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1. Materials and methods

All the chemicals are commercially available, and used without further
purification. All solvents were dried and distilled according to conventional methods.

Powder X-ray diffraction (PXRD): PXRD patterns were collected on a Bruker
D8 ADVANCE diffractometer using Cu Ka radiation (A = 1.5418 A). High resolution
synchrotron powder diffraction data were collected using beamline 17-BM at the
Advanced Photon Source (APS), Argonne National Laboratory using an average
wavelength of 0.45187 A. Discrete detectors covering an angular range from —6 to 16°
(2theta) are scanned over a 34° (2theta) range, with data points collected every 0.001°
2 theta and scan speed of 0.01°/s. Data were taken at 400, 700, and 1000 mm.

Fourier transform infrared (FT-IR): FT-IR spectra was measured on a Thermo
Fisher Scientific Optics NICOLETIS10 FT-IR spectrometer with Universal ATR
accessory between the ranges of 4000 to 500 cm ™.

Solution nuclear magnetic resonance (SNMR): Liquid state 'H nuclear magnetic
resonance spectra was collected on a Bruker Avance III instrument with AS500 magnet
equipped with a cryoprobe (500 MHz). Liquid state '*C nuclear magnetic resonance
spectra were measured on a Bruker Advance III instrument with AS500 magnet
equipped with a cryoprobe (125 MHz). Liquid state *'P nuclear magnetic resonance
spectra were measured on a Bruker Advance III instrument with AS500 magnet
equipped with a cryoprobe (202.41 MHz).

Scanning electron microscope (SEM): SEM images were collected using a JSM-
IT500HR system, JEOL.

Transmission electron microscope (TEM): TEM images were collected using a
JEM-2100, JEOL.

Solid-state nuclear magnetic resonance (ssNMR): Solid state '3C cross-
polarization magic-angle-spinning (CP/MAS) NMR spectra were recorded on a JEOL
JINM-ECA 400 MHz, 4.0 mm rotor, MAS of 10 kHz, recycle delay of 1 sec.

High resolution mass spectrometry (HRMS): HRMS mass spectra were
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collected on a Baird Acquity UPLC/XEVO G2-XS QTOF using CHCI3 as a solvent.

Thermogravimetric analysis (TGA): TGA was performed using a NETZSCH
STA 449F5 under flowing N2 (60 mL min™!) with 10 K min! ramp rate. Samples were
heated in a Platinum pan from 50 °C to 900 °C (10 °C min').

Gas adsorption: N2 adsorption and desorption measurements were performed at
77 K using BEL (MicrotracBEL Corp, Japan), before gas adsorption measurements, all
the solids have been dried at 80 °C under vacuum in a drying oven for 24 h to remove
residual solvent, then all the samples have been degassed under vacuum at 100 °C with
BELPREP VAC III for 12 h to afford the sample for sorption analysis. The pore size
distributions of samples in this work were estimated by Nonlocal Density Functional
Theory (NLDFT) based on the model of N2/77 K on graphitic carbon with slit pores
and the method of Tikhonov regularization.

Water vapor adsorption and desorption measurements were performed at 298 K
using BEL (MicrotracBEL Corp, Japan).

The water contact angles (WAC): the water contact angles were measured on
goniometer (JC2000C, Japan) equipped with video capture.

X-ray photoelectron spectroscopy (XPS): X-ray photoelectron spectroscopy

(XPS) spectra were measured with the kratos axis supra™ of Shimadzu.
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2. Synthesis

2.1.Synthesis of monomer S3.

OH OC,H,Br OC,H,PO(OEY), OC,H,PO(OH),
Br ¢ H4Br2 K,CO, Br p(om), Br TMSBr, DCM Br
—
Br CP 90°C, 24h TasC 2 C, 24h MeOH, rt, 24h
OH oczH4Br OC,H,PO(OEY), OC;H,PO(OH),
S2 S3

1,4-dibromo-2,5-bis(2-bromoethoxy)benzene (S1). S1 was synthesized
according to the reported literature with a modified procedure [1]. 2,5-
dibromohydroquinone (2.679 g, 10.00 mmol), 1,2-dibromoethane (2.59 mL, 30.00
mmol), and potassium carbonate (6.911 g, 50.00 mmol) were dissolved in anhydrous
acetone (50.00 mL). The resulting solution was refluxed overnight at 90 °C under argon
atmosphere. The resulting mixture was concentrated under vacuum and then
redissolved in dichloromethane and washed with water. After water was dried over
MgSOs4 and dichloromethane was removed under vacuum, the crude product was
purified with silica-gel column chromatography (petroleum ether/dichloromethane =
2:1, v/v) to give 3.919 g of S1 in 81.3% yield as a white powder. '"H NMR (CDCls, 500
MHz) & (ppm): 7.14 (s, 2H), 4.29 (t, 4H), 3.66 (t, 4H); *C NMR (CDCls, 125 MHz)
(ppm): 150.07, 119.80, 111.88, 70.34, 28.38.

tetraethyl (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(ethane-2,1-
diyl))bis(phosphonate) (S2). S1 (1.500 g, 3.11 mmol), triethyl phosphite (4.27 mL,
24.90 mmol) were added into a 50.00 mL round-bottom flask. The resulting solution
was refluxed for 24h at 145 °C. The resulting mixture was redissolved in
dichloromethane and washed with water. After water was dried over MgSO4 and
dichloromethane was removed under vacuum, the crude product was purified with
silica-gel column chromatography (ethyl acetate) to give 1.334g of S2 in 71.9% yield
as a white powder. "TH NMR (CDCls, 500 MHz) & (ppm): 4.13 (t, 4H), 2.34 (m, 4H),
1.35 (t, 12H); 3C NMR (CDCls, 125 MHz) & (ppm): 149.89, 119.07, 111.40, 64.63,
62.03, 29.73, 16.52.

(((2,5-dibromo-1,4-phenylene)bis(oxy))bis(ethane-2,1-diyl))bis(phosphonic
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acid) (S3). S2 (0.994 g, 1.67 mmol) and bromotrimethylsilane (2.64 mL, 20.01 mmol)
were added into anhydrous dichloromethane (25.00 mL). The resulting solution was
stirred for 12h at room temperature under argon atmosphere. Methanol (50.00 mL) was
added into the resulting solution. The mixture was stirred for 12 h at room temperature.
The resulting mixture was concentrated under vacuum and dried at 80 °C under vacuum
for 12 h to give 0.719 g of S3 in 89.1% yield as a white powder. '"H NMR (DMSO, 500
MHz) & (ppm): 8.93(s, 4H), 7.37 (s, 2H), 4.17 (t, 4H), 2.07 (t, 4H); 3*C NMR (DMSO,
125 MHz) & (ppm): 149.50, 119.20, 111.14, 65.62, 29.06; 3'P NMR (DMSO, 202.41
MHz) 3 (ppm): 38.07; ESI-HRMS: calcd. for [CioH14Br2OsP2 — H] 482.85102; found
482.84451.

2.2.Synthesis of monomer S6.

OC,HgBr OC4HgPO(OEt), OC4HgPO(OH),
Br CAHXBrZ K>CO;4 Br _POEO; Br TMSBr, DCM Br
%
CP 90°C, 24h Tasc, C,n g MeOH, rt, 24h g
OC,HgBr OC4HgPO(OEt), OC4HgPO(OH),
S5 S6

1,4-dibromo-2,5-bis(4-bromobutoxy)benzene (S4). S4 was synthesized
according to the reported literature with a modified procedure. 2,5-
dibromohydroquinone (2.679 g, 10.00 mmol), 1,4-dibromobutane (3.58 mL, 30.00
mmol), and potassium carbonate (6.911 g, 50.00 mmol) were dissolved in anhydrous
acetone (50.00 mL). The resulting solution was refluxed overnight at 90 °C under argon
atmosphere. The resulting mixture was concentrated under vacuum and then
redissolved in dichloromethane and washed with water. After water was dried over
MgSO4 and dichloromethane was removed under vacuum, the crude product was
purified with silica-gel column chromatography (petroleum ether/dichloromethane =
2:1, v/v) to give 4.330 g of S4 in 80.5% yield as a white powder. '"H NMR (CDCl3, 500
MHz) & (ppm): 7.08 (s, 2H), 3.99 (t, 4H), 3.52 (t, 4H), 2.11 (m, 4H), 1.97 (m, 4H); 13C
NMR (CDCl3, 125 MHz) & (ppm): 150.16, 118.60, 111.35, 69.36, 33.71, 29.60, 27.90.

tetraethyl (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(butane-4,1-
diyl))bis(phosphonate) (S5). S4 (1.50 g, 2.79 mmol), triethyl phosphite (3.80 mL, 22.3

mmol) were added into a 50.00 mL round-bottom flask. The resulting solution was
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refluxed for 24h at 145 °C. The resulting mixture was redissolved in dichloromethane
and washed with water. After water was dried over MgSO4 and dichloromethane was
removed under vacuum, the crude product was purified with silica-gel column
chromatography (ethyl acetate) to give 1.332g of S5 in 73.2% yield as a white powder.
'TH NMR (CDCl3, 500 MHz) & (ppm): 7.07 (s, 2H), 4.09 (m, 8H), 3.97 (t, 4H), 1.91 (m,
4H), 1.84 (m, 8H), 1.32 (t, 12H); ¥C NMR (CDCl3, 125 MHz) & (ppm): 150.18, 118.66,
111.34, 69.68, 61.66, 26.10, 24.98, 19.52, 16.65.
(((2,5-dibromo-1,4-phenylene)bis(oxy))bis(butane-4,1-diyl))bis(phosphonic

acid) (S6). S5 (1.240 g, 1.90 mmol) and bromotrimethylsilane (3.01 mL, 22.8 mmol)
were added into anhydrous dichloromethane (30.00 mL). The resulting solution was
stirred for 12h at room temperature under argon atmosphere. Methanol (50.00 mL) was
added into the resulting solution. The mixture was stirred for 12 h at room temperature.
The resulting mixture was concentrated under vacuum and dried at 80 °C under vacuum
for 12 h to give 0.927 g of S6 in 86.7% yield as a white powder. '"H NMR (DMSO, 500
MHz) & (ppm): 7.35 (s, 2H), 4.00 (t, 4H), 3.39 (s, 4H), 1.77 (m, 4H), 1.63 (t, 4H), 1.55
(m, 4H); 3C NMR (DMSO, 125 MHz) & (ppm): 149.50, 118.28, 110.56, 69.35, 27.86,
26.77,19.61; 3P NMR (DMSO, 202.41 MHz) & (ppm): 43.80; ESI-HRMS: calcd. for
[C14H22Br20sP2 — H] 538.91362; found 538.90726.

2.3.Synthesis of monomer S9.

OCgH,,Br OC¢H,,PO(OEt), OC¢H,PO(OH),
Br C(,H,ZBrz K,CO, Br p(0E¢)3 Br TMSBr, DCM Br
%
CP 90°C, 24h 145 C,24h g, McOH, rt, 24h g
OCgH4,Br OCgH,PO(OEt), OCgH;,PO(OH),
S8 S9

1,4-dibromo-2,5-bis((6-bromohexyl)oxy)benzene (S7). S7 was synthesized
according to the reported literature with a modified procedure. 2,5-
dibromohydroquinone (2.679 g, 10.00 mmol), 1,6-dibromohexane (4.15 mL, 27.00
mmol), and potassium carbonate (6.911 g, 50.00 mmol) were dissolved in anhydrous
acetone (50.00 mL). The resulting solution was refluxed overnight at 90 °C under argon
atmosphere. The resulting mixture was concentrated under vacuum and then

redissolved in dichloromethane and washed with water. After water was dried over
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MgSOs4 and dichloromethane was removed under vacuum, the crude product was
purified with silica-gel column chromatography (petroleum ether/dichloromethane =
2:1, v/v) to give 4.728 g of S7 in 79.6% yield as a white powder. "H NMR (500 MHz,
CDCls, ppm) 6: 7.07 (s, 2H), 4.08 (t, 4H), 3.52 (t, 4H), 1.80 (m, 4H), 1.73 (m, 4H), 1.48
(m, 4H), 1.31 (m, 4H); 3C NMR (CDCl3, 125 MHz) 8 (ppm): 150.21, 118.61, 111.30,
70.24, 33.62, 32.21, 29.06, 25.73, 25.24.

tetraethyl (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(hexane-6,1-
diyl))bis(phosphonate) (S8). S7 (1.50 g, 2.53 mmol), triethyl phosphite (3.46 mL, 20.2
mmol) were added into a 50.00 mL round-bottom flask. The resulting solution was
refluxed for 24h at 145 °C. The resulting mixture was redissolved in dichloromethane
and washed with water. After water was dried over MgSOa4 and dichloromethane was
removed under vacuum, the crude product was purified with silica-gel column
chromatography (ethyl acetate) to give 1.332g of S8 in 73.2% yield as a white powder.
'TH NMR (500 MHz, CDCl3, ppm) 8: 7.07 (s, 2H), 4.10 (m, 8H), 3.94 (t, 4H), 1.81 (m,
4H), 1.73 (t, 4H), 1.52 (m, 4H), 1.46 (m, 4H), 1.32 (t, 12H), 1.26 (m, 4H); 3C NMR
(CDCl3, 125 MHz) 6 (ppm): 150.26, 118.68, 111.35, 70.28, 61.64, 29.06, 26.37, 25.72,
25.26,22.59, 16.71.

(((2,5-dibromo-1,4-phenylene)bis(oxy))bis(hexane-6,1-diyl))bis(phosphonic
acid) (S9). S8 (0.200 g, 0.28 mmol) and bromotrimethylsilane (0.45 mL, 3.38 mmol)
were added into anhydrous dichloromethane (10.00 mL). The resulting solution was
stirred for 12h at room temperature under argon atmosphere. Methanol (50.00 mL) was
added into the resulting solution. The mixture was stirred for 12 h at room temperature.
The resulting mixture was concentrated under vacuum and dried at 80 °C under vacuum
for 12 h to give 0.144 g of S9 in 85.3% yield as a white powder. '"H NMR (DMSO, 500
MHz) & (ppm): 10.02 (s, 4H),7.33 (s, 2H), 3.99 (t, 4H), 1.68 (m, 4H), 1.50 (t, 4H), 1.48
(m, 4H), 1.45 (m, 4H), 1.40 (m, 4H); 3C NMR (DMSO, 125 MHz) & (ppm): 149.49,
118.26, 110.58, 69.58, 29.80, 28.46, 27.05, 25.16, 22.82; 3P NMR (DMSO, 202.41
MHz) 6 (ppm): 44.31; ESI-HRMS: calcd. For [CisH30Br20sP2 — H] 594.97622; found
594.96974.
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2.4.Synthesis of Monomer S12.

Br PO(OEt), PO(OEt), PO(OH),
P(OEt);, NiCl,'6H,0 NBS, TFA, H,S0, Br  Imser, pcm Br
155°C, 36h 60°C, 24h Br MeOH, r.t, 24h g
Br PO(OEt), PO(OEt), PO(OH),
S$10 S11 S$12

tetraethyl 1,4-phenylenebis(phosphonate) (S10). S10 was synthesized
according to the reported literature with a modified procedure [2]. 1,4-dibromobenzene
(2.00 g, 8.48 mmol), triethyl phosphite (8.72 mL, 50.88 mmol), NiCl2-6H20 (0.400 g,
1.70 mmol) were added into a 50.00 mL round-bottom flask. The resulting solution was
refluxed for 48h at 150 °C. The resulting mixture was redissolved in dichloromethane
and washed with water. After water was dried over MgSO4 and dichloromethane was
removed under vacuum, the crude product was purified with silica-gel column
chromatography (ethyl acetate) to give 1.675g of S10 in 56.4% yield as a white powder.
'TH NMR (CDCIl3, 500 MHz) & (ppm): 7.88 (s, 4H), 4.12 (m, 8H), 1.32 (t, 12H); BC
NMR (CDCl3, 125 MHz) & (ppm): 131.89, 62.77, 16.63.

tetraethyl (2,5-dibromo-1,4-phenylene)bis(phosphonate) (S11). A 50 mL
round-bottom flask was charged with S10 (0.981 g, 2.80 mmol), trifluoroacetic acid
(20.0 mL), and concentrated H2SO4 (6.0 mL). The reaction mixture was heated to 60 °C,
and N-bromosuccinimide (1.50 g, 8.43 mmol) was added in portions (250 mg/h) over
6 hours. The stirring was continued for 48 hours at 60 °C, and the reaction mixture was
poured into iced water. Yellow precipitate was collected by filtration and were
recrystallized twice in ethanol to give 1.154 g of S11 in 81.1% yield as a white powder.
'"H NMR (CDCIl3, 500 MHz) & (ppm): 7.93 (s, 2H), 4.20 (m, 8H), 1.35 (t, 12H); 3C
NMR (CDCls, 125 MHz) & (ppm):133.47, 131.87, 119.97, 62.75, 16.61.

(2,5-dibromo-1,4-phenylene)bis(phosphonic acid) (S12). S11 (1.00 g, 2.85
mmol) and bromotrimethylsilane (3.01 mL, 22.84 mmol) were added into anhydrous
dichloromethane (25.00 mL). The resulting solution was stirred for 12h at room
temperature under argon atmosphere. Methanol (50.00 mL) was added into the resulting
solution. The mixture was stirred for 12 h at room temperature. The resulting mixture

was concentrated under vacuum and dried at 80 °C under vacuum for 12 h to give 0.892
S10



g of S12 in 78.9% yield as a white powder. 'H NMR (DMSO, 500 MHz) & (ppm): 7.75
(s, 2H), 7.10 (s, 4H); '*C NMR (DMSO, 125 MHz) & (ppm): 138.63, 130.33, 118.43;
3P NMR (DMSO, 202.41 MHz) & (ppm): 29.24; ESI-HRMS: calcd. For
[CeHsBr206P2 — H] 394.79859; found 394.79181.

2.5.Synthesis of Monomer S14.

Et;N, 90°C, 36h r.t., 24h

ST, O 0L SO0

Z “
~si”” N ?u/\

Br Il I
O TMSA, Cul, PPh,, O O
Pd(PPh;),Cl, K,CO;, MeOH, CHCl,

—_— > _—

s13 s14
1,3,5-tris-[(4-trimethylsiylethynyl)phenyl]benzene (S13). S13 and S14 was
synthesized according to the reported literature. 1,3,5-tris(4-bromophenyl)benzene
(0.300 g, 0.55 mmol), Cul (0.003 g, 0.016 mmol), triphenyl phosphine (0.014 g, 0.055
mmol) and Pd(PPh3)2Cl2 (0.019 g, 0.027 mmol) were taken in 100 mL two-neck round
bottom flask under nitrogen atmosphere. Then dry and degassed triethylamine (30 mL)
was added to this mixture and heated for 30 min at 50°C. Trimethylsilylacetylene (0.34
mL, 2.48 mmol) was added drop wise to the mixture under high nitrogen flow and the
reaction mixture was refluxed for 36 h at 90°C. The solvent was removed under vacuum
and the crude was purified by column chromatography using 1% ethyl acetate (EA) in
hexane mixture to give 0.276 g of S13 in 84.0% yield as a white powder. '"H NMR (500
MHz, CDCIs) 6 (ppm): 7.74 (s, 3H), 7.63 (d, 6H), 7.57 (d, 6H), 0.28 (s, 27H).
1,3,5-Triethynyltriphenylbenzene (S14). S13 (210 mg, 0.35 mmol) was
dissolved in solvent mixture of dichloromethane and methanol (1:2) in 100 mL round
bottom flask. Solid potassium carbonate (0.290 g, 2.11 mmol) was added to it and the
reaction mixture was stirred for 24 h at room temperature. The solvents were removed
under reduced pressure and the crude was purified by column chromatography using
hexane as eluent to give 0.122 g of S14 in 92.0% yield as a light yellow powder. 'H
NMR (CDCls, 500 MHz) & (ppm): 7.76 (s, 3H), 7.64 (d, 6H), 7.62 (d, 6H), 3.16 (s, 3H);

13C NMR (CDCLs, 125 MHz) § (ppm): 141.89, 141.30, 132.90, 127.41, 125.48, 121.72,
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83.60, 78.32.

2.6.Synthesis of CMP-C2-P

OC,H,PO(OH),
Br

Br
OC,H,PO(OH),

S3
Cul, Pd(PPhs),
Et;N, DMF
80°C, 72h
Il
O JE—
@
& O O X
S14 CMP-C2-P

Following the reported literature with a modified procedure [3-6]. S3 (0.241 g,
0.50 mmol), S14 (0.126 g, 0.33 mmol), Cul (0.007 g, 0.04 mmol) and Pd(PPhs3)4 (0.022
g, 0.02 mmol) in NEts/DMF. The mixture was stirred for 60 h at 80 °C under argon
atmosphere and was allowed to cool to room temperature. The crude was washed with
dichloromethane (310 mL) and acetone (3x10 mL), soaked in dry acetone for 12 h
and dried at 80 °C under vacuum for 12 h to give CMP-C2-P as a yellow powder (0.329
g, 89.7% yield).

2.7.Synthesis of CMP-C4-P

0C,HgPO(OH),
Br

Br
0C,HgPO(OH),

S6

Cul Pd(PPhy),
EGN,DMF
80°C, 72h

Il
Saas
= S
S14 CMP-C4-P

Following the reported literature with a modified procedure. S6 (0.281 g, 0.50
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mmol), S14 (0.126 g, 0.33 mmol), Cul (0.007 g, 0.04 mmol) and Pd(PPh3)4 (0.022 g,
0.02 mmol) in NEts/DMF. The mixture was stirred for 60 h at 80 °C under argon
atmosphere and was allowed to cool to room temperature. The crude was washed with
dichloromethane (310 mL) and acetone (3x10 mL), soaked in dry acetone for 12 h
and dried at 80 °C under vacuum for 12 h to give CMP-C4-P as a yellow powder (0.352
g, 86.5% yield).

2.8.Synthesis of CMP-C6-P

OCgH,;,PO(OH),
Br

Br
OC¢H,PO(OH),

S9
Cul,PA(PPhy);,
EGN,DMF
80°C, 72h
Il
O - 1
®
Z O O S
S14 CMP-C6-P

Following the reported literature with a modified procedure. S9 (0.298 g, 0.50
mmol), S14 (0.126 g, 0.33 mmol), Cul (0.007 g, 0.04 mmol) and Pd(PPh3)4 (0.022 g,
0.02 mmol) in NEts/DMF. The mixture was stirred for 60 h at 80 °C under argon
atmosphere and was allowed to cool to room temperature. The crude was washed with
dichloromethane (3x10 mL) and acetone (3x10 mL), soaked in dry acetone for 12 h
and dried at 80 °C under vacuum for 12 h to give CMP-C6-P as a yellow powder (0.339
g, 80.0% yield).

S13



2.9.Synthesis of CMP-P

PO(OH),
Br

Br
PO(OH),

S12
Cul, Pd(PPh;),
Et;N, DMF >
80°C, 72h
I
Saat
Z X
S14 CMP-P

Following the reported literature with a modified procedure. S12 (0.198 g, 0.50
mmol), S14 (0.126 g, 0.33 mmol), Cul (0.007 g, 0.04 mmol) and Pd(PPh3)4 (0.022 g,
0.02 mmol) in NEts/DMF. The mixture was stirred for 60 h at 80 °C under argon
atmosphere and was allowed to cool to room temperature. The crude was washed with
dichloromethane (3%x10 mL) and acetone (3x10 mL), soaked in dry acetone for 12 h
and dried at 80 °C under vacuum for 12 h to give CMP-P as a yellow powder (0.229 g,
70.8% yield).

2.10. Synthesis of CMP-C2S-P

OC,H4PO(OH),
Br
Br
OC,H4PO(OH),
Cul, Pd(PPhs),
Et;N, DMF -
80°C, 72h

& o
Z 0 CMP-C2S-P

Following the reported literature with a modified procedure. S3 (0.241 g, 0.50
mmol), 1,3,5-triethynylbenzene (0.050 g, 0.33 mmol), Cul (0.007 g, 0.04 mmol) and
Pd(PPh3)4 (0.022 g, 0.02 mmol) in NEt3/DMF. The mixture was stirred for 60 h at 80 °C

under argon atmosphere and was allowed to cool to room temperature. The crude was
S14



washed with dichloromethane (310 mL) and acetone (3x10 mL), soaked in dry
acetone for 12 h and dried at 80 °C under vacuum for 12 h to give CMP-C2S-P as a
yellow powder (0.223 g, 76.6% yield).

2.11. Synthesis of CMP-U

Br

Cul, Pd(PPhs),
Et;N, DMF
80°C, 72h
I
®
@
& O O X
S14 CMP-U

Following the reported literature with a modified procedure. 1,4-dibromobenzene
(0.118 g, 0.50 mmol), S14 (0.126 g, 0.33 mmol), Cul (0.007 g, 0.04 mmol) and
Pd(PPh3)4 (0.022 g, 0.02 mmol) in NEt3/DMF. The mixture was stirred for 60 h at 80 °C
under argon atmosphere and was allowed to cool to room temperature. The crude was
washed with dichloromethane (3x10 mL) and acetone (3 x10 mL), soaked in dry
acetone for 12 h and dried at 80 °C under vacuum for 12 h to give CMP-U as a yellow
powder (212 mg, 87.0% yield).

2.12. H3PO4 doping

H3PO4 doped CMPs were prepared by manual grinding CMPs and different
amount of phosphoric acid. The dried powder samples of CMP-P and CMP-Cx-P (x =
2,4, 6; P stands for phosphonic acid groups) (20 mg) were weighted to an agate mortar,
then different amount of neat phosphoric acid was added to the above mortar. After
smoothly manual grinding in a mortar with pestle, the solids were collected and dried
at 100 °C under vacuum for 12 h. The phosphoric acid doped samples were denoted as
CMP-P-H and CMP-Cx-P-H (H represents percentage of phosphoric acid in total

mass), respectively. CMP-C2S-P-H and CMP-U-H were prepared in the same way.
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3. Characterization and proton conduction measurements
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Figure S3. FT-IR spectra of CMP-C2-P.
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Figure S4. FT-IR spectra of (a) CMP-C2-P, (b) CMP-C4-P, (c) CMP-C6-P, (d) CMP-
P, (e) CMP-C2S-P, and (f) CMP-U.
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Figure S5. 13C Solid-State NMR spectrum of CMP-C4-P, CMP-C6-P, and CMP-P.
asterisk denote spinning sidebands.
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Figure S6. HR-TEM images of (a-c) CMP-C2-P and (d-f) CMP-C2-P-45%.
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Figure S7. TGA curves of CMPs.

£l
S
P before
7]
c
2
=

hafter et o]

Figure S8. PXRD spectra of CMP-C2-P heat-treated at 155 °C for 12h.
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Figure S9. FT-IR spectra of CMP-C2-P heat-treated at 155 °C for 12h.
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Figure S10. CMP-C2-P soaked in H20, 60% HNOs3, and 40% HCI for 24 h.
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Figure S11. FT-IR spectra of CMP-C2-P soaked in (a) H20, (b) 60% HNO3, and (c)
40% HCI for 24 h.
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Figure S12. N2 adsorption isotherms at 77 K of (a) CMP-C2-P soaked in 60% HNO3
and (b) CMP-C2-P-45% after wash and activation.
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Figure S13. Pore size distribution of CMPs.
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Figure S14. Water vapor adsorption isotherms of CMP-C2/C4/C6-P and CMP-
C2/C4/C6-P-45%.
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Figure S15. Current-voltage curves of CMP-C2/C4/C6-P and CMP-P.
The electronic conductivities of CMP-C2/C4/C6-P and CMP-P were calculated

according to the equation:

h

o= Z
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Where electrical conductivity, o, measures a material’s ability to conduct electrical
current. Measuring ¢ typically requires incorporating the material of interest into an
electronic device, typically a resistor, and measuring the electrical conductance (G),
length (L), and cross-sectional area (A) of the conduction channel.
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Figure S16. PXRD spectra of (a) CMP-C2-P, (b) CMP-C2-P-45%, (¢) CMP-C4-P, (d)
CMP-C4-P-45%, (e) CMP-C6-P, (f) CMP-C6-P-45%, (g) CMP-P, and (h) CMP-P-
45%.
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Figure S17. FT-IR spectra of (a) CMP-C2-P, (b) CMP-C2-P-15%, (c) CMP-C2-P-
30%, (d) CMP-C2-P-45%, and () CMP-C2-P-60%.

S22



w
o

—@— CMP-C2-P-45%
254 —9— CMP-C4-P-45%
—_ —a— CMP-C6-P-45%
c;cn 204 —a— CMP-N-P-45%
£
)
o 154
>
5
o
2 104
o
=z
5 4
04 &

0.0 072 0?4 0?6 OI.S 1.0
Related Pressure (P/P;)

Figure S18. N> adsorption isotherms at 77 K of CMP-C2/C4/C6-P and CMP-P.
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Figure S19. N2 adsorption isotherms at 77 K of (a) CMP-C2-P and CMP-C2-P-45%
and (b) CMP-U, and CMP-U-45%.
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Figure S21. TGA curves of S3, S6, S9, and S12.
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Figure S22. Water contact angles of CMP-C2/C4/C6-P-45% and CMP-P-45%.
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Figure S23. Nyquist plots of CMP-C2-P measured at 30 and 130°C under anhydrous
conditions.
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Figure S25. Nyquist plots of (a) CMP-C4-P-45%, (b) CMP-C6-P-45%, (c) CMP-P-
45%, (d) CMP-C2S-P-45%, and (e) CMP-U-45% measured at 30~130°C under

anhydrous conditions.
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Figure S26. Cycling test for CMP-C2-P-45% at 30~130°C under anhydrous conditions.
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Figure S27. Arrhenius plots for CMP-C2-P-60% at —40~130 °C under anhydrous

conditions.
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Figure S28. Nyquist plots of (a) CMP-C2-P-45%, (b) CMP-C4-P-45%, (c) CMP-C6-
P-45%, and (d) CMP-P-45% measured at —40~0 °C under anhydrous conditions.
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Figure S29. Nyquist plots of H3PO4@CMP-F6-45% measured at —40 and 0 °C under
anhydrous conditions.
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Figure S31. Nyquist plots of CMP-C2-P-45% under (a) 32%, (b) 43%, (c) 56%, (d)
75%, and (e) 84% RH at 30 °C.
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Figure S32. Nyquist plots of CMP-C2-P under 98% RH at 30~90°C.
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Figure S33. Nyquist plots of H3PO4@CMP-F6-45% under 98% RH at 30~90°C.
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Figure S34. Arrhenius plots of H3PO4@CMP-F6-45% under 98% RH.
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Table S36. Comparison of proton conductivities in reported materials.

Proton
Material Type conducti}fity Condition Teml()%*;lture Reference
(Sem™)
CMP-C2-P-H pellet 2.15x 1072 | anhydrous 130 This work
J. Am. Chem.
PA@Tp-Azo pellet 6.70 x 10~ | anhydrous 67 Soc. 2014, 136,
6570—6573.
J. Am. Chem.
Im@Td-PPI pellet 3.49x10* | anhydrous 90 Soc. 2015, 137,
913-918.
J. Am. Chem.
Im@Td-PNDI pellet 9.04 x 107 | anhydrous 90 Soc. 2015, 137,
913-918.
J. Mater. Chem.
PA@IpBpy- pellet 198 x 107 | anhydrous 120 A, 2016, 4,
2682-2690.
J. Mater. Chem.
PA@TpBpy- pellet 250 x 107 | anhydrous 120 A, 2016, 4,
2682-2690.
Chem. Mater.
TpPa-SOsH pellet 1.70 x 10 | anhydrous 120 2016, 28,
1489—1494.
Phytic Chem. Mater.
acid@TpPa- pellet 5.00 x 10* | anhydrous 120 2016, 28,
(SO;H-Py) 1489—1494.
Nat. Mater.
e pellet | 437x10° | anhydrous 130 2016, 15,
722-726.
. Nat. Mater.
O pellet 110 x 107 | anhydrous 130 2016, 15,
) 722-726.
Chem.
HL@0.202Him |  pellet 6.57 x 105 | anhydrous 120 S ommun.
2475-2478.
J. Mater. Chem.
PA@EB-COF pellet 5.88 x 102 | anhydrous 130 A, 2020, 8,
13702—13709.
J. Mater. Chem.
Tra@EB-COF pellet 2.31x 102 | anhydrous 130 A, 2020, 8,
13702—-13709.
ACS Appl.
Mater.
Imc(%%YégT' pellet 3.08 x 107 | anhydrous 130 Interfaces,
2020, 12,
22910-22916.
H3PO4@TPB- -1 Nat. Commun.
DMeTP-COF pellet 1.91 x 10 anhydrous 160 2020, 11, 1981.
J. Am. Chem.
COF-F6-H pellet 420 x 1072 anhydrous 140 Soc. 2020, 142,
14357-14364.
ACS Appl.
Mater.
H3PFO64_%@O(S/MP' pellet 439 x 10 | anhydrous 120 Interfaces,
() 2021, 13,
15536—15541.
ACS Appl.
F6- Mater.
[dema]HSO4- pellet 1.33 x 1072 | anhydrous 140 Interfaces,
1.5 2021, 13,
37172-37178.
H3PO4@TPB- Angew. Chem.
DABI-COF (66 pellet 1.52x 107" anhydrous 160 Int. Ed. 2021,
wt%) 60,
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12918-12923.

PIL-TB-COF

pellet

1.52 x 107

anhydrous

120

J. Mater. Chem.
A, 2022, 10,
6499-6507.

CTF-Mx

mambrane

2.08 x 1072

anhydrous

160

ACS Appl.
Mater.
Interfaces,
2021, 13,
13604—13612.

MPOPS-1

membrane

1.49 x 107

anhydrous

71

ACS
Sustainable
Chem. Eng.

2020, 8,
2423-2432.

H@TPT-COF

pellet

1.27 x 1072

anhydrous

Angew. Chem.
Int. Ed. 2022,
€202208086.

CMP-C2-P-H

pellet

1.15x 107

anhydrous

This work

Im@Td-PNDI

pellet

4.58 x 1077

anhydrous

J. Am. Chem.
Soc. 2015, 137,
913-918.

Im@Td-PPI

pellet

223 x10°°

anhydrous

J. Am. Chem.
Soc. 2015, 137,
913-918.

HClc1

pellet

5.00 x 1077

anhydrous

Adv. Mater.
2016, 28,
1663—1667.

FIU-31@Ch

pellet

1.17 x 107°

anhydrous

J. Mater. Chem.
A, 2016, 4,
4062—-4070.

FIU-31@Hq

pellet

3.24x10°°

anhydrous

J. Mater. Chem.
A, 2016, 4,
4062—-4070.

PA@TpBpy-
ST

membrane

1.53x107*

anhydrous

J. Mater. Chem.
A, 2016, 4,
2682—-2690.

PA@TpBpy-
MC

membrane

1.92x 1074

anhydrous

—40

J. Mater. Chem.
A, 2016, 4,
2682—-2690.

CMP-C2-P-H

pellet

9.93 x 1072

98% RH

90

This work

PA@Tp-Stb

pellet

230x107°

98% RH

59

J. Am. Chem.
Soc. 2014, 136,
6570—6573.

PA@Tp-Azo

pellet

9.90 x 107

98% RH

59

J. Am. Chem.
Soc. 2014, 136,
6570—6573.

NUS-9(R)

pellet

1.24 x 1072

97% RH

25

ACS Appl.
Mater.
Interfaces,
2016, 8,
18505—18512.

NUS-10(R)

pellet

3.96 x 1072

97% RH

25

ACS Appl.
Mater.
Interfaces,
2016, 8,
18505—18512.

EB-COF-Br

pellet

2.82x 1073

97% RH

25

J. Am. Chem.
Soc. 2016, 138,
5897-5903.

EB—COF:Ple

pellet

3.32x107

97% RH

20

J. Am. Chem.
Soc. 2016, 138,
5897-5903.

LiCI@RT-
COF-1

membrane

6.45x 107

100% RH

40

J. Am. Chem.
Soc. 2017, 139,
10079—-10086.

PTSA@TpAzo

membrane

7.80 x 1072

95% RH

80

Angew. Chem.
Int. Ed. 2018,
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57,
10894—-10898.
J. Am. Chem.
BIP pellet 3.20 x 1072 95% RH 95 Soc. 2019, 141,
14950—14954.
Chem. Mater.
aza-COF-2H pellet 480 %1073 97% RH 50 2019, 31,
819—825.
Angew. Chem.
HPOSONKC | membrane | 1.13x 107 | 98%RH 80 Int. Ed. 2020,
59, 3678—3684.
H3PO4@NKC ) Nat. Commun.
OF-10 membrane 9.04 x 10 90% RH 80 2021, 12. 1982.
PEEK@Ox- Chem. Eur. J.
DBD-COF- pellet 3.87x 1073 98% RH 90 2021, 27,
SOs;H 3817-3822.
ACS
Sustainable
MPOPS-1 membrane | 3.07 x 1072 98% RH 77 Chem. Eng.
2020, 8,
2423-2432.
. Chem. Asian J.
SA@HSLNI | embrane | 528 %102 | 98%RH 90 2021, 16,
y 1562-1569.
Angew. Chem.
. _ Int. Ed.
Uio-66(SO3H), pellet 8.40 x 1072 90% RH 80 2015?5 45142
5146.
J. Am. Chem.
Im@(NENU-3) pellet 1.82 x 1072 90% RH 70 Soc. 2017, 139,
15604—15607.
J. Mater. Chem.
MROF-1 pellet 1.72 x 1072 97% RH 70 A, 2016, 4,
18742—-18746.
J. Mater. Chem.
HOFs membrane 1.80 x 1072 90% RH 80 A, 2017, 5,
17492-17498.
J. Mater. Chem.
CPOS-1 membrane 1.00 x 1072 98% RH 60 A, 2020, 8,
7474-7494.
Ind. Eng.
PAPOP-DD- ) Chem. Res.
0.5 pellet 7.09 x 10 98% RH 75 2021, 60,
6337-6343.
Langmuir,
SBO-CMP-2 pellet 521 %1072 100% RH 70 2018, 34,
7640—-7646.
Angew. Chem.
) Int. Ed. 2016,
1S pellet 7.72 x 10 90% RH 80 55, 16123—
16126.
J. Mater. Chem.
1ES pellet 1.59 x 107! 90% RH 80 A, 2017, 5,
17492—-17498.
Mater. Chem.
S-POPs pellet 1.00 x 107! 95% RH 80 Front. 2020, 4,
2339-2345.
Chem.
-1 Commun.
SPAF-1 pellet 1.60 x 10 95% RH 80 2017, 53, 7592-
7595.
IL-COF- : Chem. Eng. J.
SO;H@SNE- frfg;l%"r;ﬁg 224x10"" | 100% RH 90 2021, 514,
35 129021.
. Solid State
HPVI@COR/S | composite | 5 g9x 10| 100% RH 75 Tonics, 2020,
349, 115316.
COF-1-Li@M | composite [ 1.30 x 107" 98% RH 40 ACS Appl.
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membrane

Mater.
Interfaces,
2020, 12,
8198—8205.
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Figure S37. 'H, '3C and *'P NMR Liquid-State NMR spectrum of S3.
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Figure S38. 'H, 13C and *'P NMR Liquid-State NMR spectrum of S6.
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Figure S39. 'H, '3C and *'P NMR Liquid-State NMR spectrum of S9.
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Figure S40. 'H and 3'P NMR Liquid-State NMR spectrum of S12.
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