
1

Supporting Information 
Quantitative High-Throughput Measurement of Bulk Mechanical Properties Using 
Commonly Available Equipment
Justin Griffith*1, Yusu Chen*1, Qingsong Liu1, Qifeng Wang2, Jeffrey Richards1, Danielle 
Tullman-Ercek1, Kenneth Shull2, Muzhou Wang1

*These authors contributed equally to this work.
1Department of Chemical and Biological Engineering, 2Department of Materials Science & Engineering, 
Northwestern University, Evanston, IL 60208, United States

Table S1: Average shear modulus (kPa) for PAM and triblock gels across all used concentrations. Storage (G') and 
loss moduli (G") were recorded over a frequency range of 0.1-100 rad/s at 5% strain (Figure S9), and shear modulus 
was taken to be equivalent to storage modulus at a frequency of 1 rad/s.

Concentration (wt%) PAM Shear Modulus (kPa) Triblock Shear Modulus (kPa)

4 0.771 0.117

6 3.149 0.425
8 7.278 0.994

10 13.02 1.465

12 19.94 1.856

14 31.19 2.346

16 37.62 3.140

18 46.65 3.369
20 56.07 3.889
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Figure S1: Centrifugal results from (a) a single particle in the middle of each well and (b) multiple particles in each 
well. Centrifugation was performed in a 96-well plate with 1 mm diameter stainless steel particles. A U-shaped well 
plate was used for the single particle test to keep the particle in the middle of the well, and a flat-bottomed plate was 
used for the multiple particles test. 100 μL of triblock gel was added to each well in both cases. Centrifugal 
acceleration at fracture was consistent within error for both scenarios.

Figure S2: Photographs of single particle centrifugal experiment as described in figure S1. The same row in the well 
plate is shown from the bottom after cycles at increasing speeds. When a sample fractures, the particle breaks 
through to the top of the well plate and are thus not visible in subsequent photos.
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Figure S3: Centrifugal results for triblock gels in a 96-well plate using (a) 0.7 mm diameter stainless steel particles, 
(b) 1 mm diameter stainless steel particles, (c) 1.5 mm diameter stainless steel particles, (d) 1 mm diameter yttria-
stabilized zirconia particles, and (e) 1 mm diameter tungsten carbide particles. Stainless steel particles had a density 
of 8.0 g/cm3, zirconia particles had a density of 6.0 g/cm3, and tungsten carbide particles had a density of 14.95 
g/cm3. 100 μL of gel solution was added to each well in all tests. Results were consistent for all particle types.



4

Figure S4: Force vs displacement in particle pulling experiment. Total force includes forces both on the particle and 
on the wire. For total force, a 3 mm diameter stainless steel particle attached to a 0.01-inch diameter metal wire was 
started at the bottom of a 15 mm tall 10 wt% triblock gel and was pulled upwards at 20 μm/s using a piezoelectric 
stepping motor. Force and displacement were recorded using a load transducer and optical sensor until just after the 
gel fractured. For wire-only control experiment, the same wire was started 3 mm above the bottom of the gel without 
a particle attached and pulled upwards under identical conditions.
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Figure S5: Critical centrifugal stress correlated to stress on the particle at fracture in the particle pulling experiment 
(mean ± s.d.). Particle pulling was carried out as described in Figure S4. Particle pulling stress was calculated by 
subtracting the force of the wire from the total force at fracture and normalizing the result by the particle area. 
Centrifugation was carried out in a 96-well plate and critical centrifugal stress was averaged across all types of 
particles seen in Figure S3. 100 μL of triblock gel was added to each well in all centrifugal tests.

Figure S6: Effect of varying thickness of gel above particles for 12 wt% and 16 wt% triblock gels. Centrifugation 
was performed in a 96-well plate with 1 mm diameter stainless steel particles. For both systems, the centrifugal 
acceleration at fracture was constant within error above 2 mm gel thickness.
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Figure S7: Diagram of separable glass-bottom well plate used for functionalization. (a) Glass bottom is etched with 
piranha solution and subsequently reacted with a silane coupling agent to deposit methacrylamide groups on the 
glass. (b) Bottomless polystyrene wells are attached to functionalized glass bottom using a pressure-sensitive 
adhesive on the bottom of the wells, forming a tight seal.
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Figure S8: Full 384-well plate centrifugation experiment using 1 mm diameter stainless steel particles. (a) Pre-
determined pattern of material samples. 40 μL of polyacrylamide solution at the specified concentration was added 
to each well. (b) Photographs of experimental results of full plate experiment. The plate is shown from the top after 
centrifugation cycles at different speeds, so particles are only visible once they break out of the gel. Particles start at 
the bottom of the wells, so none are visible prior to centrifugation, and more particles in the pattern become visible 
at higher speeds. Photos shown are unprocessed.
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Figure S9: Storage modulus (G', triangular markers) and loss modulus (G", circular markers) obtained from small-
amplitude oscillatory shear experiments conducted on (a) PAM gels and (b) triblock gels of different compositions. 
All experiments were conducted at 5% strain.

 
Figure S10: Stress growth experiments conducted on (a) PAM gels and (b) triblock gels of different compositions. 
Strain was increased at a rate of 0.05 s-1. Fracture stress was recorded as the highest stress reached during the 
experiment.
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Deformation field around a sphere under a linear force in an infinite solid medium

A linear momentum balance provides a set of equations for the Cauchy stress tensor field, 
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where x is the Cartesian position coordinate, and we use index notation for convenience. We 
assume linear elasticity in an isotropic medium at constant temperature to give the constitutive 
relation, 
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where E is Young’s modulus, ν is Poisson’s ratio, δ is the identity tensor, and ε is the 
infinitesimal strain tensor field given by, 
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where u is the deformation vector field. A more convenient formulation of this constitutive 
relation is in terms of the bulk modulus K = E/3(1-2ν) and the shear modulus G = E/2(1+ν), 
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This expression is helpful because the second term is traceless, so the first term is related to a 
scalar pressure, and the second is related to shear forces. Here we assume the medium is 
incompressible (ν = 0.5), which is an excellent approximation for the two systems studied in this 
work, as well as most other polymers and soft materials. In this case, the trace of the strain tensor 
is identically zero, 

. (S5)0k
kk

k

u
x

 
 


However, the bulk modulus becomes infinite for an incompressible material, so the first term of 
Equation S4 is indeterminate, and is conventionally replaced by a hydrostatic pressure P. The 
constitutive relation thus reduces to the more familiar expression, 
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We substitute this relation into the linear momentum balance (Equation S1) using the definition 
of ε (Equation S3) to find, 
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The last term of the left-hand side vanishes due to incompressibility (Equation S5). The result 
becomes, 

. (S8)

2

2

0

0

j

j i i

uP G
x x x

P G


  
  

   u



10

One may notice that this analysis exactly follows the derivation of the familiar Navier-Stokes 
equations from fluid mechanics. In fact, our result is identical to the Stokes equation for steady 
low Reynolds number flows, but our equation is for the deformation field u rather than the 
velocity field v, and we use the shear modulus G rather than the viscosity µ. This is a 
demonstration of the correspondence principle of viscoelasticity.[1,2] 

Our desired situation is to solve for the deformation field when a sphere moves a distance of U 
relative to an infinite solid medium. The corresponds exactly to the situation of a sphere moving 
with a velocity of U in an infinite fluid medium. As this is a very familiar problem taught in most 
fluid mechanics courses, and the derivation can be found in many sources,[3] we do not repeat it 
here. The result is provided in Equation 2 of the main body. 
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