## **Supporting information**

## Highly stable and water dispersible polymer-coated CsPbBr<sub>3</sub> nanocrystals for Cu-ion detection in water

Manav Raj Kar, Urjjarani Patel, Saikat Bhaumik\*

## **Experimental section:**

**Characterization methods:** UV-visible absorption spectra of NCs were recorded with a Shimadzu UV-2700 Spectrophotometer. Steady-state photoluminescence (PL) spectra were collected with Ocean Insight MAYA 2000 Pro high sensitivity Spectrometer using a 370 nm UV excitation source. X-Ray diffraction (XRD) analysis was carried out with the Bruker D8 diffractometer using Cu-K<sub> $\alpha$ </sub> ( $\lambda$ =1.54 Å) as incident radiation. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) imaging were recorded by Jeol-JEM-2010 microscope operated at 200 kV to determine the shape and size of the NCs. The Fourier Transform Infrared (FTIR) analysis was carried out using JASCO FT/IR-6600 Infrared Spectrometer to confirm the silica and polymers encapsulation around the NCs.

**Ion detection test:** To probe the Cu<sup>2+</sup> ions, the PL intensity of the samples was recorded after the subsequent addition of different metal ions. Firstly, aqueous solutions containing metal ions at same concentration (0.1 mM) including Ni<sup>2+</sup>, Al<sup>3+</sup>, In<sup>3+</sup>, Co<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Zn<sup>2+</sup> and Cu<sup>2+</sup> were prepared. The NC aqueous solution was prepared by dispersing directly dispersing powder PbN-4 sample in DI water (concentration~ 5 mg/mL). Next, 100  $\mu$ L of PbN-4 NC aqueous solution was taken in 7 glass vials and 100  $\mu$ L of each of the aqueous solutions containing the metal ions were added and the PL intensity of the NC solution was observed.



**Figure S1.** (a) Schematic representation of hydrolysis and condensation processes of APTMS for silica shelling around the perovskite NCs, and (b) Schematic representation of polymer coating around PbN NCs.

## **Results and discussion:**



Figure S3. CIE color coordinates of (a) CPB@SiO<sub>2</sub> and (b) PbN-3 NCs.



**Figure S4.** Double-reciprocal plot of [C] of NIPAM versus the change in the fluorescence intensity ( $\Delta FI$ ) of PbN NCs.



Figure S5. Photographic image of PbN NCs dispersed in water under a UV lamp.



|                      | 0<br>µL | 50<br>μL | 100<br>μL | 150<br>μL | 200<br>μL | 250<br>μL | 300<br>μL | 350<br>μL | 400<br>μL | 450<br>μL | 500<br>μL | 550<br>μL | 600<br>μL | 650<br>μL | 700<br>μL | 750<br>μL | 800<br>μL |
|----------------------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CPB@SiO <sub>2</sub> |         |          |           |           |           |           | 0         |           |           | •<br>•    |           |           |           |           |           |           |           |
| PbN-1                |         |          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| PbN-2                |         |          |           |           |           |           |           |           |           |           |           |           |           |           | 03        |           |           |
| PbN-3                |         |          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| PbN-4                |         |          |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |



Figure S8. Water stability of (a) PbN-2, (b) PbN-3 and (c) PbN-5 as a function of time.

|                      | 0 min      | 15 min  | 30 min      | 45 min       | 60 min    |
|----------------------|------------|---------|-------------|--------------|-----------|
| CPB@SiO <sub>2</sub> |            |         |             |              |           |
| PbN-1                | D-IVIA     | Pby 10  | e o Nig     | O-NA         | LI PIN-O  |
| PbN-2                | A Manager  | Lis Wad | Devingence. | Siles - Vola |           |
| PbN-3                | A RANALEER | PbManne |             |              | Participa |
| PbN-4                | Single     | HANN-15 | SFANN       | SI-Wed       | REXT-15   |
| PbN-5                | 1 PRIV-20  | OF AND  | P611-20     | PEN-20       | P6N-20    |

**Figure S9.** Water stability test 2: Photographs of samples at a time interval of 15 mins after addition of DI water under a UV Lamp.



Figure S10. Heat stability of (a) PbN-2, (b) PbN-3 and (c) PbN-5 at 60°C as a function of time.



Figure S11. Absorption and PL spectra of Cu-acetate and PbN-4 NCs as shown in legends.



Figure S12. Schematic representation of charge transfer mechanism in NCs in presence of  $Cu^{2+}$ -ions.