RSC Medicinal Chemistry Supplementary Data

Identification of a new class of proteasome inhibitors based on a naphthyl-azotricyclic-ureaphenyl scaffold

Duncan Allardyce, Priscilla Adu Mantey, Monika Szalecka, Robert Nkwo, Eriketi Z. Loizidou^{*}

Middlesex University, Faculty of Science and Technology, Department of Natural Sciences, The Burroughs, London, NW4 4BT, United Kingdom

*Author to whom correspondence should be addressed:

Dr Eriketi Z. Loizidou, Middlesex University, Department of Natural Sciences, The Burroughs, NW4 4BT, London, UK; <u>e.loizidou@mdx.ac.uk</u>

Table S1. Molecular docking results from top 20 scoring ligands from initial screening with Autodock Vina and further analysis with Autodock 4.2 against the β 5c active site of the proteasome. Argyrin B, a reversible inhibitor of the proteasome was used as control.

ZINC ID	Autodock Vina Binding energy (Kcal/mol)	Autodock 4.2 Binding energy (Kcal/mol)				
		1 st	2 nd	3 rd	- ,	
		run	run	run	Mean	
ZINC4270569	-11.3	-8.23	-8.22	-7.99	-8.15	
ZINC5411973	-10.8	-8.44	-7.81	-7.36	-7.87	
ZINC4098367	-10.7	-6.95	-7.41	-7.66	-7.34	
ZINC4259483	-10.6	-9.39	-9.45	-9.09	-9.31	
ZINC4201115	-10.4	-9.91	-9.95	-11.02	-10.29	
ZINC4258888	-10.4	-11.30	-11.27	-11.30	-11.29	
ZINC4259440	-10.3	-8.20	-8.18	-8.43	-8.27	
ZINC4259794	-10.3	-10.20	-10.13	-9.5	-9.94	
ZINC5433649	-10.3	-10.07	-10.09	-10.31	-10.16	
ZINC4235436	-10.2	-8.92	-8.4	-9.11	-8.81	
ZINC5413755	-10.2	-9.72	-9.32	-10.15	-9.73	
ZINC4235418	-10.1	-6.98	-9.01	-9.24	-8.41	
ZINC4259443	-10.1	-10.02	-10.11	-10.30	-10.14	
ZINC4259861	-10.1	-9.89	-10.73	-9.81	-10.14	
ZINC5396040	-10.1	-7.61	-6.8	-6.38	-6.93	
ZINC5399419	-10.1	-9.16	-8.91	-9.29	-9.12	
ZINC5398884	-10	-6.63	-7.09	-6.30	-6.67	
ZINC5399237	-10	-8.33	-8.92	-10.89	-9.38	
ZINC5413761	-10	-10.36	-10.43	-10.62	-10.47	
ZINC5434032	-10	-8.57	-7.57	-7.55	-7.90	
ARGYRIN B	-9.4	-8.09	-8.10	-8.09	-8.10	

Table S2. Summary of estimated binding energies and inhibition constants at the active sites of the constitutive proteasome (β 1c, β 2c and β 5c) and immunoproteasome (β 1i, β 2i and β 5i) as determined from molecular modeling.

Compound	Estimated average binding energy (Kcal/mol)							
	β1c	β1i	β2c	β2i	β5 c	β5i		
C1	-12.08	-12.11	-13.89	-11.08	-11.43	-11.34		
C2	-11.24	-10.53	-11.70	-11.02	-11.13	-10.98		
C3	-11.13	-10.87	-11.95	-11.17	-11.18	-10.62		
C4	-11.16	-11.17	-10.94	-11.05	-10.81	-10.94		
C5	-9.68	-9.43	-10.10	-9.55	-10.09	-9.42		
C6	-11.65	-10.30	-11.20	-10.10	-8.82	-10.26		
C7	-9.60	-9.99	-9.64	-9.09	-10.11	-10.05		
C8	-9.94	-9.73	-10.86	-9.92	-8.60	-9.27		
C9	-10.16	-11.0	-10.91	-11.08	-9.38	-9.92		
	Estimated average inhibition constant (nM)							
	β1c	β1i	β2c	β2i	β5 c	β5i		
C1	1.40	1.33	0.07	7.60	4.21	4.89		
C2	5.79	11.43	2.66	8.35	6.93	8.90		
C3	6.92	10.81	1.77	6.45	6.34	16.55		
C4	6.65	6.48	9.65	7.90	11.86	9.64		
C5	80.37	122.2	68.52	99.22	40.18	187.07		
C6	2.90	28.32	6.21	39.22	343.73	333.63		
C7	92.01	47.76	106.97	216.91	38.52	125.83		
C8	51.33	73.68	10.95	56.13	494.94	2830		
C9	35.78	8.65	10.05	7.66	220.37	169.09		

Figure S1. Michaelis Menten kinetics SNLR plot of Suc-LLVY-AMC liberation (SEM error bars) at β 5c. Enzyme concentration was constant at 1 nM and a range of substrate concentrations were used. Km was determined using Michaelis-Menten least squares fit according to model Y = Vmax*X/(Km + X), which showed Km = 78.4 μ M, 95% CI 72.3-85.0 μ M, (n=3).

Figure S2. IC₅₀ plots at β 5c site. Logarithmic concentration of C1-4 against percentage control, initial rate velocity. Tested at 1nM proteasome enzyme concentration, [S] = K_m (K_m values: β 5c = 78.4 µM) and compound concentration within 0.01-200 µM (using 1:1 serial dilution).

Figure S3. Kinetic enzyme inhibition studies o C1-4 at β 5c site. Ki estimation from competitive fit SNLR analysis at β 5c: C1 = 3.42 μ M, C2 = 1.15 μ M, C3 = 9.69 μ M, C4 =

Figure S4. Michaelis Menten kinetics SNLR plot of Suc-LLVY-AMC liberation (SEM error bars) at β 5i. Enzyme concentration was constant at 3 nM and a range of substrate concentrations were used. Km was determined using Michaelis-Menten least squares fit according to model Y = Vmax*X/(Km + X), which showed Km = 135 μ M, 95% CI 117.5-155.8 μ M, n=3.

Figure S5. IC₅₀ plots at β 5i site. Logarithmic concentration of C1-4 against percentage control, initial rate velocity. Tested at 3nM immunoproteasome enzyme concentration, [S] = K_m (K_m values: β 5i = 135.0 µM) and compound concentration within 0.4-200 µM (using 1:1 serial dilution).

Figure S6. Autodock image of best docked conformation of C2 within β 5c showing all interactions. Hydrogen bonding interactions are shown as spheres as well as dotted green lines and pi-pi stacking interactions as yellow cylinders.

Figure S7. Autodock image of best docked conformation of C2 within β 5i showing all interactions. Hydrogen bonding interactions are shown as spheres as well as dotted green lines and pi-pi stacking interactions as yellow cylinders.

Figure S8. Overlay of C1 (magenta), C2 (green), C3 (yellow), C4 (red) best docked conformations within the β 5c active site.

Figure S9. Overlay of A) C1 (grey), 5 (green), 6 (yellow), 9 (magenta), B) C3 (grey) and C7 (yellow) and C) C4 (grey) and C8 (lime green) within β 5c.

Figure S10. Overlay of best docked conformations of C1-9 at the A) β 2c and B) β 2i active sites. S1 pocket amino acids G45, C31, H35, D53 (β 2), E53 (β 2i), C129 are shown as green stick representations. C1-9 are shown as line representations C1 (red), C2 (green), C3 (blue), C4 (yellow), C5 (magenta), C6 (cyan), C7 (orange), C8 (wheat), C9 (grey).

Figure S11. Overlay of best docked conformations of C1-9 at the A) β 1c and B) β 1i active sites. S1 pocket amino acids T20, T31, T35, R45, A49, Q53, D120 (β 1), V20, F31, L45, A52 (β 1i) are shown as stick representations. C1-9 are shown as line representations C1 (red), C2 (green), C3 (blue), C4 (yellow), C5 (magenta), C6 (cyan), C7 (orange), C8 (wheat), C9 (grey).