *b* in Figure S3). Knowing that the molar extinction coefficient of FMe520 in CH₃OH is 31,685 M⁻¹ cm⁻¹ at 455 nm, we calculated the spectral concentration of non-encapsulated **FMe520** to be 1.58 µM, which can then be reconducted to 0.033 mmol of FMe520 recovered, indicating that (0.058 -0.033 = 0.025 mmol, or 9 mg of **FMe520** (43%), were successfully encapsulated within ZIF-8. A consistent result is achieved by extracting the concentration of encapsulated FMe520 from ΔA at 455 nm in Figure S3 (where $\Delta A = A_{before} - A_{after} = A_a - A_b$) and resulting in 0.024 mmol = 8.8 mg of **FMe520** (42.5%) effectively encapsulated.

Figure S3. Absorption spectra (20°C, CH₃OH) of the combined and rediluted supernatants obtained after encapsulation of **FMe520** into ZIF-8.

We repeated the same protocol independently by reducing the crystallization time from 48 to 24 h. Spectroscopic data indicate an encapsulation efficiency of **FMe520** in ZIF-8 of ~22% (average of the two calculation methods which yielded 21.5% and 22%, respectively).

Calculation of the Adsorption Efficiency of FMe520 on Pre-Formed ZIF-8

9.3 mg (0.026 mmol) of **FMe520** were dissolved in 100 mL of CH₃OH to obtain a 0.26 mM stock solution. 330 μ L of this solution were then added to 3 mL of CH₃OH to obtain a 26 μ M solution for spectra analysis (*a* in Figure S4). We then recombined the diluted solution with the stock and evaporated all solvent to recover **FMe520** in powder form. Next, 20.4 mg of ZIF-8 were dissolved in 25.0 mL of CH₃OH in a round bottom flask. **FMe520** (9.3 mg) was added to the dispersion of ZIF-8 and stirred for 48 hours. The mixture was then centrifuged (4 × 9000 rpm). The recovered supernatants were combined, dried under reduced pressure, and diluted as described above (100 mL CH₃OH, of which 330 μ L were added to 3 mL for spectral analysis, *b* in Figure S4). Knowing that the molar extinction coefficient of **FMe520** in CH₃OH is 31,685 M⁻¹ cm⁻¹ at 455 nm, we calculated the spectral concentration of non-adsorbed **FMe520** to be 23.9 μ M, which can then be reconducted to 0.0239 mmol (8.62 mg) of **FMe520** recovered. This indicates that ~0.68 mg of **FMe520** (7.3%), were adsorbed to the external surface of the preformed ZIF-8.

Figure S4. Absorption spectra (20°C, CH₃OH) of the combined and rediluted supernatants obtained after mixing of **FMe520** with pre-formed ZIF-8 for 48 h.

Figure S5. Emission spectra (20°C, $\lambda_{Ex} = 450 \text{ nm}$) of a dispersion of **FMe520**@ZIF-8 in CH₃OH stirred over a week. Photographs illustrate that **FMe520** encapsulated in ZIF-8 is not soluble in CH₃OH unless released from the metal-organic framework (vide infra).

Figure S6. Scanning Electron Microscopy (SEM) of ZIF-8. Histogram showing Gaussian distribution of ZIF-8 particle diameters measured using Fiji (ImageJ).

Figure S7. Scanning Electron Microscopy (SEM) of FMe520@ZIF-8. Histogram showing Gaussian distribution of ZIF-8 particle diameters measured using Fiji (ImageJ).

Figure S8. FTIR-ATR spectra of ZIF-8 (black trace), FMe520@ZIF-8 (green trace) and FMe520 (orange trace).

Time (Peak Maximum M:S/Minutes)	Maximum Intensity (c/s)	Time (Peak Centroid M:S/Minutes)	Peak Area	% Peak Area	Peak Resolution	Base Peak Mass (m/z)	Label
0.62	1.4E9	0.60	4.3E10	37.7	13.6	1215.9	
1.60	1.7E9	1.62	1.9E10	16.9	4.3	21.2	
1.89	1.3E9	1.89	1.2E10	10.5	9.2	340.9	
7.77	1.4E9	7.75	2.5E10	22.1	9.0	249.6	
13.88	1.3E9	13.86	1.5E10	12.9	11.0	278.1	

Time (Peak Maximum M:S/Minutes)	Maximum Intensity (c/s)	Time (Peak Centrold M:S/Minutes)	Peak Area	% Peak Area	Peak Resolution	Base Peak Mass (m/z)	Label
0.31	2.2E10	0.29	1.7E11	11.6	9.3	89.3	
0.52	8.6E9	0.57	1.4E11	9.7	11.7	89.2	
1.39	1.8E10	1.38	2.2E11	15.1	4.9	89.3	
1.54	1.7E10	1.55	1.4E11	9.4	12.2	89.3	
1.90	4.9E10	1.89	3.8E11	26.1	6.0	358.0	
7.73	3.4E10	7.74	4.1E11	28.1	10.5	89.1	

Time (Peak Maximum M:S/Minutes)	Maximum Intensity (c/s)	Time (Peak Centroid M:S/Minutes)	Peak Area	% Peak Area	Peak Resolution	Base Peak Mass (m/z)	Label
0.02	1.5E10	0.03	5E10	1.7	4.2	89.3	
0.31	2.3E10	0.29	1.9E11	6.1	9.4	89.3	
0.52	9.6E9	0.57	1.7E11	5.5	13.7	89.2	
1.54	3.1E10	1.50	8E11	26.5	11.0	89.3	
1.90	5E10	1.89	4E11	13.4	6.6	358.0	
7.73	3.5E10	7.74	4.4E11	14.6	10.6	89.1	
13.24	2.9E9	13.25	2.8E10	0.9	5.9	100.7	
13.88	4.8E10	13.85	9.1E11	30.3	15.8	100.8	
16.82	3E9	16.83	2.9E10	0.9	6.7	100.6	

Figure S9. Electrospray ionization mass spectrometry of FMe520, ZIF-8, and FMe520@ZIF-8.

Figure S10. Absorption spectra of a dispersion of **FMe520**@ZIF-8 before and after the addition of incremental amounts of HCl (12 M stock solution). Note that from the absorption values of **FMe520** in acidic environment extracted from Figure S11 below, we recalculated the dye encapsulation percentage to be ~24.8%, in excellent agreement with our previous estimate (Fig. S3 and related discussion).

Figure S11. Absorption spectra of a solution of **FMe520** (3 μ M, 20°C, CH₃OH) before and after the addition of incremental amounts of HCl (12 M stock solution).

Figure S12. From left to right: Samples of FMe520@ZIF-8, FMe520, and ZIF-8 viewed under ultraviolet light.

Table S1. Average fluorescence lifetimes of **FMe520** and **FMe520**@ZIF-8 obtained from five different FLIM regions of interest (ROI, Fig S13 and S14). Note that the mean value and standard deviation from ROIs 1-5 are in good agreement with the data from ROI 6, which corresponds to the entire FLIM field of view and to Figure 5A in the main text.

Descriptor	Lifetime (ns) of FMe520	Lifetime (ns) of FMe520@ZIF-8
ROI 1	$\textbf{3.20}\pm\textbf{0.09}$	6.23 ± 1.1
ROI 2	$\textbf{3.29} \pm \textbf{0.09}$	$\textbf{6.68} \pm \textbf{0.75}$
ROI 3	$\textbf{3.18} \pm \textbf{0.09}$	6.42 ± 1.1
ROI 4	$\textbf{3.25}\pm\textbf{0.09}$	6.61 ± 0.98
ROI 5	$\textbf{3.18} \pm \textbf{0.09}$	6.44 ± 0.80
Mean (ROIs 1-5)	$\textbf{3.22} \pm \textbf{0.09}$	6.48 ± 0.95
ROI 6 (Entire Field of View)	3.22 ± 0.10	6.49 ± 0.96

LI-FLIM													– a ×
File View Devices Acquisition Processing Help							-						
📽 🖬 📓 🖬 🌢 R S 😗 Rb Rp Sb Sp 🖤 🦹	Working directory	C:\Users\Greg\Documents	Career\Ryerson\R	yer 🔂 FL ref di 1	0x 550V MFR_2020	01221_1323	FI-ox 550V	MFR_20201221_1307_	48760				
Acquisition Settings	× Camera R	ef. Stack (FL ref dil10x 550V	MFR_20201221_1	323_04654.fl) Sam	Stack (Fl-ox 550V	MFR_20201221_1	307_48760.fl()	fetime (If_FI-ox 550V M	FR_20201221_1307_4876	0/0			
Acquisition	grey with re	d marker V [A [D]]	1 [98 🌐 CR	$\mathfrak{A}\mathfrak{A}$	SXX 4	'নি'লৈ							
Sample Reference Start timelapse	7	6											
Parameters		1				2							
Number of phase images 12		desite factorise											
Average images 4 x													
Reference lifetime 4.040 nr		1 100											
Modulation framework 40,000 Miles													
Setup.													
Z-Stack recording Z-Steps: 0		SEL SAME											
Rel. Threshold (%) Lo. 15 Hi 100		The state of the											
Timelapse sample period (s) 30 Nr. 20													
System state													
Idle FLIM		8				Colored and	a straight of the	the second s					
						4							
	2												
	-							_					0 Energy 20,000 Mile
	(c:0 x:691	x519 ±0 m0 f0 t0) Life	time (phase) = 3.2	3884 ns								No ROI selected	Zoom: 1.00
		,	and Outstan										
	into Pro	nie Plot Phase-Modulation	UC Hg Judusous	Time Senes Polar	Pick Multiple Lifeti	nee Hit (Muisi-Hiequi	ancy)						
	stu					His	togram of Reg	ion(s) of Interest					Number of bins:
	8					Curso	r: (c:0, z:0, p:	0, f:0, t:0), Bins:25					25 Guess optimal bins
	Dez		°	2.0	2.1		2.2	2.2	2.4	2.6	26	2.7	Manually set horizontal axis
	lorma	20 2		5.0	3.1		Valu	ie (Units)	3,4	3.5	3.0	5.1	
													2 to 8
	Region	Channel	Average	Std. Dev.	Minimum	Maximum	Nr. of po	Remarks				^	2 to 8 Manually set vertical axis
	Region	Channel Lifetime (phase) (ns)	Average 3.20005	Std. Dev. 0.0918936	Minimum 2.87625	Maximum 3.55839	Nr. of po 15960	Remarks				^	2 to 8 Manually set vertical axis 0 to 0.5
	Region	Channel Lifetime (phase) (ns) Lifetime (phase) (ns)	Average 3.20005 3.2931	Std. Dev. 0.0918936 0.0921971	Minimum 2.87625 2.90354	Maximum 3.55839 3.66702	Nr. of po 15960 32550	Remarks				^	2 to 8 Manually set vertical axis 0 to 0.5 Sort data by ROI name
	Region 2 3 4	Channel Lifetime (phase) (ns) Lifetime (phase) (ns) Lifetime (phase) (ns)	Average 3.20005 3.2931 3.17888 3.252	Std. Dev. 0.0918936 0.0921971 0.092231	Minimum 2.87625 2.90354 2.80461 2.87605	Maximum 3.55839 3.66702 3.56716 3.72703	Nr. of po 15960 32550 20540 27522	Remarks				^	2 to 8 Manually set vertical axis 0 to 0.5 Sort data by ROI name Use average modulation
	Region 2 3 4 5	Channel Lifetime (phase) (ns) Lifetime (phase) (ns) Lifetime (phase) (ns) Lifetime (phase) (ns) Lifetime (phase) (ns)	Average 3.20005 3.2931 3.17888 3.252 3.17869	Std. Dev. 0.0918936 0.0921971 0.092231 0.0957884 0.0888823	Minimum 2.87625 2.90354 2.80461 2.87605 2.84054	Maximum 3.55839 3.66702 3.56716 3.72703 3.51181	Nr. of po 15960 32550 20540 27522 28764	Remarks				^	2 to 8 Manually set vertical axis 0 to 0.5 Sort data by ROI name Use average modulation Export all statistics data

Figure S13. Raw FLIM data for FMe520 showing ROIs 1-6.

Figure S14. Raw FLIM data for FMe520@ZIF-8 showing ROIs 1-6.

Figure S15. Photobleaching test: emission spectra recorded at the solid state of (A) FMe520@ZIF-8 and (B) FMe520 before and after irradiation at 455 nm (0 - 30 min).

Table S2. Zn-N bond distances in ZIF-8.

Experimental /Å	Calculated ^a /Å
	1.931
1.965	1.943
	1.948

^aSCC-DFTB

Figure S16. Four conformers of FMe520.

Conformer	Gibbs energy (DFTB) / Hartree	Fraction at 300 K	Gibbs energy (B3LYP/6- 311+G(d,p)) / Hartree	Fraction at 300 K
Α	-60.206411	0.073	-1224.133037	0.115
В	-60.207221	0.170	-1224.134046	0.335
С	-60.207471	0.221	-1224.133231	0.142
D	-60.208312	0.536	-1224.134234	0.408

 Table S3. Boltzmann-averaged fractional abundances of FeMe520 conformers.

Table S4. Energy differences (SCC-DFTB) between optimized **FMeF520** conformer-cage complexes and the sums of the separated components.^{*a*}

FMeF520 conformer in SOD cage	Energy (DFTB) / Hartrees	ΔE / Hartrees
cage only	-585.677522	-
A only	-60.477020	-
<i>B</i> only	-60.477610	-
C only	-60.477654	-
D only	-60.478526	-
Α	-646.159086	-0.004544
Α	-646.143221	0.011321
В	-646.157430	-0.002298
В	-646.151898	0.003234
В	-646.150777	0.004355
В	-646.152560	0.002572
В	-646.150143	0.004989
С	-646.160210	-0.005034
С	-646.150725	0.004451
С	-646.143791	0.011385
D	-646.157110	-0.001062
D	-646.154306	0.001742

^aZIF-8 SOD cage omitting coordinatively unsaturated imidazolate ligands with frozen coordinates.

Figure S17. Four examples of stabilized ZIF-8 cage complexes of **FMe520**. A: conformer *A*, $\Delta E = -12$ kJ mol⁻¹; **B**: conformer *B*, $\Delta E = -6$ kJ mol⁻¹; **C**: conformer *C*, $\Delta E = -13$ kJ mol⁻¹; **D**: conformer *D*, $\Delta E = -3$ kJ mol⁻¹.

•