Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Design and development of hydrogen bonded molecular assemblies based on pyromellitic diimides tethered carboxylic acids as optical materials

Raju RamPuniya^{‡a}, Priyanka Takhar^{‡a}, Tanmoy Kalita^b, Dhruba Jyoti Kalita^b, Devendra Singh^{*a}

^aDepartment of Chemistry, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan, INDIA.
 ^bDepartment of Chemistry, Gauhati University, Guwahati-781014, Assam, INDIA.

List of Contents

Experimental: Computational and crystal structure determination details

Figure S1. HOMO and LUMO frontier MOs of the structures 3a and 3b

Figure S2. HOMO and LUMO frontier MOs of the structures 6a and 6b

Figure S3. HOMO and LUMO frontier MOs of the structures 9a and 9b

Figure S4. HOMO and LUMO frontier MOs of the structures **3a**, **6a** and **9a**.

Figure S54: Simulated and experimental PXRD patterns of 1a

Figure S6: Simulated and experimental PXRD patterns of 1b

Figure S7: Simulated and experimental PXRD patterns of 1c

Figure S8: Simulated and experimental PXRD patterns of 2a

Figure S9: Simulated and experimental PXRD patterns of 2b

Figure S10: Simulated and experimental PXRD patterns of 2c

Figure S11: TGA and DSC curves of 1a

Figure S12: TGA and DSC curves of **1b**

Figure S13: TGA and DSC curves of **1c**

Figure S14: TGA and DSC curves of 2a

Figure S15: TGA and DSC curves of 2b

1

Figure S16: TGA and DSC curves of 2c

Figure S17. UV-Vis spectra of host 1 and its solvates 1a, 1b and 1c

Figure S18. UV-Vis spectra of host 2 and its solvates 2a, 2b and 2c

Figure S19-24. Ellipsoid structures of solvates 1a, 1b, 1c, and 2a, 2b, 2c

Table S1: Interaction energies and relative stabilities of 9c

Table S2: Interaction energies of structures3a, 3b and 6a, 6b atB3LYP-D3 functional

Table S3: Gas and solvent phase (DMSO) values of interaction energies for structures 6a and 6b

Table S4: Crystallographic parameters of 1a, 1b, 1cand 2a, 2b, 2c

Table S5: Hydrogen bond parameters of 1a, 1b, 1cand 2a, 2b, 2c

Table S6: Coordinates of the studied structures (in Å) optimized in gas phaseat B3LYP/6-31+G* level of theory

Experimental

Computational Details

Hydrogen bond motifs were derived from formic acid and its interaction with DMF, DMSO and Dioxsolvent molecules as a model system. All the calculations were performed using the Gaussian09 program package in the gas phase.^{S1} The energies of the geometries of these models were calculated by DFT^{S2} using Becke's three-parameter exchange functional^{S3} along with the gradient-corrected functional of Lee, Yang and Parr (B3LYP functional).^{S4} Single point calculations at the 6-31+G*, 6-31++G* and 6-31++G** level were performed on the fully optimized geometries of level B3LYP/6-31+G*. The Interaction energy (E_{int}) for each bimolecular motif was obtained by E_{int} = [E_{for bimolecular structure} – (E_{for formic acid} + E_{for interacting solvent molecule})]. The relative stability of a particular motif over another motif was calculated by subtracting the value of lower energy motif from the higher energy motif.

Crystal Structure Determination

Crystals were coated with Paratone oil, and the diffraction data were collected at 173 K with MoKα radiation on a Rigaku Rapid AutoDiffractometer equipped with a graphitecrystalincidentbeam monochromator. The RapidAuto software ^{S5}was used for data collection and data processing. The

structures were solved by direct method and refined by full-matrix least-squares calculation with the SHELXTL software package.^{S6} All non-hydrogen atoms were refined anisotropically; the hydrogen atoms were assigned isotropic displacement coefficients U(H) = 1.2U (C) and 1.5U (C_{methyl}), and their coordinates were allowed to ride on their respective atoms. In the structures of solvates **2a**, **2b** and **2c**, all three carbon atoms in the aliphatic part attached with cyclic imide cores were found to be disordered. These disordered atoms were refined by sharing two carbon atoms at one position having half occupancies and then hydrogen atoms were fixed at respective positions.Crystallographic details and hydrogen bond parameters are listed in Table S4 and Table S5, respectively.

Figure S1. HOMO and LUMO frontier molecular orbitals of structures 3a and 3b at B3LYP/631+G* level.

Figure S2. HOMO and LUMO frontier molecular orbitals of structures 6a and 6b at B3LYP/631+G* level.

Figure S3. HOMO and LUMO frontier molecular orbitals of structures **9a** and **9b** at B3LYP/6-31+G* level.

Figure S4. HOMO and LUMO frontier molecular orbitals of structures **3a**, **6a** and **9a** at B3LYP/6-31+G* level.

Figure S5. Simulated (black) and experimental (red) PXRD patterns of solvate 1a.

Figure S6. Simulated (black) and experimental (red) PXRD patterns of solvate 1b.

Figure S7. Simulated (black) and experimental (red) PXRD patterns of solvate 1c.

Figure S8. Simulated (black) and experimental (red) PXRD patterns of solvate 2a.

Figure S9. Simulated (black) and experimental (red) PXRD patterns of solvate 2b.

Figure S10. Simulated (black) and experimental (red) PXRD patterns of solvate 2c.

Figure S11. TGA (black) and DSC (red) curves of solvate 1a.

Figure S12. TGA (black) and DSC (red) curves of solvate 1b.

Figure S13. TGA (black) and DSC (red) curves of solvate 1c.

Figure S14. TGA (black) and DSC (red) curves of solvate 2a.

Figure S15. TGA (black) and DSC (red) curves of solvate 2b.

Figure S16. TGA (black) and DSC (red) curves of solvate 2c.

FigureS17. Solid state UV-Vis spectra of host 1 and its solvates 1a, 1b and 1c.

FigureS18. Solid state UV-Vis spectra of host 2 and its solvates 2a, 2b and 2c.

FigureS19. Atomic displacement (ellipsoid plot) structure of solvate 1a.

FigureS20. Atomic displacement (ellipsoid plot) structure of solvate 1b.

FigureS21. Atomic displacement (ellipsoid plot) structure of solvate 1c.

FigureS22. Atomic displacement (ellipsoid plot) structure of solvate 2a.

FigureS23. Atomic displacement (ellipsoid plot) structure of solvate 2b.

FigureS24. Atomic displacement (ellipsoid plot) structure of solvate 2b.

Table S1. Interaction energies (E_{int}) and relative stabilities of optimized structures 9a, 9b and 9c (in kcal/mol).

Functional/Basis sets	Interaction energies of 9c	Stability of 9a over 9c	Stability of 9b over 9c
B3LYP/6-31+G*	-4.58	11.26	4.21
B3LYP/6-31++G*	-4.58	11.31	4.21
B3LYP/6-31++G**	-4.52	11.14	4.15

Functional/Basis sets	Interaction energy (kcal/mol)				
	Structures		Struct	tures	
	3 a	3b	6a	6b	
B3LYP-D3/6-31+G*	-18.82	-25.10	-18.83	-25.10	
B3LYP-D3/6-31++G*	-18.83	-25.10	-18.83	-25.10	
B3LYP-D3/6-31++G**	-25.10	-31.38	-18.83	-18.83	

Table S2:Interaction energies (E_{int}) of optimized structures 3a, 3b and 6a, 6b at different basis sets of B3LYP-D3functional.

Gibbs free energy of structure 9a:

 Δ r G° (298 K) = Σ (ϵ 0 + G corr) product - Σ (ϵ 0 + G corr) reactant

= [-379.53 – 2 x (-189.76)] a.u.

= -0.01 a.u.= -6.28 kcal/mol

where, $\Sigma (\varepsilon 0 + G \text{ corr})$ product = Sum of electronic and thermal Free Energies of dimer **9a**

and Σ ($\epsilon 0 + G \text{ corr}$) reactant = Sum of electronic and thermal Free Energies of acid monomer.

The negative value of change in free energy suggests that the dimer **9a** is thermodynamically more stable compared to its monomers.

Table S3: Interaction energies of structures 6a and 6b both in the gas and solvent (DMSO) phases.

Functional/Basis sets	Interaction energy (kcal/mol)			
	Gas phase		Solven	t phase
	6a	6b	6a	6b
B3LYP/6-31+G*	-8.12	-13.79	-8.85	-12.55
B3LYP/6-31++G*	-8.37	-13.73	-25.10	-25.10
B3LYP/6-31++G**	-8.37	-13.79	-25.10	-25.10

 Table S4.
 Crystallographic parameters of solvates 1a, 1b, 1c and 2a, 2b, 2c.

Compounds	1a	1b	1c	2a	2b	2c
Empirical formula	$C_{24}H_{30}N_4O_{10}$	$C_{22}H_{28}N_2O_{10}S_2$	$C_{30}H_{40}N_2O_{14}$	$C_{24}H_{30}N_4O_{10}$	$C_{22}H_{28}N_2O_{10}S_2$	$C_{26}H_{32}N_2O_{12}$
Formula weight	534.52	544.58	652.64	534.52	544.58	564.54
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.70000 Å	0.70000 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/c$	P2 ₁ /c	$P2_{1}/c$
Unit cell	a = 15.625(3)	a = 16.231(3)	a = 6.4872(13)	a = 12.632(3)	a = 12.768(3)	a = 12.514(3)
dimensions (Å)	b = 6.8164(14)	b = 7.0373(14)	b = 9.976(2)	b = 9.2860(19)	b = 9.2840(19)	b = 9.5933(19)
	c = 12.177(2)	c = 11.685(2)	c = 12.810(3)	c = 11.744(2)	c = 11.394(2)	c = 11.344(2)
Volume (Å ³)	1296.2(4)	1292.6(4)	783.2(3)	1310.5(5)	1260.7(5)	1361.4(5)
Z	2	2	1	2	2	2
Density (Mg/m ³)	1.370	1.399	1.384	1.355	1.435	1.377
Abs coeff (mm ⁻¹)	0.108	0.263	0.110	0.068	0.269	0.110
F(000)	564	572	346	564	572	596
Index ranges	-20<=h<=20, -8<=k<=8, -15<=l<=15	-21<=h<=21, -9<=k<=9, -13<=l<=15	-8<=h<=8, -11<=k<=12, -16<=l<=16	-17<=h<=17, -12<=k<=12, -16<=l<=16	-17<=h<=17, -13<=k<=13, -16<=l<=16	-16<=h<=16, -12<=k<=12, -14<=l<=14
Completeness to 20	99.8 %	98.7 %	99.2 %	99.0 %	99.3 %	99.9 %
Data / restraints / parameters	2958 / 0 / 177	2919 / 0 / 168	3560 / 0 / 211	3782 / 1 / 215	3664 / 1 / 203	3117/0/212
Gof (F ²)	1.077	1.063	1.102	1.065	1.075	1.083
R indices [I>2σ(I)]	R1 = 0.0408, wR2 = 0.1026	R1 = 0.0339, wR2 = 0.0880	R1 = 0.0493, wR2 = 0.1284	R1 = 0.0554, wR2 = 0.1434	R1 = 0.0517, wR2 = 0.1442	R1 = 0.0662, wR2 = 0.1670
R indices (all	R1 = 0.0579,	R1 = 0.0420,	R1 = 0.1026,	R1 = 0.0599,	R1 = 0.0584,	R1 = 0.1405,

data)	wR2 = 0.1148	wR2 = 0.0934	wR2 = 0.1691	wR2 = 0.1469	wR2 = 0.1506	wR2 = 0.2197
CCDC No.	2205752	2205753	2205754	2205755	2205756	2205757

Table S5.Hydrogen bond parameters (Å and °) ofsolvates1a, 1b, 1cand 2a, 2b, 2c.

Compounds	D-H···A	d _{D-H}	d _H ,A	d _D _A	∠D-H…A
1 a	O3-H3···O1D [-x+2, -y, -z+1]	0.84	1.71	2.55(16)	172.7
	C1D-H1D O4 [2-x, -y, 1-z]	0.95	2.33	3.24	159.6
	C2D-H2D3···O4 [1+x, y, z]	0.98	2.56	3.50	162.8
	C7-H7C···O2 [x, -1+y, z]	0.98	2.49	3.27	136.8
1b	O3-H3···O1D [-x, -y, -z+2]	0.83	1.71	2.54(15)	173.7
	C1D-H1D2…O4	0.97	2.65	3.29	123.3
	C7-H7A…O1[x, -1+y, z]	0.97	2.69	3.40	130.5
	C1D-H1D3···O1D [-x, -½+y, ½-z]	0.97	2.64	3.57	161.8
1c	O3-H3···O4 [-x, -y+1, -z+1]	0.84	1.80	2.64(2)	173.6
	C8-H8C…O2 [-1+x, y, z]	0.98	2.69	3.48	137.2
	C7-H7B···O4[1+x, 1+y, -1+z]	0.98	2.62	3.42	139.5
	C2D-H2D2 O3 [-x, 1-y, 1-z]	0.98	2.58	3.46	149.2
	C4DH4D2 O3[x, y, 1+z]	0.99	2.68	3.49	139.4
	C7-H7C···O2D [-x, 1-y, 1-z]	0.98	2.61	3.50	150.5
	C3-H3A···O3D [-x, 1-y, 1-z]	0.95	2.39	3.34	174.6
2a	O3-H3···O1D [-x+1, -y+2, -z+1]	0.84	1.69	2.53(14)	175.0
	C1D-H1D-04	0.95	2.46	3.18	132.5
	C3D-H3D3…O3	0.98	2.70	3.26	117.1
	C2D-H2D3…O1 [x, 1+y, z]	0.98	2.54	3.27	131.1
	C3D-H3D2…O1 [1-x, 2-y, 1-z]	0.98	2.59	3.45	146.02
	C71-H71B…O4	0.99	2.65	3.44	137.4
	C2D-H2D3…O1D [x, ½-y, -½+z]	0.98	2.66	3.18	113.2
2b	O3-H3···O1D [-x+1, -y+1, -z]	0.84	1.72	2.56(19)	168.7
	C1D-H1D3···O4 [x, -1+y, z]	0.98	2.71	3.52	140.1
	C1D-H1D2…O1	0.98	2.625	3.3	126.2
	C2D-H2D2···O1	0.98	2.60	3.28	126.8
	C71-H71A···O4 [x, ½-y, -½+z]	0.99	2.51	3.35	143.0
	C2D-H2D1···O1D [-x, -½+y, ½-z]	0.98	2.63	3.38	133.2

2c	O3-H3···O1D [-x+1, -y, -z+1]	0.84	1.86	2.70(3)	178.3
	C1D-H1D1…O4 [x, 1-y, 1-z]	0.99	2.48	3.25	134.5
	C1D-H1D2…O1 [-x, 1-y, 1-z]	0.99	2.50	3.48	169.7
	C3D-H3D1O1 [-x, 1-y, 1-z]	0.99	2.66	3.32	123.8
	C3-H3A···O1D	0.95	2.64	3.42	140.0
	C71-H71B···O4 [-x, -½+y, ½-z]	0.99	2.40	3.21	139.0

Table S6: Coordinates of the studied compounds (in Angstroms) optimized in gas phase at $B3LYP/6-31+G^*$ level of theory.

Structure - 3a

Atoms Coordinates (Å)

	X	Y	Z
С	3.350190	-0.263226	-0.136799
0	4.532268	-0.024300	-0.197305
0	2.440669	0.607668	0.316184
Н	2.918239	-1.231407	-0.453824
Н	1.529497	0.214035	0.272964
С	-1.035411	0.400187	0.045051
0	-0.088381	-0.387730	0.156996
Ν	-2.333321	0.044307	-0.027631
Н	-0.875187	1.489172	-0.004274
С	-2.730353	-1.358443	0.025765
Н	-3.395435	-1.528688	0.880933

Н	-3.259552	-1.635594	-0.893930
Н	-1.835786	-1.972514	0.131225
С	-3.389867	1.037696	-0.160736
Н	-3.956032	0.873764	-1.085733
Н	-4.081485	0.978540	0.688534
Н	-2.954816	2.040149	-0.189168

Structure - 3b

С	3.097583	0.302312	0.000185
0	2.364588	1.275425	0.001388
0	2.716408	-0.967419	-0.000722
Н	4.195196	0.378919	-0.000224
Н	1.709972	-1.033568	-0.000451
С	-0.555920	-0.025882	-0.000775
0	0.032164	-1.118150	-0.000552
Ν	-1.896373	0.119101	0.000234
Н	0.009176	0.917074	-0.001685
С	-2.780018	-1.040074	0.001199
Н	-3.420484	-1.026434	0.891760
Н	-3.418177	-1.029993	-0.891096

Н -2.170584 -1.944126 0.003706

С	-2.514062	1.437218	-0.000830
Н	-3.140671	1.567765	-0.892039
Н	-3.141642	1.568580	0.889551
Н	-1.738951	2.207794	-0.000743

Structure - 6a

С	-3.106102	-0.114932	0.299247
0	-4.299406	-0.093333	0.112220
0	-2.207746	0.301449	-0.599878
Н	-2.654028	-0.484507	1.239050
Н	-1.286405	0.192458	-0.242873
S	1.559688	0.022151	-0.427597
0	0.282421	-0.024132	0.423661
С	2.551043	-1.415766	0.110068
Н	2.017835	-2.310935	-0.218688
Н	3.538452	-1.377052	-0.360478
Н	2.630754	-1.408459	1.200939
С	2.596251	1.329781	0.318372
Н	3.581491	1.333029	-0.158311
Н	2.090951	2.280562	0.132751

Н 2.676629 1.154115 1.395014

Stucture - 6b

С -	2.768033	0.105779	-0.123458
0 .	-2.079638	1.091381	-0.326584
0 .	-2.332028	-1.094542	0.226003
H ·	-3.864663	0.113366	-0.215235
H ·	-1.326020	-1.086341	0.313821
S	1.107987	-0.047966	-0.399339
0	0.332190	-1.069607	0.454491
С	2.859362	-0.501383	-0.152413
Н	3.006605	-1.478327	-0.618704
Н	3.500820	0.243167	-0.634223
Н	3.064948	-0.565810	0.919872
С	1.113188	1.513178	0.547723
Н	1.779164	2.230780	0.057614
Н	0.084096	1.877713	0.530771
Н	1.435970	1.309611	1.573111
Structure - 9a			

С	-0.122807	1.923667	-0.000065
0	-1.125429	1.219859	-0.000592
0	1.125429	1.501625	0.000604

Н	-0.179719	3.019192	-0.000087
Н	1.159035	0.499306	0.000381
С	0.122807	-1.923667	-0.000065
0	1.125429	-1.219859	-0.000592
0	-1.125429	-1.501625	0.000604
Н	0.179719	-3.019192	-0.000087
Н	-1.159035	-0.499306	0.000381

Structure - 9b

С	3.141116	-0.033762	-0.214549
0	2.543556	-0.362523	-1.218905
0	2.584186	0.308944	0.948701
Н	4.237914	0.019176	-0.146622
Н	1.588194	0.257580	0.870352
С	-0.558103	-1.127291	0.265038
С	-2.078744	-1.189105	0.214085
С	-2.180154	1.128875	-0.156655
С	-0.659949	1.214528	-0.106000
Н	-0.120915	-1.305102	-0.726488
Н	-2.412933	-2.135412	-0.221879

Н -2.584952 1.861356 -0.861452

Н	-0.331014	2.158826	0.338134
Н	-0.230116	1.113500	-1.112428
Н	-2.600833	1.324543	0.842910
Н	-2.494158	-1.097542	1.231116
Н	-0.155798	-1.855549	0.975576
0	-0.136961	0.168859	0.734677
0	-2.600829	-0.152886	-0.614564

Structure - 9c

С	3.171204	0.000031	-0.160487
0	4.328826	-0.000463	0.175988
0	2.148249	0.000817	0.708427
Н	2.852672	-0.000209	-1.220325
Н	1.284583	0.000294	0.226013
С	-2.072999	-1.175528	0.463676
С	-1.053175	-1.190351	-0.668097
С	-1.053584	1.190271	-0.668334
С	-2.073188	1.175340	0.463618
Н	-1.557831	-1.222705	1.436565
Н	-0.362883	-2.034015	-0.576070

Н -0.363554 2.034180 -0.576644

- Н -2.755828 2.026581 0.382539
- Н -1.557732 1.222530 1.436341
- Н -1.560054 1.241516 -1.642788
- Н -1.559503 -1.241996 -1.642603
- Н -2.755463 -2.026888 0.382338
- O -2.877157 -0.000178 0.397127
- O -0.246662 0.000092 -0.629995

References

S1.GAUSSIAN03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.

S2. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864–B871.

S3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.

S4. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1988, **37**, 785–789.

S5. Rapid Auto software, R-Axis series, Cat. No. 9220B101, Rigaku Corporation.

S6. G. M. Sheldrick, ActaCrystallogr. A: Found. Adv., 2008, A64, 112–122.