Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Urea-Assisted Synthesis of Carbon-Doped BiNbO₄ with Oxygen Vacancies and Visible Light Photocatalytic Applications

Andrei Lebedev,^a P. Vishakha T. Weerasinghe, +^a Franklin Anariba,^{ab} Xu Li,^{cd} Debbie Seng Hwee Leng,^c and Ping Wu^{*a}

- * Correspondence: wuping@sutd.edu.sg (Ping Wu)
- ^a Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, Singapore; <u>andrei_lebedev@alumni.sutd.edu.sg</u>; <u>puwakdandawe@mymail.sutd.edu.sg</u>.
- ^b Anariba Brands Group, Science, Mathematics and Technology, affiliated to Engineering Product Development, Singapore University of Technology and Design, Singapore; <u>franklin_anariba@sutd.edu.sg</u>.

^c Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore; <u>x-li@imre.a-star.edu.sg</u>; <u>debbie-seng@imre.a-star.edu.sg</u>.

^d Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; <u>x-li@imre.a-star.edu.sg</u>.

SI1. Micro-Raman spectra of BiNbO₄ and U-BiNbO₄.

Figure S1. Raman spectra in the (a) 100 - 250 cm-1 and (b) 550 - 900 cm-1 regions for pristine BiNbO₄ and U-BiNbO₄.

Figure S2. XPS spectra of Bi4f and Nb3d for pristine BiNbO₄ (panels A, C) and U-BiNbO₄ (panels B, D), respectively

The Bi4f spectrum of pristine BiNbO4 suggest the presence of Bi3+ (with main peaks at 159.2 eV and 164.5 eV, respectively), while the Bi4f spectrum of U-BiNbO₄ also consist of Bi(+3) only (with more predominate peaks at 159.2 eV and 164.5 eV, respectively ¹. The Nb3d spectrum of pristine BiNbO₄ also propose the presence of two chemical states of Nb(4+) (206.9 eV and 209.6 eV, respectively) and Nb(+5) (210.0 eV and 212.8 eV, respectively), while the U-BiNbO4 has only Nb(+4) on the surface². Reduced amounts of oxygen at Bi4f and Nb3d chemical states for U-BiNbO4 catalyst is another evidence of the enhanced presence of surface oxygen vacancies. No traces of nitrogen were detected in both samples.

SI3. EDS mapping images and spectrum of $BiNbO_4$ (panels (A) and (C)) and U-BiNbO₄ (panels (B) and (D)), respectively.

Figure S3. EDS mapping and spectral images for pristine BiNbO₄ (panels A and C) and U-BiNbO₄ (panels B and D); EDS spectra taken on Cu substrate indicated by green lines.

SI4. CHNS (Carbon, Hydrogen, Nitrogen and Sulphur) Elemental Analysis

CHNS elemental analysis was carried out using FLASH EA 1112 Series, CHNS-O Analyzer. Furnace temp is at 950 0C, testing time is 720 sec per sample. The weight percentage of C for $BiNbO_4$ and U- $BiNbO_4$ is 0.0385 % and 0.1077 %, respectively.

Sample	C (wt%)	H(wt%)
BiNbO4	0.0385	0.0763
U-BiNbO4	0.1077	0.0865

Table	S1.	Percentage	of	С	and	Н.
TUDIC	JT .	i ci cciitage	01	<u> </u>	unu	

SI5. Overall XPS survey spectra of U-BiNbO₄

Figure S4: XPS survey spectra of U-BiNbO₄

SI6. Characteristic absorption bands of cationic A) MB and B) BG dyes for U-BiNbO₄ catalyst

Figure S5: Characteristic absorption bands of cationic A) MB and B) BG dyes for U-BiNbO₄ catalyst.

SI7. Normalized photocatalytic degradation using 10, 15, 30, and 45 mg of U-BiNbO₄ for A) MB and B) BG dyes.

Figure S6: Photocatalytic degradation using 10, 15, 30, and 45 mg of U-BiNbO₄ for A) MB and B) BG dyes.

SI8. Normalized photocatalytic degradation of MB in different pH using U-BiNbO4

Figure S7: Photocatalytic degradation using pH 11.5,9.5,5.5 and 3.5 solutions of U-BiNbO₄ for MB.

References

- 1. M. Aslam, M. T. Soomro, I. M. I. Ismail, H. A. Qari, M. A. Gondal and A. Hameed, *RSC Advances*, 2015, **5**, 102663-102673.
- 2. K. Senevirathne, R. Hui, S. Campbell, S. Ye and J. Zhang, *Electrochimica Acta*, 2012, **59**, 538-547.