Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

CF3 H-bonding Locked Aromatic Stacking of Picric Acid with Mechanofluorochromic fluorophores: Highly Selective Reusable Sensor and Rewritable Fluorescence Platform

Parthasarathy Gayathri,^a Sasikala Ravi,^a Periyappan Nantheeswaran,^b Mariappan Mariappan,^b Subramanian Karthikeyan,^c Mehboobali Pannipara,^{d,e} Abdullah G. Al-Sehemi,^{d,e} Dohyun Moon*^f Savarimuthu Philip Anthony*^a

^{a)}School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India. Fax: +914362264120; Tel: +914362264101; E-mail: philip@biotech.sastra.edu

^{b)}Department of Chemistry, SRM IST, Kattankulathur, Chennai-603203, Tamil Nadu, India.

^{c)}PG and Research Department of Chemistry, KhadirMohideen College, Adirampattinam,

Tamil Nadu, India.

^{d)}Research center for Advanced Materials Science, King Khalid University, Abha 61413,

Saudi Arabia.

^{e)}Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia.

^{f)}Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu,

Pohang, Gyeongbuk, Korea, Email: dmoon@postech.ac.kr

Scheme S1. Synthesis of Cz-4-CF₃, Cz-4-CH₃, Cz-3-CF₃, TPA-4-CF₃ and TPA-3-CF₃.

¹*H* and ¹³*C* NMR of **Cz-4-CF**₃ (solvent = CDCl₃).

Cz-4-CF₃: m/z calcd for C₂₈H₁₇F₃N₂ (M + H): 438.13, found: 438.3.

¹*H* and ¹³*C* NMR of **Cz-4-CH**₃ (solvent = CDCl₃).

*C***z-4-CH**₃: m/z calcd for $C_{28}H_{20}N_2$ (M + H): 384.16, found: 384.2.

¹*H* and ¹³*C* NMR of **Cz-3-CF**₃ (solvent = CDCl₃).

Cz-3-CF₃: m/z calcd for $C_{28}H_{17}F_3N_2$ (M + H): 438.13, found: 438.1.

¹*H* and ¹³*C* NMR of **TPA-4-CF**₃ (solvent = CDCl₃).

TPA-4-CF3: m/z calcd for $C_{28}H_{19}F_3N_2$ (M + H): 440.15, found: 440.1.

¹*H* and ¹³*C* NMR of **TPA-3-CF**₃ (solvent = CDCl₃).

TPA-3-CF3: m/z calcd for $C_{28}H_{19}F_3N_2$ (M + H): 440.15, found: 440.1.

Fig. S1. Absorption (a,b) and fluorescence (c, d) spectra of (a, c) $Cz-4-CF_3$ and (b, d) $Cz-4-CH_3$ in different solvents.

Fig. S2. Digital fluorescence images of Cz-4-CF₃ and Cz-4-CH₃ in different solvents.

Table S1. Quantum yield of Cz-4-CF₃ and Cz-4-CH₃ in solvents with respect to quinine sulphate.

Solvent	Quantum yield (Φ_F)		
	Cz-4-CF ₃	Cz-4-CH ₃	
CH ₃ CN	0.023	0.040	
CHCl ₃	0.010	0.045	
DMF	0.040	0.064	
THF	0.018	0.039	
Toluene	0.012	0.029	

Fig. S3. Thermal ellipsoid and molecular packing in the crystal lattice of (a) **Cz-4-CF**₃ and (b) **Cz-4-CH**₃. Hydrogen atoms are omitted for clarity. C (grey), N (blue) and F (yellow).

Fig. S4. Self-reversible fluorescence spectra of Cz-4-CF₃ after different external treatment.

Fig. S5. PXRD pattern of Cz-4-CF₃. Crushing sample measurement was performed immediately after crushing since it would self-reverse to initial state with time.

Fig. S6. SEM image of Cz-4-CF₃ at melt state.

Fig. S7. Self-reversible fluorescence spectra of Cz-4-CH₃ after different external treatment.

Fig. S8. Demonstrating rewritable fluorescent platforms using Cz-4-CF₃ by crushing and heating. $\lambda_{exc} = 365$ nm.

Fig. S9. PA (10^{-4} M) concentration dependent fluorescence change of Cz-4-CF₃ (10^{-4} M).

Fig. S10. (a) ¹H NMR spectra of **PA** (ii) upon the addition of 1 equiv of **PA** into **Cz-4**-**CF**₃(1:1 ratio); (iii) ¹H NMR spectra of **Cz-4**-**CF**₃ in CDCl₃.

Fig. S11. Thermal ellipsoid and aromatic π -stacking between carbazole and PA aromatic unit and intermolecular interactions in the crystal lattice of **Cz-4-CF₃-PA**. C (grey), H (white), N (blue), O (red) and F (yellow). Dotted lines indicate the hydrogen bonding and π ... π interactions in Å and distances along with e.s.d values are 3.196 (6).

Fig. S12. Fluorescence sensing of Cz-4-CF₃-PVA thin film towards PA (10^{-4} M) in presence of other nitroaromatices (NACs, 10^{-4} M).

Fig. S13. Fluorescence sensing of Cz-4-CF₃-PVA thin film towards PA in different concentration. The film was dipped for 30s and recovered back upon dipping in pure water for 1-2 min.

Table S2. Cz-4-CF₃-PVA thin film sensing of PA in real water samples with known concentration.

Sample	Spiked (M)	Detected (M)	Recovery (%)	
Sea water	10-3	1.05×10^{-3}	105%	
	10-6	1.04x10 ⁻⁶	104%	
River water	10-3	0.98x10 ⁻³	98%	
	10-6	1.01x10 ⁻⁶	101%	
Pond water	10-4	0.99x10 ⁻⁴	99%	
	10-7	1.02x10 ⁻⁷	102%	
Lake water	10-4	0.96x10 ⁻⁴	96%	
	10-7	1.03x10 ⁻⁷	103%	

Fig. S14. Thermal ellipsoids of Cz-3-CF₃ and TPA-3-CF₃.

Fig. S15. Fluorescence sensing of (a) $Cz-3-CF_3$, (b) TPA-4-CF₃ and (c) TPA-3-CF₃ towards PA (10⁻⁴ M).

Table S3. Comparative study with various types of PA probes reported recently.

Chemosensors	Other NACs interferences	LOD	Mode of detection	Reusability	Referen ce
Cz-4CF ₃	Nil	51.4nm	Solution, Solid and polymer film	Reusable in filter paper, thin film by washing with water	Present work
Organogelator	4-NP, 2,4-DNP	700ppt	Gel/solution state		[1]
Conjugated polymer nanoparticles	Nil	Not reported	Solution, solid and vapor phase		[2]
Curcumin-BF ₂ complexes	Nil	4.21nM 11.61 nM	Test Strips, solution		[3]
Conjugated polyelectrolyte (PMI)	4-NP, 2,4-DNP	$56.11 \times 10^{-11} M$	Test Strips, solution		[4]
N,N,N-trimethyl-2-(pyren-1- yloxy)ethanaminium bromide (PyOEA)	Nil	23.2 nM	Test Strips, solution		[5]
Triphenylamine based fluorophore	DNP	~5ppb	Solid and solution state		[6]
Cyanostilbene derivatives	Not reported	2.85x10 ⁻⁷ 1.96x10 ⁻⁶ M	Solid and solution state		[7]
Trifluoromethyle decorated MOFs	DNP, ONP, PNP	$3 \times 10^{-5} M$ $9 \times 10^{-6} M$	Solid and solution state	Reusable in solution by centrifuged and washed with methanol	[8]
Conjugated polymer (PFAM)	2,4-DNP, 4-NP	57.8nm	Solid, strips, solution	Reusable in filter paper, by washing with water	[9]
Pyrene-derived pH-responsive polymeric probe	4-NP, 2,4-DNP	56 µM	Solution and polymer film	Reusable in film, by washing with water	[10]
1,8-naphthalimide-conjugated sulfonamide probe	2,4-DNP 4-NP (at high conc)	25.6 pM	Strips and solution state		[11]
Naphthalene based Schiff base	DNP, NP, DNT, DNBA. DNB	0.11 µM	Strips and solution state		[12]
Ln(III) based probes	Nil	0.5 μΜ	Strips, sol-gel and solution state		[13]
π -Conjugated polymers	DNT, DNP, NB, NT	$47.39 \times 10^{-8} \text{ M}$	Filter paper, solution	Reusable in filter paper by washing with water	[14]
Arylene-vinylene Terpyridine Conjugates	NB, NT, DNT, NBA, HNB, DNT	1.31-2.94×10 ⁻ ⁷ M	Test Strips, solution	Reusable in filter paper by washing with water	[15]
Dansyl tagged copolymer	DNT, TNT	3.7µM	Solution state, thin film and filter paper		[16]
Quinoxaline-based luminogen	DNB, TNT	28.7nM	Test Strips, solution		[17]
Pyrene appended imidazolium probe	4-NP, 2,4-DNP	10nM	solution		[18]
Quinoline-benzimidazole conjugate	2,4-DNP, NA	4.86ppb	Test Strips, solution		[19]
Fluorene based chemosensor	2,4-DNP	22ppt, 0.23ppt	Solution		[20]
Cyanine based chemosensor	Nil	8.24nm, 8.44nm ₂₁	Test Strips, solution		[21]

- [1] S. Nath, S. K. Pathak, B. Pradhan, R. K. Gupta, K. A. Reddy, G. Krishnamoorthy and A. S. Achalkumar, *New J. Chem.* 2018, **42**, 5382–5394.
- [2] A. H. Malik, S. Hussain, A. Kalita and P. K. Iyer, ACS Appl. Mater. Interfaces. 2015, 7, 26968–26976.
- [3] K. Ponnuvel, G. Banuppriya and V. Padmini, *Sensors Actuators B Chem.* 2016, **234**, 34–45.
- [4] S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer, *Chem. Commun.* 2015, **51**, 7207–7210.
- [5] H. Liang, Z. Yao, W. Ge, Y. Qiao, L. Zhang, Z. Cao and H. C. Wu, *RSC Adv.* 2016, 6, 38328–38331.
- [6] A. Chowdhury and P. S. Mukherjee, J. Org. Chem. 2015, 80, 4064–4075.
- [7] A. Ding, L. Yang, Y. Zhang, G. Zhang, L. Kong, X. Zhang, Y. Tian, X. Tao and J. Yang, *Chem. A Eur. J.* 2014, **20**, 12215–12222.
- [8] M. L. Hu, M. Joharian, S. A. A. Razavi, A. Morsali, D. Z. Wu, A. Azhdari Tehrani, J. Wang, P. C. Junk and Z. F. Guo, J. Hazard. Mater. 2021, 406, 124501.
- [9] A. S. Tanwar, S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer, *ACS Sensors*. 2016, **1**, 1070–1077.
- [10] M. Gupta and H. Lee, ACS Appl. Mater. Interfaces. 2018, 10, 41717–41723.
- [11] A. Kumar and P. S. Chae, Sensors Actuators B Chem. 2017, 240, 1–9.
- [12] S. Maity, M. Shyamal, D. Das, P. Mazumdar, G. P. Sahoo and A. Misra, *Sensors Actuators B Chem.* 2017, **248**, 223–233.
- [13] J. Sahoo, D. S. Lakshmi, E. Suresh and P. S. Subramanian, *Sensors Actuators B Chem.* 2017, **250**, 215–223.
- [14] D. Giri, S.N. Islam and S.K. Patra, *Polymer (Guildf)*. 2018, **134**, 242–253.
- [15] A. Sil, D. Giri and S. K. Patra, J. Mater. Chem. C. 2017, 5, 11100–11110.
- [16] V. Kumar, B. Maiti, M. K. Chini, P. De and S. Satapathi, Sci. Rep. 2019, 9, 7269.
- [17] L. Wang, M. Cui, H. Tang and D. Cao, Dye. Pigment. 2018, 155, 107–113.
- [18] K. Ashwani, P. Anup and H. S. Kim, *Sensors and Actuators B*, 2016, 231, 293–301.
- [19] K. Jiang, S.H. Luo, C. M. Pang, B. W. Wang, H. Qi. Wu and Z. Y. Wang, *Dyes and Pigments*, 2019, 162, 367-376.
- [20] M. T. Waseem, H. M. Junaid, H. Gul, A. A. Khan, C. Yu and S. A. Shahzad, J. *Photochem. & Photobio. A: Chem.* 2022, **425**, 113660.
- [21] N. Nagamani, S. Lakshmanan, D. Govindaraj, C. Ramamoorthy, N. Ramalakshmi and S. A. Antony, *Spectrochimica Acta A: Mol. Biomol. Spectrosc.*, 2019, **207**, 321-327.