Synthesis and properties of Kojic acid dimer and its potential

for the treatment of Alzheimer's disease

Xueyan Liu,^{‡a,b} Chuanyu Yu^{‡a}, Biling Su^{‡a} and Daijun Zha^{*a,b}

^aDepartment of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou

350004, Fujian Province, China. E-mail: zhadj@fjmu.edu.cn

^bFujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian

Medical University, China

‡ These authors contributed equal to this work

No.	Content	Page
1	Figure S1. ¹ H NMR spectrum of 2a	3
2	Figure S2. ¹³ C NMR spectrum of 2a	3
3	Figure S3. HPLC of compound 2a	4
4	Figure S4. ¹ H NMR spectrum of 2a	5
5	Figure S5. ¹ H NMR spectrum of 2b	5
6	Figure S6. ¹³ C NMR spectrum of 2b	6
7	Figure S7. HPLC of compound 2b	6
8	Figure S8. ¹ H NMR spectrum of 2b	7
9	Figure S9. ¹ H NMR spectrum of 2c	7
10	Figure S10. ¹³ C NMR spectrum of 2c	8
11	Figure S11. HPLC of compound 2c	8
12	Figure S12. ¹ H NMR spectrum of 2c	9
13	Figure S13. ¹ H NMR spectrum of KAD	9
14	Figure S14. ¹³ C NMR spectrum of KAD	10
15	Figure S15. HPLC of compound KAD	10
16	Figure S16. HRMS of compound KAD	10
17	Figure S17. Docking study of KA with $A\beta_{1-42}$	11
18	Figure S18. 2D schematic diagram and predicted docking scoring of KAD and KA with $A\beta_{1,42}$.	11
19	Figure S19. KAD inhibits H ₂ O ₂ -indued injury in H9c2 cells	12
20	Figure S20. Inhibitory effect of KAD on intracellular12ROS accumulation in H9c2 cells exposed to H2O212	
21	Figure S21. KAD alleviated intracellular ROS accumulation and increased the SOD activity induced by H_2O_2 in H9c2 cells.	13
22	Table S1. Summary of crystallographic data	14

Figure S2. ¹³C-NMR spectrum of 2a (solvent DMSO-*d*₆, 100 MHz)

Figure S3. HPLC of compound 2a $(t_R = 1.481 \text{ min}, 98.8\% \text{ purity})$

Figure S4. HRMS of compound 2a

 $\begin{array}{c} 7.41\\ 7.40\\ 7.39\\ 7.39\\ 7.37\\ 7.36\\ 7.38\\ 7.33\\$ 5.25 2.08 1.00 1.02 2.04 7.0 5.0 f1 (ppm)

3.0

2.0

1.0

0.0

4.0

-1.0

-2.0

6.0

8.0

12.0

11.0

10.0

9.0

Figure S6. ¹³C-NMR spectrum of 2b (solvent DMSO-*d*₆, 100 MHz)

Figure S7. HPLC of compound **2b** ($t_R = 7.640 \text{ min}, 99.9\% \text{ purity}$)

Figure S8. HRMS of compound 2b

Figure S10. ¹³C-NMR spectrum of 2c (solvent DMSO-*d*₆, 100 MHz)

Figure S11. HPLC of compound 2c ($t_R = 3.017 \text{ min}, 99.0\% \text{ purity}$)

Figure S12. HRMS of compound 2c

Figure S14. ¹³C-NMR spectrum of KAD (solvent DMSO-*d*₆, 100 MHz)

Figure S15. HPLC of compound **KAD** ($t_R = 0.796 \text{ min}, 97.8\% \text{ purity}$)

Figure S16. HRMS of compound KAD

Figure S17. Docking study of KA with $A\beta_{1-42}$ (PDB:1IYT). (A) Full view of KA (colored yellow) binding to $A\beta_{1-42}$. (B) The possible hydrogen bonds between KA and residues Ala 21 and Lys 28 are indicated by yellow dotted lines.

Figure S18. 2D schematic diagram and predicted docking scoring of KAD and KA with $A\beta_{1-42}$. (A) 2D schematic diagram of KAD and $A\beta_{1-42}$ docking models; (B) 2D schematic diagram of KA and $A\beta_{1-42}$ docking models; (C) Docking Score of KAD and KA with $A\beta_{1-42}$.

Figure S19. KAD inhibits H₂O₂-indued injury in H9c2 cells. (A) H₂O₂ reduced H9c2 cell viability in a concentration-dependent manner (2 h); (B) Effect of KAD on the viability of H9c2 cells treated by H₂O₂. Cell viability was determined by MTT assay. The values are presented as mean \pm SEM (n = 3). ###P < 0.001 vs. the control group; P* < 0.05 vs. the H₂O₂-treated group.

Figure S20. Inhibitory effect of KAD on intracellular ROS accumulation in H9c2 cells exposed to H_2O_2 (10×). Images of cells stained with 2',7'-dichlorofluorescein (DCF) showing the ROS contents in H9c2 cells: (A) Control; (B) H_2O_2 ; (C) 500 μ M KAD; (D) 500 μ M KAD + H_2O_2 ; (E) 250 μ M KAD + H_2O_2 ; and (F) 125 μ M KAD + H_2O_2 .

Figure S21. KAD alleviated intracellular ROS accumulation and increased the SOD activity induced by H_2O_2 in H9c2 cells. (A) Flow cytometry images for each group: (a) Control; (b) H_2O_2 ; (c) 500 μ M KAD; (d) 500 μ M KAD + H_2O_2 ; (e) 250 μ M KAD + H_2O_2 ; and (f) 125 μ M KAD + H_2O_2 ; (B) ROS quantification by DCFH-DA using flow cytometry (20000 cells); (C) Effect of KAD on SOD activity. All data are presented as mean \pm SEM of three independent experiments. #P < 0.05 and ###P < 0.001 vs. the control group; P* < 0.05 and **P < 0.01 vs. the H₂O₂-treated group.

Crystallographic data was collected on a Mercury single crystal diffractometer at room temperature. The structures were solved with direct methods by using OlexSys or SHELXS-97 and refined with the full-matrix least-squares technique based on F2 by using the OlexSys or SHELXL-97

Formula	$C_{12}H_{10}O_8$	β/°	99.527(8)
Formula weight	282.21	γ / °	90.000
T/K	293(2)	V/ Å ³	557.23(9)
Crystallization solvent	methanol	Ζ	2
Color	white	D_{x} / g cm ⁻³	1.682
Crystal system	monoclinic	μ / mm ⁻¹	0.803
Space group	$P2_{1}/n$	F(000)	292
<i>a</i> / Å	3.8200(4)	heta range / °	4.395 to 60.445
b / Å	17.5109(17)	GOF on F ²	1.055
<i>c</i> / Å	8.4469(7)	$R_1 \left[I > 2\sigma(I) \right]$	0.0371
α/°	90.000	wR_2 (all data)	0.1030

Table S1. Summary of crystallographic data for KAD