Supporting Information

Exciton-Phonon Coupling in Alanine Base Hybrid Lead Bromide

Francisco Nailson F. Vasconcelos,^{a,b} Bruno S. Araújo,^{c,a} Dieric S. Abreu,^d Padron Gomez, M.A,^a

Alejandro P. Ayala,^a and Carlos William A. Paschoal^{a*}

Corresponding authors' e-mail:

paschoal.william@fisica.ufc.br

Crystal data	AlaPbBr ₃ .H ₂ O
Empirical formula	C ₃ H ₁₀ Br ₃ NO ₃ Pb
Formula weight	555.04
Temperature [K]	298.0
Crystal system	monoclinic
Space group (number)	C2 (5)
<i>a</i> [Å]	21.8573(12)
<i>b</i> [Å]	6.0851(4)
c [Å]	8.7665(5)
α ^[°]	90
β [°]	93.367(2)
γ [°]	90
Volume [Å ³]	1163.97(12)
Z	4
$\rho_{\rm calc} [m gcm^{-3}]$	3.167
$\mu [\mathrm{mm}^{-1}]$	40.057
<i>F</i> (000)	984
Crystal size [mm ³]	0.124×0.097×0.057
Crystal colour	clear light yellow
Crystal shape	plate
Radiation	$CuK_{\alpha} (\lambda = 1.54178 \text{ Å})$
2⊖ range [°]	10.11 to 136.26 (0.83 Å)
Index ranges	$-26 \le h \le 26$
	$-7 \le k \le 7$
	$-10 \le 1 \le 10$
Reflections collected	13066
Independent reflections	2075
R _{indices}	$R_{\rm int} = 0.0473$
Complete set to	$R_{\rm sigma} = 0.0342$
Completeness to $\Omega = 67.670^{\circ}$	99.4 %0
O = 0/.0/9 Data / Restraints / Parameters	2075/1/107
	20/3/1/10/

Table S1: Crystal data and details of the refinement AlaPbBr₃.H₂O.

Final R indexes	R1 = 0.0247
[I≥2σ(I)]	wR2 = 0.0633
Final R indexes	R1 = 0.0249
[all data]	wR2 = 0.0635
Largest peak/hole [eÅ–3]	1.01/-0.85
Flack X parameter	0.113(11)

Atom 1-Atom 2Atom 3	Atom 1-Atom 2	Atom 2Atom 3
Pb1-Br2N6 ⁱ	3.013(1)	3.327
Pb1-Br3O3 ⁱⁱ	2.989(1)	3.365
Pb1-Br3H3B ⁱⁱ	2.989(1)	2.575
Pb1-Br1H6C ^{iv}	2.974(3)	3.024
N6-H6AO3 ⁱ	0.890	2.714
N6-H6A01 ⁱ	0.890	1.978
N6-H6BBr2 ⁱ	0.890	2.471
N6-H6CBr2 ⁱ	0.890	2.613
C4-N6Br2 ⁱ	1.49(1)	3.327
C3-O2O3 ⁱⁱⁱ	1.32(1)	2.600
C3-O2H3A ⁱⁱⁱ	1.32(1)	2.410
C3-O1N6 ⁱ	1.19(1)	2.830
O2-H2O3 ⁱⁱⁱ	0.82	1.894
C5-H5BO2 ^{iv}	0.96	2.531
C5-H5CO1 ⁱ	0.96	2.668
O3-H3AH2 ⁱⁱⁱ	0.85	1.825
O3-H3BBr3 ⁱⁱ	0.85	2.575
C3-C4	1.51(1)	
С4-Н4	0.980	
C4-C5	1.51(2)	
С5-Н5А	0.96	

Table S2: Bond parameters for AlaPbBr₃.H₂O (in Å).

Symmetry code: (i) 1/2-x,-1/2+y,1-z; (ii) x,-1+y,z; (iii) x,y,z; (iv) 1/2+x,1/2+y,z.

*Table S3: Mode positions (centers, in cm*¹) and assignment of Raman spectrum of AlaPbBr₃.H₂O.

Assignment	References
L-Alanine lattice modes	1
$\delta_{as}(Br-Pb-Br)$	2-4
υ_{s} (Br–Pb–Br)	
υ_{s} (Br-Pb)	
v_{as} (Br-Pb).	
δ(CCNC)	5-8
δ(NCC)	
τ(NH ₃)	9
r (CO ₂)	
δ (CO ₂)	
υ (CN)	10,11
ρ (NH3)	
ρ (CH3)	
δas (CH3)	
δas (NH3)	
υ (CO2)	
υ (NH3)	11
υ (CH3)	
υ (CH)	
	Assignment L-Alanine lattice modes δ_{as} (Br-Pb-Br) v_s (Br-Pb-Br) v_s (Br-Pb) v_a (Br-Pb). δ (CCNC) δ (NCC) τ (NH ₃) r (CO ₂) δ (CCN) ρ (CH3) δas (CH3) δas (NH3) v (CO2) v (CH3) v (CH)

Table S4: Bond lengths and angles for $[PbB_6]^{4-}$ octahedra of the organic-inorganic hybrid AlaPbBr₃.H₂O crystal, as well as the calculated bond length quadratic elongation $\langle \lambda \rangle$), and bond angle variance (σ^2) .

Pb-Br Bond Length / Å	Br-Pb-Br Angle / degrees	
2.9740	98.37	85.12
3.1240	89.13	88.85
3.0131	87.26	93.42
2.9886	85.20	92.82
3.0352	93.59	88.25
3.0758	89.86	88.90
(λ)=0.9602	$\sigma^2 = 15.63$	

Appendix 1

Split Pseudo-Voigt function

The fitting of PL curves and extracting their respective parameters were performed using the fityk software.[1].

Pseudo-Voigt function: Is a name given to the sum of Gaussian and Lorentzian functions:

$$y = a0 \left[(1 - a3)exp\left(-ln^{\frac{1}{100}}(2)\left(\frac{x - a1}{a2}\right)^{2} \right) + \frac{a3}{1 + \left(\frac{x - a1}{a2}\right)^{2}} \right]$$

Here, long parameter names (like "height", "center" and "hwhm") were replaced with ai. In this case, a2 is half width at half maximum (HWHM=FWHM/2, where FWHM stands for full width...), which is proportional to the standard deviation: $a2 = \sqrt{2ln2\sigma}$.

Split Pseudo-Voigt function are used when the peak is noticeably asymmetric:

 $y(x;a0, a1, a2, a3, a4, a5) = \begin{cases} PseudoVoigt (x;a0, a1, a2, a4), & x \le 1 \\ PseudoVoigt (x;a0, a1, a3, a5), & x > 1 \end{cases}$

- 1 K. Machida, A. Kagayama and Y. Saito, J. Raman Spectrosc., 1978, 7, 188–193.
- W. Castro Ferreira, B. S. Araújo, M. A. P. Gómez, F. E. O. Medeiros, C. W. de Araujo Paschoal, C. B. da Silva, P. T. C.
 Freire, U. F. Kaneko, F. M. Ardito, N. M. Souza-Neto and A. P. Ayala, *J. Phys. Chem. C*, 2022, 126, 541–550.
- 3 M. Kumagai and T. Takagahara, *Phys. Rev. B*, 1989, **40**, 12359–12381.
- B. Cheng, T. Y. Li, P. Maity, P. C. Wei, D. Nordlund, K. T. Ho, D. H. Lien, C. H. Lin, R. Z. Liang, X. Miao, I. A. Ajia, J. Yin, D. Sokaras, A. Javey, I. S. Roqan, O. F. Mohammed and J. H. He, *Commun. Phys.*, , DOI:10.1038/s42005-018-0082-8.
- 5 V. Adinolfi, W. Peng, G. Walters, O. M. Bakr and E. H. Sargent, *Adv. Mater.*, 2018, **30**, 1700764.
- 6 Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng and Z. Liang, *Adv. Mater.*, 2018, **30**, 1703487.
- 7 K. Hong, Q. Van Le, S. Y. Kim and H. W. Jang, J. Mater. Chem. C, 2018, 6, 2189–2209.
- 8 J. Hong, D. Prendergast and L. Z. Tan, *Nano Lett.*, 2021, **21**, 182–188.
- 9 P. T. C. Freire, F. M. Barboza, J. A. Lima, F. E. A. Melo and J. M. Filho, in *Raman Spectroscopy and Applications*, InTech, 2017.
- 10 H. Susi and D. M. Byler, J. Mol. Struct., 1980, 63, 1–11.
- 11 V. V. Ghazaryan, G. Giester, M. Fleck and A. M. Petrosyan, J. Mol. Struct., 2018, 1163, 428–441.

Figure S1: Exciton binding energy determination. The exciton binding energy was estimated taking the difference between the energy of the excitonic transition and the onset of the high-energy absorption band.

*Figure S2: DSC thermogram of AlaPbBr*₃.*H*₂*O single crystals from 120 K up to 300 K in a) 10K/ min rate and b) 5K/min rate.*

Figure S3: ATR-FTIR spectrum of AlaPbBr₃.H₂O at 300 K.

*Figure S4: Intermediate-wavenumber region of the unpolarized Raman spectrum for AlaPbBr*₃.*H*₂*O crystals, measured with a 633 nm laser line at room temperature.*

*Figure S5: High-wavenumber region of the unpolarized Raman spectrum for AlaPbBr*₃.*H*₂*O crystals, measured with a 633 nm laser line at room temperature.*