Electronic Supplemental Information (ESI): Tuning of Hole Carrier Density in p-type α-SnWO₄ by Exploiting Oxygen Defects

Makoto Minohara,*a Yuka Dobashi,^{a,b} Naoto Kikuchi,^a Akane Samizo,^b Takashi Honda,^{c,d} Xinyi He,^e Takayoshi Katase,^e Toshio Kamiya,^e Keishi Nishio ^b and Yoshihiro Aiura ^a

^aResearch Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
^bDepartment of Materials Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
^cMaterials & Life Science Division, J-PARC Centre, Tokai, Ibaraki 319-1195, Japan
^dInstitute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
^eLaboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan

* Corresponding author: m-minohara@aist.go.jp

This PDF file includes:

Figures S1 to S6

Figure S1. Thermopower versus temperature difference for α -SnWO₄ samples.

Figure S2. Optical band gaps of α-SnWO₄ samples.

Figure S3. Lattice constants of α -SnWO₄ samples.

Figure S4. Sn/W ratios of α-SnWO₄ samples evaluated using X-ray fluorescence measurements.

Figure S5. Plots of intensities of Sn–O and W–O peaks in Sn *K*- and W L_3 -edge EXAFS spectra of α -SnWO₄ samples, respectively.

Figure S6. Bond lengths of (A) Sn–O(2) and O_i , (B) W–O(1), O(2), and O_i of candidate structures shown in Fig. 4.