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Figure S1. The designed core/shell/shell nanostructure to enhance the TSTF UCL.
A novel strategy of designed core/shell/shell nanostructure was first proposed to 

enhance the TSTF UCL intensity and contrast, as shown in Figure S1. Commonly, RE-
doped UCNPs often suffer from low UC efficiency mainly caused by surface defects1-

3 and concentration quenching4,5. In order to get a stronger UCL, a core/shell/shell 
nanostructure was employed to reduce surface defects of UCNPs. In addition, doping 

Electronic Supplementary Material (ESI) for Materials Advances.
This journal is © The Royal Society of Chemistry 2022



2

Er3+ ions separately in core and outer shell could not only decrease the concentration 
quenching of Ln3+ ions but also increase the absorption of 1550 nm. Yb3+ doped in inner 
shell could offer a new approach to improve 1550 nm absorption and UC emission.

Figure S2. UC emission spectra of NaYF4:Er@NaGdF4:Yb@NaYF4:Er (Y:Er@Gd:Yb@Y:Er) and 
NaYF4:Er@NaYF4:Yb@NaYF4:Er (Y:Er@Y:Yb@Y:Er) UCNPs under (a) 850 & 1550 nm, (b) 
1550 nm excitation.

Figure S3. SEM images of (a) NaYF4:0.5%Er, (b) NaYF4:0.5%Er@NaGdF4:2%Yb and (c) 
NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er UCNPs.
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The shape of the NaYF4:0.5%Er, NaYF4:0.5%Er@NaGdF4:2%Yb and 
NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er UCNPs could also be characterized 
by SEM (Figure S3). The morphology of above UCNPs changed gradually from quasi-
sphere to rod-like with Yb3+-doped NaGdF4 and Er3+-doped NaYF4 layers covered 
respectively. The changed shape of as-prepared UCNPs demonstrates the successful 
synthesis of the core/shell/shell nanostructure. The similar results can also be gotten 
from Figure 4 and Figure 5.

Figure S4. (a), (b) and (c) The energy dispersive spectrometer (EDS) data of 
NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er core/shell/shell UCNPs. (d) EELS line scan 
conducted with STEM imaging on a NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er 
core/shell/shell nanoparticle.
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Figure S5. UC emission spectra of NaYF4:x%Er (x = 0.5, 1, 1.5) UCNPs under (a) 850 & 1550 nm, 
(b) 1550 nm excitation. (c) The UCL integral intensity and contrast of the above as-prepared 
UCNPs. (d) UC emission spectra of (d) NaYF4:0.5%Er@NaGdF4:y%Yb (y = 0, 1, 2, 3) and (e) 
NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:z%Er (z = 0, 0.5, 1, 1.5) UCNPs under 850 & 1550 nm 
excitation.

In Figure S5, the UC emission spectra excited by 850 & 1550 nm or 1550 nm were 
measured for obtaining the UCL intensities and contrast of TSTF UCNPs. For 
NaYF4:x%Er (x = 0.5, 1, 1.5) UCNPs (Figure S5a, b and c), when Er3+ ions doping 
concentrations raised from 0.5 to 1.5 mmol%, the TSTF UCL intensities gradually 
increased, however, the contrast decreased from 4.8 to 2.1. For a better application in 
3-D display, the UCNPs with high contrast is more important than its UCL intensity. 
So, NaYF4:0.5%Er UCNPs were selected as core. Then, a series of NaGdF4:y%Yb (y 
= 0, 1, 2, 3) layers were covered on core UCNPs, As Figure S5d shown, when 2 mmol% 
Yb3+ doped in the inner shell, the NaYF4:0.5%Er@NaGdF4:2%Yb UCNPs exhibited a 
highest UCL intensity and contrast. Finally, by optimizing Er3+ ions doping 
concentrations in outer shell, the NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er 
UCNPs with highest UCL intensity and contrast were obtained (Figure S5e).

Figure S6. UC emission spectra of NaYF4:x%Yb, 1%Er (x = 0, 0.5, 1, 2) UCNPs under (a) 850 & 
1550 nm, (b) 1550 nm excitation. (c) The UCL integral intensities and contrast of the above as-
prepared UCNPs. UC emission spectra of NaYF4:Er@NaGdF4:Yb@NaYF4:Er (Y:Er@Gd:Yb@ 
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Y:Er), NaYF4:Er@NaGdF4:Yb@NaYF4 (Y:Er@Gd:Yb@Y) and NaYF4:Er@NaGdF4:Yb (Y:Er@ 
Gd:Yb) UCNPs under (d) 850 & 1550 nm, (e) 1550 nm excitation.

Figure S7. UC emission spectra of NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er UCNPs 
excited by (a) 850 & 1550 nm, (b) 1550 nm under different pump powers of 1550 nm. (c) The UCL 
integral intensity of as-prepared UCNPs under different pump powers of 1550 nm. The 850 nm laser 
power is kept at 0.2 W.

Under 850 nm excitation, no single-frequency UCL was observed in as-prepared 
UCNPs. Fixing the 850 nm excitation power at 0.2 W, the 1550 nm laser excitation 
power is gradually increased from 0.2 W to 2.23 W. The excitation power of the laser 
at 1550 nm increased was measured, as shown in Figure S7a, b. It could be seen that 
the UCL integral intensities of NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er 
UCNPs under 850 & 1550 nm excitation was enhanced with increasing pump power 
(0.2 ~ 1 W) (Figure S7c).

Figure S8. Time–decay curves of 542 nm UC emission for the NaYF4:0.5%Er (C), 
NaYF4:0.5%Er@NaGdF4:2%Yb (C@S) and NaYF4:0.5%Er@NaGdF4:2%Yb@NaYF4:1%Er 
(C@S@S) nanoparticles.
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Figure S9. The absorption spectrum of C (black) and C@S (red) UCNPs around 1550 nm.
With the Yb3+-doped NaGdF4 shell covered, the absorption intensity of C@S 

UCNPs increased, which means that the doped-Yb3+ ions improved the absorption of 
1550 nm excitation. 

Figure S10. 3-D cube images of (a) Er@Er@Yb and (b) Er@Yb@Er UCNPs excited at 850 & 1550 
nm.

Under the same experimental conditions, a clear green 3-D cube could be easily 
observed in Er@Yb@Er UCNPs (Figure S10b), while Er@Er@Yb UCNPs with low 
contrast is vague (Figure S10a), which shows that the high-contrast TSTF UCNPs plays 
a significant role in improving the display effect of 3-D display.
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