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Residual Deviation

RD = (yexp − ypred) (3)

Where:

N is the number of data points; yexp is experimental data, and ypred is predicted data using

model.
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Cation Type

Figure S1: Schematics of cation type used in this study for model development. R1, R2, R3,
and R4 refer to substitutes in the cation such as alkyl, ether, cyano and hydroxyl functional
group. Images were drawn using OPSIN package.1

Table S1: A detailed breakdown of the number of experimental ionic conductivity data for
various cation type in the model development data set.

Cation type Data points
Imidazolium 1440
Pyridinium 493
Ammonium 280
Pyrrolidinium 273
Phosphonium 161
Sulfonium 74
Piperidinium 67
Morpholinium 61
Pyrazolium 11
Oxazolidinium 9
Total 2869
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Hyperparameter Feature Space

Random Forest

Figure S2: Hyper-parameter space for Random Forest model. ’max depth’ indicates the
maximum depth of a decision tree, while ’n estimators’ denotes the number of decision trees
generated for computing the average of the outputs to yield a prediction.

Final hyper-parameter : max depth = 35, n estimators = 500

XGBoost

Figure S3: Hyper-parameter space for XGBoost model. ’max depth’ indicates the maximum
depth of an individual tree; ’learning rate’ refers to the step size for the gradient descent
method; ’subsample’ denotes the fraction of data chosen at random to train an individual tree;
’colsample bytree’ controls the fraction of features chosen at random to train an individual
tree; ’colsample bylevel’ identifies the fraction of features selected at random to train each
node in a tree. Finally, ’n estimators’ is the total number of trees for computing the average
of outputs to yield a prediction.

Final hyper-parameters: n estimators = 900, max depth = 17, learning rate = 0.07, colsam-

ple bytree = 0.8, subsample = 0.4, colsample bylevel = 0.1
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Model Validation

Figure S4: Comparison of model predictions with the experimental data on log10 scale for the
training set (left pane), validation set (middle pane) and test set (right pane) using Multiple
Linear Regression model.

5



Figure S5: Comparison of model predictions with the experimental data on log10 scale for the
training set (left pane), validation set (middle pane) and test set (right pane) using Random
Forest model.
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Figure S6: Comparison of model predictions with the experimental data on log10 scale for the
training set (left pane), validation set (middle pane) and test set (right pane) using XGBoost
model.
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Performance by cation type

Figure S7: Correlation coefficient (R2) for RF (circles) and XGBoost (crosses) models for
the entire data set as a function of cation family. Size of the marker indicates the relative
proproprtion of data points present for the given cation type.

8



External Test set

This section is focused on evaluating the model’s performance on the external test case

that consists of ionic liquids missing from the model development. Figure S8 shows the

comparison in prediction between the model and experimental data with R2 of 0.80, RMSE

of 0.20 S/m, and MAE of 0.14 S/m for the 30 data set on the normal ionic conductivity scale.

Figure S8: Comparison of experimental external data set and XGBoost model prediction.
The ionic conductivity values are reported in S/m.
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Table S2 depicts the unique ionic liquid combination evaluation. The first in the list are the

two oxazolidinium cation which is rarely studied with limited data available in the literature.

Out of eleven data points from this family collected from literature, nine of them were

included in the training set, while two of the data points were added to this test case.

The first cation 3-methyl-3-methoxyethyloxazolidinium cation is not part of the training set,

while the cation 3-methyl-3-methoxymethyloxazolidinium is present in the training data with

other anions but not with tetrafluoroborate [BF4]− anion. Thus, this test case was added

to validate the model’s ability to predict ionic conductivity for cation families with a very

small fraction of representation in the training set as seen in Table S2.

Table S2: Comparison of ionic conductivity between experimental data (Exp) and XGBoost
predictions for unique ionic liquids for which either the cation or the anion is a part of the
training data set but not the combinations shown here. Value inside the square bracket
denotes the temperature at which the measurement was taken.

No. Cation Structure Anion Structure Exp XGBoost Ref

1 0.09[298.15] 0.09 2

2 0.08[298.15] 0.16 2

3 0.37[298.15] 0.46 2
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4 0.06[298.15] 0.07 2

5 0.28[298.15] 0.31 3

6 0.27[298.15] 0.15 3

7 0.05[298.15] 0.15 4

8 0.24[298.15] 0.24 5

9 0.07[293.15] 0.02 6
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Table S3 demonstrates the model’s ability to generalize prediction beyond the cation training

set. The list of the cations shown in the table are cations that were not part of the model de-

velopment. However, they are structurally similar to some of the cations present in the model

database. Cations (1) and (2) belong to the azepanium family, similar to the piperidinium-

based cation. The piperidinium cation is a six-ring cyclic structure, while the azepanium

cation is a seven-ring cyclic structure.The remaining cations belong to the pyrrolinium cation

family, which are found to be more stable, with better transport properties than the com-

mon pyrrolidinium-based cations.7 These cations have a minimal resemblance to any cations

present in the set besides pyrrolidinium cations which are still far from similar to them. The

pyrrolidinium cations present in the training set are cyclic cations with no double bonds and

oxygen functional groups attached. This could be why the model’s quantitative prediction

has a relatively significant deviation compared to other test cases seen earlier. However, the

qualitative trends have close agreement compared to experimental data.

Table S3: Comparison of ionic conductivity between experimental data (Exp) and XGBoost
predictions for cations that bear close resemblance to the cation types investigated in this
work. Value inside the square bracket denotes the temperature at which the measurement
was taken.

No. Cation Structure Anion Structure Exp XGBoost Ref

1 0.36[333.15] 0.54 8

2 0.20[333.15] 0.25 8
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3 1.30[298.15] 0.73 7

4 0.84[298.15] 0.58 7

5 1.02[298.15] 0.64 7

6 1.68[323.15] 1.29 7

7 1.34[323.15] 1.01 7

8 1.63[323.15] 1.13 7

Table S4 demonstrates the predictive capability of the model when the functional groups are
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present at various positions in the imidazolium cation; the anion is represented by [NTf2]−.

One of the unique advantages of ionic liquids is the design flexibility that allows a large

number of possible cations with different functional group attachments at various positions.

Thus it is important to know whether a given model can predict ionic conductivity correctly

as the functional group location is varied. This data set originally contained fifteen data

points. Out of which, one ether-functionalized cation and one allyl-functionalized cation

were added to the training set to ensure the model has seen such cations with functional

groups located at R3 position. The rest of the cations are separated as test cases to gauge

the model’s ability in predicting ionic conductivity.

Table S4: Comparison of ionic conductivity at 298 K between experiment9 and XGBoost
prediction for cations paired with bis(trifluoromethylsulfonyl)imide [NTf2]− anion.

No. R1 R2 R3 Experiment(S/m) XGBoost
1 Methyl H Ethyl 0.96 0.88
2 Methyl Methyl Ethyl 0.47 0.25
3 Methyl Methyl n-Propyl 0.36 0.25
4 Methyl Methyl n-Butyl 0.26 0.14
5 Methyl Methyl n-Pentyl 0.20 0.14
6 Methyl Methyl Methoxyethyl 0.35 0.28
7 Methyl Methyl Ethoxyethyl 0.32 0.33
8 Allyl Methyl Ethyl 0.48 0.36
9 Allyl Methyl n-Propyl 0.40 0.34
10 Allyl Methyl n-Butyl 0.20 0.26
11 Allyl Methyl n-Pentyl 0.19 0.15
12 Allyl Methyl Allyl 0.44 0.31
13 Allyl Methyl Ethoxyethyl 0.32 0.28
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Feature Importance

Figure S9: Cation feature ln(Ipc) vs molecular weights of the cations for which experimental
data were included in the model development.
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Figure S10: Cation feature Chi0 vs molecular weight of the cations for which experimental
data were used in the model development.
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Figure S11: Ionic conductivity vs. cation and anion features deemed to impact the ionic
conductivity the most in the XGBoost model. The ionic conductivity data are plotted for
the experimental data at 298.15 K. Features ending with ’ a ’ indicates features for anions.
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Figure S12: SHAP feature importance for the training set data. Features ending with ’ a ’
indicates features for anions.
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External Set Classification

Based on the SHAP analysis, it is clear that some of the features have a very high influence

on the ionic conductivity compared to the rest. In this section, we attempt to build a decision

tree-based classification model to leverage insights generated from the SHAP analysis. The

primary objective here is to determine the accuracy of such a model using a few selected

features as inputs for the model development. We selected experimental data at 298 K to

construct the classification model, as the number of ionic conductivity data (337 in total) at

this temperature is the highest. Furthermore, we only considered ionic liquids that contained

the bis(trifluoromethanesulfonyl)imide [NTf2]−. In selecting this anion, we took into consid-

eration two points: (a) it is one of the most commonly studied anion and it featured in 137

ionic liquids at the selected temperature; (b) a model based solely on the cation descriptors

would fail to capture the ionic conductivity changes if the data set contained multiple anions.

Although such a model may appear restrictive, it can actually provide a reference point. For

example, if a novel cation paired with [NTf2]− anion is classified to have a ’high’ conductivity

value, then it is very likely that the cation when paired with anions with faster dynamics

than the bulky [NTf2]− anion.

The boundary for separating the ionic conductivity between ’high’ and ’low’ is set to the

median value of experimental ionic conductivity, which is 0.265 S/m, where any ionic liquids

below median value fall under the ’low’ ionic conductivity category. Although alternative

values of the ionic conductivity can be assigned to demarcate the two classes, the choice of

the median eliminates any bias in the classification boundary as there is an equal number

of cations for both categories. The decision tree (DT) model is built using Scikit-learn10

with 90% for the data set aside for training the model and 10% left for test purposes. The

features for the model are the six cation features shown in the SHAP plot (Figure S12).

The classification model achieves 98% accuracy for the training set and 92% for the test

set. The accuracy is very high considering that the model is built only with six descriptors
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and an artificial classification boundary. Furthermore, we evaluated the performance of the

classification model for a few ionic liquids in an external data set with [NTf2]− as the anion

(Table S5 and S6). The model correctly classified 63% of the ionic liquids with seven ionic

liquids mislabeled out of 19 data points. Four of the mislabeled ionic liquids have ionic

conductivity in the 0.20-0.27 S/m range close to the boundary separating the two categories.

Thus, this demonstrates the possibility of rapidly screening ionic liquids with a model that

is built using only six cation descriptors.
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Table S5: Classification of external test case cations paired with [NTf2]− at 298 K. Low refers
to ionic conductivity less than 0.265 S/m.

No. Cation Structure Exp(S/m) Typeexp Typepred Ref

1 0.37 High Low 2

2 0.06 Low Low 2

3 0.28 High High 3

4 0.27 High Low 3

5 0.05 Low Low 4

6 0.24 Low High 5
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Table S6: Classification of external test case cations paired with [NTf2]− at 298 K. Low refers
to ionic conductivity less than 0.265 S/m. Experiment data taken from ref9.

No. R1 R2 R3 Experiment(S/m) Typeexp Typepred
1 Methyl H Ethyl 0.96 High High
2 Methyl Methyl Ethyl 0.47 High High
3 Methyl Methyl n-Propyl 0.36 High High
4 Methyl Methyl n-Butyl 0.26 High High
5 Methyl Methyl n-Pentyl 0.20 Low High
6 Methyl Methyl Methoxyethyl 0.35 High Low
7 Methyl Methyl Ethoxyethyl 0.32 Low Low
8 Allyl Methyl Ethyl 0.48 High High
9 Allyl Methyl n-Propyl 0.40 High High
10 Allyl Methyl n-Butyl 0.20 Low High
11 Allyl Methyl n-Pentyl 0.19 Low Low
12 Allyl Methyl Allyl 0.44 High High
13 Allyl Methyl Ethoxyethyl 0.32 High Low

Unique Ionic Liquids

Figure S13: (a) Experimental data at 298.15 K. (b) Unique ionic liquid predictions at 298.15
K using XGBoost model. LP30 here refers to the commonly used Li-ion electrolyte with an
high ionic conductivity of 1.26 S/m at 298.15 K11,12. Addition of Li+ salts to ionic liquids
is known to reduce ionic conductivity by 30-50%.7
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Table S7: Ionic Liquids with ionic conductivity greater than 2.0 S/m at 298.15 K calculated
using unique ionic liquid method based on XGBoost model.

Cation Anion Ionic Conductivity (S/m)
pyrrolidinium nitrate 5.07
1-ethyl-3-methylimidazolium cyanoborohydride 3.85
pyrrolidinium dicyanamide 3.49
1,3-dimethylimidazolium dicyanamide 3.44
1-ethyl-3-methylimidazolium dicyanoborohydride 3.13
1-ethyl-3-methylimidazolium dicyanamide 2.84
ethylammonium nitrate 2.75
1-methylimidazolium dicyanamide 2.42
1-ethyl-3-methylimidazolium thiocyanate 2.30
1-ethyl-3-methylimidazolium tricyanomethane 2.28
pyrrolidinium tricyanomethane 2.23
pyrrolidinium dicyanoborohydride 2.22
pyrrolidinium tricyanoborohydride 2.20
ethylammonium dicyanamide 2.18
pyrrolidinium thiocyanate 2.13
1-ethyl-2-methylpyrazolium cyanoborohydride 2.12
1-ethyl-3-methylimidazolium tricyanoborohydride 2.12
pyrrolidinium bis(fluorosulfonyl)imide 2.05
diethylmethylammonium dicyanamide 2.03
1-methylpyridinium dicyanamide 2.03
1,3-dimethylimidazolium dicyanoborohydride 2.02
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