Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

## Supplementary information for

## How Li<sub>3</sub>PO<sub>4</sub> affects Sintering Behavior, Microstructure and Electrical Properties of the ceramic LATP Electrolyte

Matthias Rumpel,\*<sup>a</sup> Lavinia Appold,<sup>a</sup> Jens Baber,<sup>b</sup> Werner Stracke,<sup>a</sup> Andreas Flegler<sup>a</sup> and Gerhard Sextl<sup>a</sup>

Fraunhofer Institute for Silicate Research ISC, *Center for Electromobility*, Neunerplatz 2, 97082 Wuerzburg, Germany<sup>a</sup>

Fraunhofer Institute for Silicate Research ISC, *Center for High Temperature Materials and Design HTL*, Gottlieb-Keim-Str. 62, 95448 Bayreuth, Germany<sup>b</sup>

## S1: SEM images of synthesized LATP powder



Fig. S1 LATP powder after crystallization at 800 °C for 5 h and ball milling. The particle size distribution is 200 nm - 600 nm.

## S2: Data of thermal-optical measurements



Fig. S2 Thermal diffusivities, relative densities and temperature profile as function of time of a) the pure LATP samples sintered between 800 °C and 950 °C and b) the LATP + 5 vol%  $Li_3PO_4$  samples sintered between 600 °C and 950 °C.





Fig S3 Arrhenius plots obtained from the temperature-dependent EIS measurements of a) pure LATP, b) LATP + 3 vol%  $Li_3PO_4$ , c) LATP + 5 vol%  $Li_3PO_4$  and d) LATP + 10 vol%  $Li_3PO_4$ . The solid lines represent the linear fits.