Supplementary Information

Sea-Urchin-like Iron-Cobalt Phosphide as Advanced Anode Material for Lithium Ion Battery

Prakash Kumar Pathak, ${ }^{\dagger}{ }^{\dagger \mathrm{a}}$ Ved Prakash Joshi, ${ }^{\dagger, \mathrm{a}}$ Nitish Kumar, ${ }^{\text {a }}$ and Rahul R Salunkhe ${ }^{\mathrm{a}, *}$
${ }^{a}$ Materials Research Laboratory, Department of Physics, Indian Institute of Technology Jammu, Jammu and Kashmir, India (181121).
${ }^{\dagger}$ These authors contributed equally to this work.
*Email: rahul.salunkhe@iitjammu.ac.in

Fig. S1. FESEM images of the before and after phosphorization. (a-c) As-synthesized $\mathrm{FeCo}\left(\mathrm{Co}_{3}\right)_{2} \mathrm{OH}$ after hydrothermal reaction and (d-f) FeCoP after phosphorization at $300^{\circ} \mathrm{C}$ under the flow of N_{2}.

Fig. S2. EDS mapping before and after phosphorization. (a) the signal from $\mathrm{FeCo}\left(\mathrm{Co}_{3}\right)_{2} \mathrm{OH}$, (b) the signal from FeCoP .

Fig. S3. EIS measurement of the device after $150^{\text {th }}$ cycle showing the deceased charge transfer resistance $\left(R_{c t}\right)$.

Table S1. FeCoP half-cell comparison with previously reported transition metal phosphides.

S.No	Material	Voltage window (V)	Electrolyte	Discharge Capacity (mAh g ${ }^{-1}$)@current rate	Ref.
1.	CoP/graphene	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of EC: EMC: DMC ${ }^{\text {F }}$ in the ratio of 1:1:1	1154@100 mA g ${ }^{-1}$	1
2.	CoP@ $\mathrm{GA}^{\text {* }}$	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture EC: $\mathrm{DEC}(1: 1 \mathrm{v} / \mathrm{v})$	1032.2@ $100 \mathrm{~mA} \mathrm{~g}^{-1}$	2
3.	CoP@ $\mathrm{GF}^{\text { }}$	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of DMC: DEC: EC (1:1:1 vol\%)	$1120 @ 100 \mathrm{~mA} \mathrm{~g}{ }^{-1}$	3
4.	$\mathrm{CoP} / \mathrm{NC}{ }^{\text {+ }}$	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of EC/DMC (1: $1, \mathrm{v} / \mathrm{v}$)	~800@ 50 mA g -1	4
5.	$\mathrm{Co}_{2} \mathrm{P}$	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of EC/DMC (1: $1, \mathrm{v} / \mathrm{v}$)	780 @ 0.2 C	5
6.	CuP_{2}	0.02-2.5	LiPF_{6}-based electrolyte	865 @ $100 \mathrm{~mA} \mathrm{~g}{ }^{-1}$	6
7.	CoP/RGO ${ }^{\text {* }}$	0.005-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of EC/DEC (1: $1, \mathrm{v} / \mathrm{v}$)	1,274@100 mA g ${ }^{-1}$	7
8.	CoP@ ${ }^{\text { }}$	1.8-2.8	$0.2 \mathrm{M} \mathrm{Li}_{2} \mathrm{~S}_{6}+1 \mathrm{M}$ LiTFSI in 1,3-dioxolane and dimethoxyethane (1:1 in volume)	1020 @ 0.2 C	8
9.	$\mathrm{Co}_{\mathrm{x}} \mathrm{P}-\mathrm{NC}-800$	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of EC/DEC (1: $1, \mathrm{v} / \mathrm{v}$)	1224@100 mA g ${ }^{-1}$	9
10	CoP@3DC	1.7-2.8	1 MLLTFSI in a DOL/DOM (v/v $=1: 1)$	1161.79@0.2 C	10
11	$\mathrm{FeCoP}{ }^{\text { }}$	0-3	$1 \mathrm{M} \mathrm{LiPF}_{6}$ in a mixture of EC/DMC (1: $1, \mathrm{v} / \mathrm{v}$)	$1653.4 @ 100 \mathrm{~mA} \mathrm{~g}$-1	This work

${ }^{7}$ Note: EC:EMC:DMC- Ethylene carbonate:ethylene methyl carbonate: dimethyl carbonate; RGO-Reduced graphene oxide; GA- graphene aerogel; GF-graphene framework membrane; $\boldsymbol{N C}$ - nitrogen-doped carbon; \boldsymbol{S}-Sulfur; 3DC-three-dimensional carbon frame embedded; CoP-Cobalt phosphide.

Table S2. Data summary for this work.

References

1 Y. Yang, Y. Jiang, W. Fu, X. Z. Liao, Y. S. He, W. Tang, F. M. Alamgir and Z. F. Ma, Dalt. Trans., 2019, 48, 7778-7785.

2 H. Gao, F. Yang, Y. Zheng, Q. Zhang, J. Hao, S. Zhang, H. Zheng, J. Chen, H. Liu and Z. Guo, ACS Appl. Mater. Interfaces, 2019, 11, 5373-5379.

3 J. Wang, G. Zhu, Z. Zhang, Y. Wang, H. Wang, J. Bai and G. Wang, Chem. Eur. J., 2021, 27, 17131723.

4 K. Zhu, J. Liu, S. Li, L. Liu, L. Yang, S. Liu, H. Wang and T. Xie, Adv. Mater. Interfaces, 2017, 4, 1700377.

5 D. Yang, J. Zhu, X. Rui, H. Tan, R. Cai, H. E. Hoster, D. Y. W. Yu, H. H. Hng and Q. Yan, $A C S$ Appl. Mater. Interfaces, 2013, 5, 1093-1099.

6 G. A. Li, C. Y. Wang, W. C. Chang and H. Y. Tuan, ACS Nano, 2016, 10, 8632-8644.

7 J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan and X. Dong, Nano Res., 2016, 9, 612-621.

8 C. Qi, Z. Li, C. Sun, C. Chen, J. Jin and Z. Wen, ACS Appl. Mater. Interfaces, 2020, 12, 4962649635.

9 G. Xia, J. Su, M. Li, P. Jiang, Y. Yang and Q. Chen, J. Mater. Chem. A, 2017, 5, 10321-10327.

10 Y. Luo, Y. Fan, S. Wang, Q. Chen, A. Ali, J. Zhu and P. Kang Shen, J. Electroanal. Chem., 2022, 912, 116202.

