Supplementary Information

Sea-Urchin-like Iron-Cobalt Phosphide as Advanced Anode Material for Lithium Ion Battery

Prakash Kumar Pathak,^{†,a} Ved Prakash Joshi,^{†,a} Nitish Kumar,^a and Rahul R Salunkhe^{a,*}

^aMaterials Research Laboratory, Department of Physics, Indian Institute of Technology Jammu, Jammu and Kashmir, India (181121).

[†]These authors contributed equally to this work.

*Email: rahul.salunkhe@iitjammu.ac.in

Fig. S1. FESEM images of the before and after phosphorization. (a-c) As-synthesized $FeCo(Co_3)_2OH$ after hydrothermal reaction and (d-f) FeCoP after phosphorization at 300 °C under the flow of N₂.

Fig. S2. EDS mapping before and after phosphorization. (a) the signal from $FeCo(Co_3)_2OH$, (b) the signal from FeCoP.

Fig. S3. EIS measurement of the device after 150^{th} cycle showing the deceased charge transfer resistance (R_{ct}).

S.No	Material	Voltage window (V)	Electrolyte	Discharge Capacity (mAh g ⁻¹) @ current rate	Ref.
1.	CoP/graphene	0-3	1 M LiPF ₆ in a mixture of EC: EMC: DMC [‡] in the ratio of 1: 1: 1	1154 @ 100 mA g ⁻¹	1
2.	CoP@GA [‡]	0-3	1 M LiPF ₆ in a mixture EC: DEC (1: 1 v/v)	1032.2 @ 100 mA g ⁻¹	2
3.	CoP@GF [‡]	0-3	1 M LiPF ₆ in a mixture of DMC: DEC: EC $(1:1:1 \text{ vol}\%)$	1120 @ 100 mA g ⁻¹	3
4.	CoP/NC [‡]	0-3	1 M LiPF ₆ in a mixture of EC/DMC (1: 1, v/v)	$\sim 800 @ 50 \text{ mA g}^{-1}$	4
5.	Co ₂ P	0-3	1 M LiPF ₆ in a mixture of EC/DMC (1: 1, v/v)	780 @ 0.2 C	5
6.	CuP ₂	0.02–2.5	LiPF ₆ -based electrolyte	865 @ 100 mA g ⁻¹	6
7.	CoP/RGO [‡]	0.005-3	1 M LiPF ₆ in a mixture of EC/DEC (1: 1, v/v)	1,274 @ 100 mA g ⁻¹	7
8.	CoP@S [‡]	1.8-2.8	0.2 M Li_2S_6 +1M LiTFSI in 1,3-dioxolane and dimethoxyethane (1:1 in volume)	1020 @ 0.2 C	8
9.	Co _x P-NC-800	0-3	1 M LiPF ₆ in a mixture of EC/DEC (1: 1, v/v)	1224 @100 mA g^{-1}	9
10	CoP@3DC [‡]	1.7–2.8	1 M LiTFSI in a DOL/DOM ($v/v = 1:1$)	1161.79 @ 0.2 C	10
11	FeCoP [‡]	0-3	1 M LiPF ₆ in a mixture of EC/DMC (1: 1, v/v)	1653.4 @ 100 mA g ⁻¹	This work

Table S1. FeCoP half-cell comparison with previously reported transition metal phosphides.

[‡]Note: *EC:EMC:DMC- Ethylene carbonate:ethylene methyl carbonate: dimethyl carbonate; RGO- Reduced graphene oxide; GA- graphene aerogel; GF- graphene framework membrane;NC- nitrogen-doped carbon;S-Sulfur; 3DC- three-dimensional carbon frame embedded; CoP-Cobalt phosphide.*

XPS Analy	ysis			
Sample	Element		Binding energy (eV)	Atomic percentage (%)
FeCoP				· · · ·
	Р		133.75	11.4
	С		284.8	25.46
	0		531.1	44.68
	Fe		710.91	9.16
	Со		781.1	9.3
BET surfa	ice area measureme	ents		
Material	S _{BET}	Smicro	V _{pore}	V _{micro}
	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
FeCoP	29.3	0	0.034	0
Half cell p	oerformance			
			Current density	Specific discharge capacity
			$(mA g^{-1})$	$(mAh g^{-1})$
			100	1653.4
			400	1091.2
			500	1030.4
			600	884.2
			700	881.0
			1000	820.8

5000

 Table S2. Data summary for this work.

380.1

References

- Y. Yang, Y. Jiang, W. Fu, X. Z. Liao, Y. S. He, W. Tang, F. M. Alamgir and Z. F. Ma, *Dalt. Trans.*, 2019, 48, 7778–7785.
- 2 H. Gao, F. Yang, Y. Zheng, Q. Zhang, J. Hao, S. Zhang, H. Zheng, J. Chen, H. Liu and Z. Guo, ACS Appl. Mater. Interfaces, 2019, 11, 5373–5379.
- J. Wang, G. Zhu, Z. Zhang, Y. Wang, H. Wang, J. Bai and G. Wang, *Chem. Eur. J.*, 2021, 27, 1713– 1723.
- 4 K. Zhu, J. Liu, S. Li, L. Liu, L. Yang, S. Liu, H. Wang and T. Xie, *Adv. Mater. Interfaces*, 2017, **4**, 1700377.
- 5 D. Yang, J. Zhu, X. Rui, H. Tan, R. Cai, H. E. Hoster, D. Y. W. Yu, H. H. Hng and Q. Yan, *ACS Appl. Mater. Interfaces*, 2013, **5**, 1093–1099.
- 6 G. A. Li, C. Y. Wang, W. C. Chang and H. Y. Tuan, ACS Nano, 2016, 10, 8632–8644.
- J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan and X. Dong, *Nano Res.*, 2016, 9, 612–621.
- 8 C. Qi, Z. Li, C. Sun, C. Chen, J. Jin and Z. Wen, ACS Appl. Mater. Interfaces, 2020, **12**, 49626–49635.
- 9 G. Xia, J. Su, M. Li, P. Jiang, Y. Yang and Q. Chen, J. Mater. Chem. A, 2017, 5, 10321–10327.
- Y. Luo, Y. Fan, S. Wang, Q. Chen, A. Ali, J. Zhu and P. Kang Shen, *J. Electroanal. Chem.*, 2022, 912, 116202.