Support Information

A Novel Flame-Resistant Separator for High Performance

Lithium-Sulfur Battery

Jianyi Wang^{†a}, Menghui Chen^{†c}, Weiwei Qin ^{*a,b}, Meng Zhou^b

^a Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

^{b.} Chemical and Materials Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA

^c Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China

† These authors contributed equally.

Figure S1 Electrochemical Impedance Spectroscopy (EIS) after 200 cycles of the different BaTiO₃-based separators in LSB and inset is corresponding the equivalent-circuit diagram.

Figure S2 CV curves of the symmetric cells with cathode of RGO in an electrolyte with Li_2S_6 at 10 mV s⁻¹.

Figure S3 The photograph of sealed vials containing of polysulfides solution after adsorption for one day with different materials of separator coating.

Figure S4 Cycling performance of OV-BaTiO₃@RGO@GF separator at a 2 A g⁻¹ rate for 600 cycles.

Figure S5 Cycling performance of OV-BaTiO₃@RGO@GF separator at a 0.2 A g⁻¹ rate under a high loading of 10 mg cm⁻².

Figure S6 The OV-BaTiO₃@RGO@PP separator c after heat treatment.

Figure S7 (a) Photograph of pristine and oxygen vacancy of BaTiO₃ (OV-BaTiO₃). (b) XRD patterns of OV-BaTiO₃. (c)EPR of BaTiO₃ and OV-BaTiO₃. (d) HR-TEM image of OV-BaTiO₃ and TEM image of OV-BaTiO₃ at bottom left, respectively.

Figure S8 Comparing pristine BaTiO₃ and OV-BaTiO₃: O1s and Ba₃d XPS spectra.