Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Evidences of thermal ionization induced luminescence quenching in CePO $_4$ and GdPO $_4$ † (Supplementary information)

Suchinder K. Sharma,*a

^a Amity School of Physical Sciences, Amity University Punjab, Sector-82A, Mohali, 140308, India

*E.Mail:suchindersharma@gmail.com

Fig. S1 VRBE diagram of electronic structure of lanthanide ions in the divalent, and trivalent state of LaPO₄ host. The connected black line indicates the ground state (4f) for all lanthanides in their +3 state (connecting filled star symbol), whereas the connected dark black circles (connecting filled circles), represents the ground state for all lanthanides in their +2 state. The connected light gray line (connecting empty stars) and light gray lines (connecting empty circles) represent the lowest 5d states for all lanthanides in their +3 and +2 state, respectively. The top of the valence band (E_V), the electron binding energy in the exciton state (E_x), and the bottom of the CB (E_C), as well as the high-spin (HS) and low-spin (LS) states, are also indicated. The HS and LS states represent spin-forbidden and spin-allowed transitions, respectively.

Fig. S2 VRBE diagram of electronic structure of lanthanide ions in the divalent, and trivalent state of $GdPO_4$ host. The connected black line indicates the ground state (4f) for all lanthanides in their +3 state (connecting filled star symbol), whereas the connected dark black circles (connecting filled circles), represents the ground state for all lanthanides in their +2 state. The connected light gray line (connecting empty stars) and light gray lines (connecting empty circles) represent the lowest 5d states for all lanthanides in their +3 and +2 state, respectively. The top of the valence band (E_V) , the electron binding energy in the exciton state (E_x) , and the bottom of the CB (E_C) , as well as the high-spin (HS) and low-spin (LS) states, are also indicated. The HS and LS states represent spin-forbidden and spin-allowed transitions, respectively.

Table S1 The comparison of structural parameters for the two samples.

Parameters	Sample	
rarameters	CePO ₄	GdPO ₄
a (Å)	6.777(3)	6.621(2)
b	6.993(3)	6.823(2)
c	6.445(3)	6.310(2)
$\beta(Degree)$	103.54(4)	104.16(2)
$V(Å^3)$	296.97 (3)	276.4(4)
Space group	$P2_1/n$	$P2_1/n$
Crystal structure	Monoclinic	Monoclinic
Density (Mg m ⁻³)	5.26	6.061