Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2023

Inhibition and Eradication of *Pseudomonas aeruginosa* biofilms by secondary metabolites of *Nocardiopsis lucentensis* EMB25

Nikky Goel^a, Moumita Ghosh^b, Deepti Jain^b, Rajeshwari Sinha^a, Sunil Kumar Khare^a*

- ^{a.} Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
- ^{b.} Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India

*Correspondence: skkhare@chemistry.iitd.ac.in, Tel. +91-112659 6533,

+91-112659 6568https://orcid.org/0000-0002-7339-3058;

Fig. S1: Phylogenetic tree based on 16S rRNA sequencing of selected strain EMB25 constructed using the neighbor-joining method performed in MEGA 7.0 software. The number of bootstrap replications was set to 1000. The strain used in this study is highlighted in box.

Fig. S2: Effect of cell-free extract of various actinobacteria isolated in the lab at concentration 0.75 %, 0.5 %, 0.25 %, and 0.125 % (v/v) on 48 h biofilm of *P. aeruginosa*. As inferred using heat map, EMB25 displayed maximum biofilm eradication and was used in further study.

Fig. S3: a) The effect of cell-free extract of EMB25 was checked on preformed biofilm of various clinical strains namely, *P. aeruginosa, K. pneumoniae*, and *E. coli* A) 24 h preformed biofilm B) 48 h preformed biofilm C) 72 h preformed biofilm, with replenishment of media at every 24 h. The EMB25 extract has removed biofilm at every stage of the clinical strains used in the study. The crystal assay was used to quantify the biofilm performed on polystyrene flat-bottom 96 well plate.

S. No.	Comp No.	Retention Time	Area%	Name of the compounds identified	
1	C 1	4.928	0.92	Acetic acid, phenylmethyl ester	
2	C 2	5.313	0.18	1-dodecene	
3	C 3	5.470	4.65	Dodecane	
4	C 4	8.353	0.21	Tridecane, 5-methyl-	
5	C 5	6.188	0.97	4,5-Heptadien-2-one, 3,3,6-trimethyl-	
6	C 6	8.713	0.20	2-Bromo dodecane	
7	C 7	9.163	0.90	3-hexadecene, (z)-	
8	C 8	9.372	10.1	Tetradecane	
9	С 9	10.292	0.30	2,4-heptadienal, 2,4-dimethyl-	
10	C 10	9.518	0.30	Benzene, 1,1'-oxybis-	
11	C 11	11.314	0.19	Pentadecane	
12	C 12	10.870	0.06	Cyclododecane	
13	C 13	12.314	0.77	Tetradecane, 5-methyl-	
14	C 14	12.692	0.20	Pentadecane, 3-methyl-	
15	C 15	11.605	0.28	Phenol, 3,5-bis(1,1-dimethylethyl)-	
16	C 16	12.970	0.42	(2-Methyl-1-cyclohexenyl) methanol, TMS derivative	
17	C 17	13.132	1.36	3-octadecene, (e)-	
18	C 18	13.336	10.5	Hexadecane	
19	C 19	13.391	0.72	5-octadecene, (e)-	
20	C 20	14.001	0.21	1,2,4-Trioxolane, 3,3,5-triphenyl-	
21	C 21	14.231	0.10	3-acetoxydodecane	
22	C 22	15.017	0.07	2-propenoic acid, isodecyl ester	
23	C 23	15.134	0.07	Tricosane	
24	C 24	15.924	0.38	Heptadecane, 7-methyl-	
25	C 25	16.419	0.56	Heptadecane, 3-methyl-	
26	C 26	16.530	1.52	3-Methyl-1-phenyl-5-[(trimethylsilyl)oxy]-1H-pyrazole	
27	C 27	16.823	0.77	1-heptadecene	
28	C 28	16.989	13.3	Heneicosane	
29	C 29	17.132	0.77	Undecane, 4-cyclohexyl-	
30	C 30	16.112	0.13	Benzene, 1,1'-(1,2-cyclobutanediyl) bis-, trans-	
31	C 31	18.553	0.36	Phenoxyethanol, TMS derivative	
32	C 32	19.464	0.79	Octadecane, 2-methyl-	
33	C 33	19.734	13.42	1,2-benzenedicarboxylic acid, dibutyl este	
34	C 34	20.199	0.60	1-heptadecene	
35	C 35	20.328	4.44	Eicosane	
36	C 36	20.570	2.58	2,6-Dimethyl-1-nonen-3-yn-5-ol, TMS derivative	
37	C 37	21.071	8.45	Palmitic Acid, TMS derivative	
38	C 38	22.592	0.38	Eicosane, 2,4-dimethyl-	

Table S1: Metabolites obtained from GC-MS

39	C 46	23.262	0.54	Pentadecanoic acid	
40	C 47	23.653	0.81	Decane, 4-cyclohexyl-	
41	C 48	23.962	0.55	Octadecanoic acid, trimethylsilyl ester	
42	C 49	24.649	0.36	1-Octanamine, N,N-dioctyl-	
43	C 50	26.509	0.53	Dodecane, 2-cyclohexyl-	
44	C 54	28.413	0.94	Hexadecanoic acid, 4-[(trimethylsilyl) oxy] butyl ester	
45	C 55	28.773	0.81	1-Monopalmitin, 2TMS derivative	
46	C 56	29.524	0.46	Tridecane, 4-cyclohexyl-	
47	C 58	26.774	0.53	Benzonitrile, m-phenethyl-	
48	C 59	27.145	0.20	Octadecanoic acid, 3-oxo-, ethyl ester	
49	C 60	30.764	0.48	Hexatriacontane	
50	C 61	28.249	2.20	(2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, trans-	
51	C 62	31.826	0.51	Dodecane, 4-cyclohexyl-	
52	C 63	32.352	0.30	Ricinolsaeure	
53	C 64	32.658	0.72	Ricinoleic acid, 2TMS derivative	

S.	Metabolites	Residues within 4 Å of the docked compounds		
No.				
Dockin	ig in LasR			
C 30	Benzene, 1,1'-(1,2-	Leu36, Leu38, Leu39, Leu40, Tyr47, Ala50, Ile52, Tyr56, Arg61, Tyr64,		
	cyclobutanediyl)bis-, trans-	Asp65, Ala70, Asp73, Thr75, Val76, Cys79, Thr115, Gly126, Ala127,		
		Leu128, Ser129		
C 15	Phenol, 3,5-bis(1,1-dimethylethyl)-	Leu36, Leu38, Leu40, Tyr47, Ala50, Ile52, Tyr56, Trp60, Arg61, Tyr64,		
		Ala70, Asp73, Thr75, Val76, Cys79, Thr115, Gly126, Ala127, Leu128,		
		Ser129		
C 12	Cyclododecane	Leu36, Phe37, Leu38, Leu39, Leu40, Tyr47, Ala50, Ile52, Tyr56, Arg61,		
		Tyr64, Ala70, Asp73, Thr75, Val76, Cys79, Thr115, Gly126, Ala127, Ser129		
C 58	Benzonitrile, m-phenethyl	Leu36, Phe37, Leu38, Leu39, Tyr47, Ala50, Ile52, Tyr56, Trp60, Arg61,		
		Tyr64, Ala70, Asp73, Val76, Ala127, Ser129		
C 5	4,5-Heptadien-2-one, 3,3,6-trimethyl	Leu36, Leu38, Ile52, Tyr56, Trp60, Arg61, Tyr64, Asp73, Thr75, Val76,		
		Trp88, Phe101, Ala105, Leu110, Thr115, Ala127, Ser129		
C 61	2,3-Diphenylcyclopropyl)methyl	Leu36, Phe37, Leu38, Leu39, Leu40, Tyr47, Glu48, Ala50, Ile52, Tyr56,		
	phenyl sulfoxide, trans-	Trp60, Arg61, Tyr64, Asp65, Ala70, Asp73, Thr75, Val76, Cys79, Phe101,		
		Thr115, Gly126, Ala127, Ser129		
Dockin	ig in RhIR			
C 58	Benzonitrile, m-phenethyl	Ala44, Thr58, Val60, Tyr64, Trp68, Leu69, Tyr72, Asp81, Ala83, Ile84,		
		Trp96, Phe101, Leu107, Trp108, Ala111, Leu116, Thr121, Ser135		
C 15	Phenol, 3,5-bis(1,1-dimethylethyl)-	Ala44, Tyr45, Gly46, Val60, His61, Tyr64, Trp68, Leu69, Tyr72, Glu73,		
_		1yr/7, Asp81, Ala83, Ile84, Trp96, Thr121, Val133, Ser135		
C 5	4,5-Heptadien-2-one, 3,3,6-trimethyl	Tyr64, Trp68, Tyr72, Asp81, Ala83, Ile84, Trp96, Leu107, Trp108, Glu108,		
		Glu110, Ala111, Arg112, Irp114, Leu116, Ihr121, Ser135, Ala137		
C 30	Benzene, 1,1'-(1,2-	Ala44, Tyr45, Gly46, Arg48, Thr58, Val60, His61, Tyr64, Trp68, Leu69,		
	cyclobutanediyl)bis-, trans-	Tyr72, Gly78, Asp81, Ala83, Ile84, Trp96, Phe101, Leu107, Ala111,		
		Leu116, Thr121, Leu131, Val133, Leu134, Ser135		
C 12	Cyclododecane	Tyr64, Trp68, Tyr72, Asp81, Ala83, Trp96, Phe101, Leu107, Trp108,		
		Glu110, Ala111, Arg112, Trp114, Leu116, Thr121, Ser135, Ala137		
C 10	BENZENE, 1,1'-OXYBIS-	Ala44, Val60, Tyr64, Trp68, Tyr72, Asp81, Ile84, Trp96, Phe101, Leu107,		
		Trp108, Ala111, Arg112, Leu116, Thr121, Ser135		

Table S2: Residues within 4 Å of the docked compounds

Table S3: ADME properties of compounds showing docking score better than -6

S.	Metabolites	Molecular	QPlogPw	QPlogS	QPlogBB	QPPCaco	QPlogHERG	QPloKhsa	Lipinski
No.		Weight	(a)	(b)	(c)	(d)	(e)	(f)	Rule of five
									(g)
C 5	4,5-	152.236	2.152	-2.444	0.003	4255.95	-3.218	-0.097	0
	Heptadien-								
	2-one, 3,3,6-								
	trimethyl								
C 10	BENZENE,	170.21	4.184	-3.965	-0.037	9906.04	-4.755	0.225	0
	1,1'-OXYBIS-								
C 12	Cyclododeca	168.322	5.947	-6.154	1.023	9906.04	-2.589	0.704	1
	ne								
C 15	Phenol, 3,5-	206.327	3.708	-3.979	-0.068	3011.19	-3.386	0.584	0
	bis(1,1-								
	dimethyleth								
	yl)-								
C 30	Benzene,	208.302	5.619	-6.063	0.427	9906.04	-5.168	0.918	1
	1,1'-(1,2-								
	cyclobutane								
	diyl)bis-,								
	trans-								
C 58	Benzonitrile,	207.274	3.513	-4.353	-0.337	2055.58	-5.607	0.374	0
	m-phenethyl								
C 61	2,3-	332.459	5.154	-4.096	0.3	284.39	-6.641	0.625	1
	Diphenylcycl								
	0								
	propyl)meth								
	ylphenyl								
	sulfoxide,								
	trans								

a. Predicted water/gas partition coefficient (acceptable range is -2.0-6.5).

- b. Predicted aqueous solubility, S in mol/L (acceptable range is-6.5-0.5).
- c. Predicted brain/blood partition coefficient, default is -3.0 to +1.2.
- d. Predicted Caco-2 cell permeability in nm/s (>500, great).
- e. Predicted IC50 value for blockage of HERG K+ channels (> -5).
- f. Predicted value of binding to human serum albumin (range is -1.5 to 1.5
- g. Lipinski = $MM \le 500$; Log Po/w ≤ 5 ; H-bond donors ≤ 5 ; H-bond acceptors ≤ 10

Table S4: Primers used in RT-PCR

Gene	Sequence of primers	Amplicon size
LasA_FP	CGACCTCGAGGCCTACCT	102
LasA_RP	AACACTTTCGGGTTGATGCT	
LasB_FP	GTCATCGACGCCAAGACC	162
LasB_RP	GTTGCCGTCGTCCATCTC	
RhIA_FP	CATTTCAACGTGGTGCTGTT	173
RhIA_RP	AGCAGCGTGGAGATACCG	
RhIB_FP	ATCGCTCACGAGAAGTACGG	161
RhIB_RP	TTGAAGCGCTCGATGCAG	
PqsA_FP	CCTGTTCTTTCCCTGGTTCA	169
PqsA_RP	CACGCTGCTCAACAGCTC	
rpoD_FP	AGAAGGCCCTGAAGAAGCAC	182
rpoD_RP	CACGCAGAGCTGCATGAT	