Supplementary Information (ESI)

Antioxidant mechanisms and products of four 4',5,7-

trihydroxyflavonoids with different structural types

Ban Chen, ^{a,b} Jiangtao Su^{a,b}, Yuchen Hu^{a,b}, Shuqin Liu^c, Xiaojian Ouyang^d, Rongxin Cai^e and Xican Li^{*c}

- a. Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430000, China
- b. Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430000, China
- c. School of Chinese Herbal Medicine; Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- d. IncreasePharm Hengqin Inst. Co., Ltd., Zhuhai, 519000, China
- e. Guangdong Food Industry Institute Co., Ltd., Guangzhou, 510000, China.
- * Corresponding Author: lixican@126.com; lixc@gzucm.edu.cn

Kaempferol-3-O⁻anion Naringenin-4'-O⁻anion Fig. S1 The electrostatic potential of the four flavonoid anions.

flavonoids					
Molecule	Site of the	Charge of the	Charge of the	Charge of the	bond moment
	hydroxyl	O atom	H atom	hydroxyl	of the O-H
AP	C_5	-0.414	0.280	-0.134	0.83087
	C_7	-0.408	0.317	-0.091	0.66642
	$C_{4'}$	-0.413	0.315	-0.098	0.66393
GE	C_5	-0.410	0.282	-0.128	0.82867
	C_7	-0.407	0.318	-0.089	0.66790
	$C_{4'}$	-0.429	0.310	-0.119	0.65531
KA	C_3	-0.413	0.293	-0.120	0.72244
	C_5	-0.408	0.284	-0.124	0.79888
	C_7	-0.407	0.318	-0.089	0.66698
	$C_{4'}$	-0.417	0.313	-0.104	0.66174
NA	C_5	-0.405	0.282	-0.123	0.81699
	C_7	-0.403	0.318	-0.085	0.66712
	$C_{4'}$	-0.429	0.310	-0.119	0.65572

Table S1 The atomic charges and bond dipole moments (Debye) of hydroxyls of the four

Fig. S2 The intrinsic reaction coordinates of apigenin to scavenging 'OH (R: reactants; Int: intermediates; TS: transition state; P: products).

Fig. S3 The intrinsic reaction coordinates of genistein to scavenging 'OH (R: reactants; Int: intermediates; TS: transition state; P: products).

Fig. S4 The intrinsic reaction coordinates of kaempferol to scavenging 'OH (R: reactants; Int: intermediates; TS: transition state; P: products).

Fig. S5 The intrinsic reaction coordinates of naringenin to scavenging 'OH (R: reactants; Int: intermediates; TS: transition state; P: products).

Fig. S6 The dose-response curves of the four flavonoids in DPPH-scavenging (A), ABTS⁺⁻ scavenging (B), and O_2 -scavenging (C) assays.