Supporting Information:

Bifunctional Intermetallic PdZn Nanoparticle-Loaded Deficient TiO₂ Nanosheet Electrocatalyst for Electrochemical Water Splitting

Keerti M. Naik*a, Kanaru Hashisake, Eiji Higuchi, Hiroshi Inouea

Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University (formerly Osaka Prefecture University), Sakai, Osaka 599-8531, Japan.

*Corresponding authors:

E-mail address:<u>keertiraman@gmail.com</u>(K.M. Naik);

Fig. S1. Experimental XRD pattern of TiO_2 NSs and the standard XRD pattern of $a-TiO_2$ (JCPDS-021-1272).

Fig. S2. XRD pattern of PdZn/C and the standard XRD pattern of PdZn (JCPDS-006-0620).

Fig. S3. Raman spectra of TiO_2 NSs and PdZn/TiO_{2-x} NSs.

Fig. S4. TEM images of (a) PdZn/C and (b) Pt/C.

Fig. S5. (a) Hydrodynamic voltammogramms at 1600 rpm of $PdZn/TiO_{2-x}$ NSs before and after potentiostatic HER measurement at -0.1 V vs. RHE in Ar-saturated (a) 0.5 M H₂SO₄ and (b) 1 M KOH solutions at 25 °C.

Fig. S6. Nyquist plots of PdZn/TiO_{2-x} NSs at -0.05 V vs. RHE before and after potentiostatic HER measurement in an Ar-saturated 0.5 M H_2SO_4 solution.

Fig. S7. Cyclic voltammogramms of PdZn/TiO_{2-x} NS, PdZn/C and Pt/C in Ar-saturated 0.5 M H_2SO_4 electrolyte at a scan rate of 50 mV s⁻¹.

Table S1.	. Comparison	of the HE	R and O	ER activity	for the p	repared PdZ	Zn/TiO_{2-x}	NS	with
the reporte	ed active elect	trocatalysts	in alkal	ine solution	•				

Catalyst	HER	Tafel	OER	Tafel	References
	Overpotential	slope	Overpotential	slope	
	(mV vs. RHE)	(mV	(mV vs.	(mV	
		Dec ⁻¹)	RHE)	Dec ⁻¹)	
TiO ₂ @Co ₉ S ₈	139	65	240	55	[1]
NiCo ₂ O ₄ (2:1)/TiO ₂	185	120	309	55	[2]
NiCo ₂ O ₄ /Ti ₄ O ₇	398	64	-	-	[3]
CoSCo(OH)2@aMoS2	143	68	380	68	[4]
_{+x} /NF					
Ni _{0.9} Fe _{0.1} /NC	231	111	330	45	[5]
Ti ₃ C ₂ @mNiCoP	127	103	237	104	[6]
Co _{3.2} Fe _{0.8} N/MNC-100	504.2	250.83	350	131	[7]
PdP ₂ @CB	35.4	42.1	270	78.6	[8]
PdZn/TiO _{2-x} NS	64	68	460	115	Present
					work

Notes and References

- S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, *Adv. Sci.*, 2018, 5, 1700772.
- 2 R. Vadakkekara, R. Illathvalappil, S. Kurungot, *ChemElectroChem* 2018, **5**, 4000-4007.
- 3 Z. Zheng, W. Geng, Y. Wang, Y. Huang, T. Qi, *Int. J. Hydrog. Energy*, 2017, **42**, 119-124.
- 4 T. Yoon, K. S. Kim, *Adv. Funct. Mater.*, 2016, **26**, 7386-7393.
- 5 X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, Y. Liang, ACS Catal., 2016, 6, 580-588.
- 6 Q. Yue, J. Sun, S. Chen, Y. Zhou, H. Li, Y. Chen, R. Zhang, G. Wei, Y. Kang, ACS Appl. Mater. Interfaces, 2020, **12**, 18570-18577.
- 7 K. Zhang, W. Mai, J. Li, G. Li, L. Tian, W. Hu, *ACS Appl. Nano Mater.*, 2019, **2**, 5931-5941.
- F. Luo, Q. Zhang, X. Yu, S. Xiao, Y. Ling, H. Hu, L. Guo, Z. Yang, L. Huang, W. Cai, H.
 Cheng, Angew. Chem., 2018, **130**, 15078 -15083.