Electronic Supporting Information for

Full-colour Jabuticaba-like nanostructures via multiplex and orthogonal selfassembly of protein conjugated quantum dots with engineered biofilms

Zhengtao Deng, ^{a,b} Allen Y. Chen, ^a Bijan Zakeri, ^a Chao Zhong, ^{a,c} Timothy K. Lu ^a

EXPERIMENTAL SECTION

Chemicals. Cadmium nitrate tetrahydrate (Cd(NO₃)₂•4H₂O, 99.8%), Cadmium oxide (CdO, 99.99+%, powder), Zinc nitrate tetrahydrate(Zn(NO₃)₂·4H₂O, 99.8%), Tellurium (Te, powder, -200 mesh, \geq 99%, powder), Selenium (Se, powder, <100 mesh, 99.99%), Sulfur (S, 99.998% powder), Paraffin liquid (C_nH_{2n+2}, n = 16–22), Oleic acid (OLA, CH₃(CH₂)₇CH=CH(CH₂)₇COOH, 90%), Sodium borohydride (NaBH₄, powder, \geq 99%), 3-Mercaptopropionic acid (MPA, HSCH₂CH₂CO₂H, \geq 99%), β-mercaptoethanol (HSCH₂CH₂OH, \geq 99.0%), Isopropyl alcohol (IPA, 99%), Hexane (\geq 95%), Methanol (\geq 99.5%), Uranyl acetate dehydrate (UO₂(OCOCH₃)₂•2H₂O, \geq 98%), Rhodamine 110 (QY = 92% in ethanol), Rhodamine 101 (QY = 100% in ethanol + 0.01 HCl), and Coumarin 102 (QY = 76.4% in ethanol) were purchased from Sigma-Aldrich and used without further purification. Ampicillin sodium salt (Amp, C₁₆H₁₈N₃O₄SNa), Spectinomycin dihydrochloride (Spec, C₁₄H₂₄N₂O₇·2HCl·5H₂O), Kanamycin sulfate (Kan, C₁₈H₃₆N₄O₁₁·H₂SO₄), Chloramphenicol (Cm, C₁₁H₁₂Cl₂N₂O₅), and Carbenicillin disodium salt (Carb, C₁₇H₁₆N₂Na₂O₆S) were purchased from Fisher Scientific and used without further purification.

Genetic engineering of tag-displaying amyloid fibrils. We engineered *E. coli* bacteria to synthesize curli amyloid fibrils that were engineered to display heterologous peptides ^{1, 2}. We appended DNA encoding the desired peptides to the 3' end of the gene encoding the major curlin subunit, CsgA, which forms curli amyloid fibrils, and used a tightly regulated anhydrotetracycline (aTc)-inducible system ³ to express the modified *csgA* genes. DNA containing the *csgA_{SpyTag}*, *csgA_{IsopeptagC}*, *csgA_{IsopeptagN}* and *csgA_{HisTag}* genes (Table S1) with KpnI and MluI sticky ends were generated by PCR and KpnI/MluI digestion. These fragments were ligated with the pZA-CmR-rr12-pL(tetO)- vector² to create pZA-CmRrr12-pL(tetO)-*csgA_{SpyTag}*, pZA-CmR-rr12-pL(tetO)-*csgA_{IsopeptagC}*, pZA-CmR-rr12-pL(tetO)-*csgA_{IsopeptagN}*, and pZA-CmR-rr12-pL(tetO)-*csgA_{HisTag}* plasmids, respectively (Table S2). These plasmids were transformed into MG1655 *PRO ΔcsgA ompR234* cells to create aTc_{Receiver}/CsgA_{IsopeptagC}, aTc_{Receiver}/CsgA_{Isop}

The *PRO* cassette allows for high-level expression of the TetR protein ⁴, which is necessary for tight regulation of *csgA* with aTc via the pL(tetO) promoter. The endogenous *csgA* gene was knocked out ($\Delta csgA$) to ensure that all fibrils formed were composed of genetically engineered CsgA subunits. The *ompR234* mutation enabled fibril production in liquid media ⁵.

For cell-based synthesis of amyloid fibrils, cells were inoculated from frozen stocks into LB with chloramphenicol ($30 \mu g/mL$) and grown at $37^{\circ}C$ with shaking for 12 hours. The cells were then spun down and the supernatant removed. The cells were re-suspended in PBS buffer. Next, cells were inoculated into 1 mL M63 glucose with aTc (100-250 ng/mL) and chloramphenicol ($30 \mu g/mL$) in 24-

well polystyrene plate wells, which had a diameter of 1.56 cm. A round glass coverslip (from Thermanox) with diameter of 1.3 cm was placed at bottom of each well. These cells were grown at 30°C with no shaking for 16-24 hours. For production of SpyTag-displaying amyloid fibrils, aTc_{Receiver}/CsgA_{SpyTag} cells were inoculated at a seeding concentration of 5x10⁷ cells/mL. For production of IsopeptagC-displaying or IsopegTagN-displaying amyloid fibrils, aTc_{Receiver}/CsgA_{IsopeptagC} or aTc_{Receiver}/CsgA_{IsopeptagN} cells were inoculated at a seeding concentration of 5x10⁷ cells/mL. For production of fibrils displaying both SpyTag and HisTag, aTc_{Receiver}/CsgA_{SpyTag} and aTc_{Receiver}/CsgA_{HisTag} cells were inoculated at a concentration of 2.5x10⁷ cells/mL each and co-cultured. For production of fibrils displaying both IsopeptagC and HisTag, aTc_{Receiver}/CsgA_{IsopeptagC} and aTc_{Receiver}/CsgA_{HisTag} cells were inoculated at a concentration of 2.5x10⁷ cells/mL each and co-cultured. For production of fibrils displaying both IsopeptagC and HisTag, aTc_{Receiver}/CsgA_{SpyTag}, aTc_{Receiver}/CsgA_{IsopeptagC} and aTc_{Receiver}/CsgA_{IsopeptagC} an

*Production of Cys*₂-*SpyCatcher, Cys*₂-*PilinC and PilinN-Cys*₂ *proteins.* To produce the Cys₂-SpyCatcher protein, we introduced codons encoding two cysteine residues to the gene encoding *SpyCatcher*, expressed the protein in *E. coli*, and purified the recombinant protein ¹. Specifically, we used the QuikChange Lightning Kit (Agilent) on the pDEST14-T7-*SpyCatcher* plasmid ⁶ to add codons encoding two cysteine residues after the start codon of the *SpyCatcher* gene, creating the pDEST14-T7-*Cys*₂-*SpyCatcher* expression plasmid (Table S1). This expression plasmid was transformed into *E. coli* BL21(DE3) pLysS to create BL21(DE3) pLysS / pDEST14-T7-*Cys*₂-*SpyCatcher* (Table S2). For expression of Cys₂-SpyCatcher, *E. coli* strain BL21(DE3) pLysS / pDEST14-T7-*Cys*₂-*SpyCatcher* from a frozen stock was grown overnight in 50 mL LB-Miller with 50 µg/mL carbenicillin. Then, 10 mL of stationary phase cells were added to 1-liter LB-Miller with 50 µg/mL carbenicillin, and further grown to OD600 of 0.5-0.7 at 37°C with shaking for 3-4 hours. Finally, IPTG (0.4 mM) was added and the culture was grown with shaking for 4 hours at 30°C. The cells were collected by centrifugation and lysed. Proteins were purified with Ni-NTA Resin (Qiagen) using standard protocols. 2 mM β-mercaptoethanol was used to break disulfide bonds. Through buffer exchange with Amicon columns, the resulting Cys₂-SpyCatcher proteins were re-dispersed in 1XPBS buffer to OD280 of 0.5.

To produce the Cys₂-PilinC protein, we used the QuikChange Lightning Kit (Agilent) on the pET28a-T7-*PilinC* plasmid ⁷ to add codons encoding two cysteine residues after the start codon of the *PilinC* gene, creating the pET28a-T7-*Cys₂-PilinC* expression plasmid (Table S1). This expression plasmid was

transformed into *E. coli* BL21(DE3) pLysS to create BL21(DE3) pLysS / pET28a-T7-*Cys*₂-*PilinC* (Table S2). For expression of Cys₂-PilinC, *E. coli* strain BL21(DE3) pLysS / pET28a-T7-*Cys*₂-*PilinC* from a frozen stock was grown overnight in 50 mL LB-Miller with 30 µg/ml kanamycin. Then, 10 mL of stationary phase cells were added to 1-liter LB-Miller with 30 µg/ml kanamycin, and further grown to OD600 of 0.5-0.7 at 37°C with shaking for 3-4 hours. Finally, IPTG (0.4 mM) was added and the culture was grown with shaking for 4 hours at 30°C. The cells were collected by centrifugation and lysed. Proteins were purified with Ni-NTA Resin (Qiagen) using standard protocols. 2 mM β -mercaptoethanol was used to break disulfide bonds. Through buffer exchange with Amicon columns, the resulting Cys₂-PilinC proteins were re-dispersed in 1XPBS buffer to OD280 of 0.5.

To produce PilinN-Cys₂ proteins, we synthesized the protein-encoding gene (Integrated DNA Technologies) and cloned it into the pET28a vector via Gibson assembly to create pET28a-T7-*PilinN-Cys*₂ (Table S1). This expression plasmid was transformed into *E. coli* BL21(DE3) pLysS to create BL21(DE3) pLysS / pET28a-T7-*PilinN-Cys*₂ (Table S2). For expression of PilinN-Cys₂, *E. coli* strain BL21(DE3) pLysS / pET28a-T7-*PilinN-Cys*₂ from a frozen stock was grown overnight in 50 mL LB-Miller with 30 µg/ml kanamycin. Then, 10 mL of stationary phase cells were added to 1-liter LB-Miller with 30 µg/ml kanamycin, and further grown to OD600 of 0.5-0.7 at 37°C with shaking for 3-4 hours. Finally, IPTG (0.4 mM) was added and the culture was grown with shaking for 4 hours at 30°C. The cells were collected by centrifugation and lysed. Proteins were purified with Ni-NTA Resin (Qiagen) using standard protocols. 2 mM β-mercaptoethanol was used to break disulfide bonds. Through buffer exchange with Amicon columns, the resulting PilinN-Cys₂ proteins were re-dispersed in 1XPBS buffer to OD280 of 0.5.

For further purification of proteins, the eluted Cys₂-SpyCatcher, Cys₂-PilinC, and PilinN-Cys₂ in elution buffer (NPI-500, 50 mM NaH₂PO₄, 300 mM NaCl, 500 mM imidazole, pH 8.0) were loaded into 0.5 mL Amicon filters (MWCO 3 KDa), 1XPBS buffer was added to the filters to make the total volumes 500 μ L, and the samples were subjected to centrifugation at 11,000 rpm for 10 minutes. The washing (each wash process was performed with 400 μ L of 1XPBS buffer) and centrifugation steps were repeated three times. This ultrafiltration process removed imidazole from the protein solutions. The optimized yield of the recombinant proteins is around 10 mg/L. Samples were electrophoresed on a 12% SDS polyacrylamide gel and stained with Coomassie Blue following standard staining protocols. After destaining with destaining solutions (a mixed solution with v/v of H₂O 50%, methanol 40%, acetate acid 10%), the gels were imaged using a Bio-Rad ChemiDoc MP system.

CdSe/CdS core/shell QDs conjugated with proteins. We used protocols published previously for the

synthesis of oleic-acid capped CdSe QDs, and then performed ligand exchange to produce watersoluble CdSe QDs ⁸. For a typical conjugation experiment, a 20 μ L water-soluble CdSe QD solution (OD₆₂₅ of 0.01) was added to 80 μ L of DI-water. Then, 10 μ L of Cd²⁺ stock solution (25 mM) and 20 μ L of MPA stock solution (25 mM) were added, vortexed, and gently sonicated in a 1.5 mL plastic tube. The pH was adjusted to 12.2 with 1M NaOH. Next, 20 μ L of purified Cys₂-SpyCatcher stock solution (OD₂₈₀ of ~0.5) was added and gently vortexed. The mixture was heated in an Eppendorf thermomixer at 90°C and 600 rpm for 30 minutes, and then cooled by submerging in an ice-water bath. To remove unconjugated Cys₂-SpyCatcher from the QD-SpyCatcher conjugation, the reaction mixture was loaded into a 0.5 mL Amicon filter (MWCO 30 KDa) and 1XPBS buffer was added to the filter to make the total volume of the solution equal to 500 μ L. The sample was subjected to centrifugation at 7,000 rpm for 7 minutes. The washing (each washing was performed by adding 400 μ L of 1XPBS buffer) and centrifugation steps were repeated three times. For CdSe/CdS core/shell QDs conjugated with Cys₂-PilinC, 20 μ L of purified Cys₂-PilinC stock solution (OD₂₈₀ of ~0.5) was added to water-soluble CdSe QD precursor solution and processed as described above.

CdTe/CdS core/shell QDs conjugated with proteins. The synthesis of the CdTe/CdS core/shell QDs followed a previously reported protocol ⁹. A series of 1 mL CdTe QD precursor solutions were loaded into 1.5 mL plastic tubes, which were placed in an Eppendorf thermomixer at 90°C and 600 rpm for various reactions times, and then cooled by submerging the tubes in an ice-water bath. To produce green-emitting CdTe/CdS QDs (with a photoluminescence emission peak at 510 nm), the heating time was 20 minutes. To produce red CdTe/CdS QDs (with a photoluminescence emission peak at 630 nm), the heating time was 50 minutes. Then, 50 µL of green or red QD solutions was added to 50 µL of DIwater in clean plastic tubes, respectively. Then, 20 µL of purified Cys₂-SpyCatcher stock solution (OD₂₈₀ of ~0.5) was also added to each tube and gently vortexed. The mixture was heated in an Eppendorf thermomixer at 90°C and 600 rpm for another 30 minutes, and then cooled down by submerging it in an ice-water bath. The solutions were then loaded into 0.5 mL Amicon filters (MWCO 30 KDa or 100 KDa), 400 µL 1XPBS buffer was added to the filters, and the samples were subjected to centrifugation at 7,000 rpm for 7 minutes. The washing (each washing was performed with 400 µL 1XPBS buffer) and centrifugation steps were repeated three times. This ultrafiltration process removed unconjugated Cys₂-SpyCatcher from the resulting green CdTe/CdS QD-SpyCatcher conjugates with an emission peak at 530 nm and red CdTe/CdS QD-SpyCatcher conjugates with an emission peak at 650 nm. The final samples were highly fluorescent and stable in 1XPBS buffer. For CdTe/CdS core/shell QDs conjugated with Cys₂-PilinC, 20 µL of purified Cys₂-PilinC stock solution (OD₂₈₀ of ~0.5) was used and processed similarly as the Cys₂-SpyCatcher.

ZnCdSe/ZnS core/shell QDs conjugated with proteins. The synthesis of core ZnCdSe QDs with blue emission at 440 nm followed a previously reported protocol ¹⁰. Then, 1000 μ L of core solutions in a plastic tube were mixed with ZnS precursors (100 μ L 25 mM Zn(NO₃)₂, 100 μ L 25 mM MPA), and the pH was tuned to 12.2 using 1 M NaOH. Then, 400 μ L of purified PilinN-Cys₂ stock solution (OD₂₈₀ of ~0.5) was added to each tube and gently vortexed. The mixture was heated in an Eppendorf thermomixer at 90°C and 600 rpm for another 30 minutes, and then cooled down by submerging it in an ice-water bath. The solutions were then loaded into 0.5 mL Amicon filters (MWCO 100 KDa), and subjected to centrifugation at 7,000 rpm for 7 minutes. The washing (each was performed with 400 μ L 1XPBS buffer) and centrifugation steps were repeated three times. This ultrafiltration process removed unconjugated PilinN-Cys₂ from the ZnCdSe/ZnS core/shell QDs-PilinN-Cys₂ conjugates. The final samples were highly fluorescent and stable in 1XPBS buffer.

Self-assembly of QD-protein conjugates with tag-displaying amyloid fibrils. For self-assembly of QD-SpyCatcher conjugates with SpyTag-displaying amyloid fibrils, approximately 2 μ L of conjugates were mixed with 100 μ L of tag-displaying amyloid fibrils in 1XPBS in 600 μ L plastic tubes, followed by incubation at room temperature for 30 minutes. A similar protocol was followed for the self-assembly of the QD-PilinC conjugates with CsgA_{lsopeptagC} amyloid fibrils. Then, 10 μ L of the mixed solution was loaded onto TEM grids (Formvar/Carbon 200 mesh Nickel) for 30 seconds. The grids were subsequently washed twice with 10 μ L droplets of 1XPBS buffer and DI H₂O, followed by negative staining with uranyl acetate, and then by drying in air before TEM imaging. The TEM samples were prepared and imaged as before.

Characterization details. Ultraviolet-Visible (UV-Vis) absorption spectra were recorded at room temperature with a Varian Cary 6000i spectrophotometer. Photoluminescence spectra were measured at room temperature using a NanoLog spectrometer manufactured by HORIBA Jobin Yvon. We used a cross-calibrated method ^{9,10} to measure the photoluminescence quantum yield of QD-protein conjugates. The standard dyes used in the experiments were Rhodamine 101 (QY = 92% in ethanol), Rhodamine 110 (QY = 100% in ethanol + 0.01 HCl), Coumarin 102 (QY=76.4% in ethanol). Standard 10 mm path length quartz fluorescence cuvettes were used for all measurements. Fluorescence spectra of QD-protein conjugates and dye were taken under identical spectrometer conditions. The optical density was kept below 0.1 at the excitation wavelength, and the slope of the line generated by plotting the integrated fluorescence intensities against the absorption for multiple concentrations of the QD-protein conjugates and dyes were used to calculate the quantum yields.⁽⁹⁾{Deng, 2010 #30}{Deng, 2012 #5} For TEM imaging of the bacteria-QD samples, 10 µL of sample solution was

placed on a TEM grid (Electron Microscopy Sciences, #FCF200-Ni50) and maintained for 30 seconds. The solution was then wiped away with a filter paper, and washed with two drops (10 μ L) of 1XPBS buffer. The resulting grids were negative stained with 2% uranyl acetate solution for 30 seconds and air-dried. For TEM imaging of the QDs before organization via amyloid fibrils, 10 μ L of sample solution was placed on an ultra-thin carbon TEM grid (Ted Pella, #01822-F) and dried in air. TEM imaging and energy dispersive X-ray spectroscopy (EDS) were performed on a JEOL JEM 2010F electron microscope operating at 200 kV.

Part Name	Part Type	Sequence	Source
csgA	Gene for the	atg aaa ctt tta aaa gta gca gca att gca gca atc gta ttc tcc	1
	wild-type CsgA	ggt agc gct ctg gca ggt gtt gtt cct cag tac ggc ggc ggt ggt	
	amyloid	aac cac ggt ggt ggc ggt aat aat agc ggc cca aat tct gag ctg	
	material	aac att tac cag tac ggt ggc ggt aac tct gca ctt gct ctg caa	
	subunit	act gat gcc cgt aac tct gac ttg act att acc cag cat ggc ggc	
		ggt aat ggt gca gat gtt ggt cag ggc tca gat gac agc tca atc	
		gat ctg acc caa cgt ggc ttc ggt aac agc gct act ctt gat cag	
		tgg aac ggc aaa aat tct gaa atg acg gtt aaa cag ttc ggt ggt	
		ggc aac ggt gct gca gtt gac cag act gca tct aac tcc tcc gtc	
		aac gtg act cag gtt ggc ttt ggt aac aac gcg acc gct cat cag	
		tac taa	
csgA _{HisTag}	Gene for the	atg aaa ctt tta aaa gta gca gca att gca gca atc gta ttc tcc	2
	CsgA amyloid	ggt agc gct ctg gca ggt gtt gtt cct cag tac ggc ggc ggt	
	material	aac cac ggt ggt ggc ggt aat aat agc ggc cca aat cac cat cac	
	subunit with	cat cac cac cat tct gag ctg aac att tac cag tac ggt ggc ggt	
	one 7XHisTag	aac tct gca ctt gct ctg caa act gat gcc cgt aac tct gac ttg	
	before the first	act att acc cag cat ggc ggc ggt aat ggt gca gat gtt ggt cag	
	repeat domain,	ggc tca gat gac agc tca atc gat ctg acc caa cgt ggc ttc ggt	
	and another	aac agc gct act ctt gat cag tgg aac ggc aaa aat tct gaa atg	
	7XHisTag after	acg gtt aaa cag ttc ggt ggt ggc aac ggt gct gca gtt gac cag	
	the last repeat	act gca tct aac tcc tcc gtc aac gtg act cag gtt ggc ttt ggt	
	domain	aac aac gcg acc gct cat cag tac cac cat cac cat cac cac cat	
		taa	
csgA _{SpyTag}	Gene for the	atg aaa ctt tta aaa gta gca gca att gca gca atc gta ttc tcc	2
	CsgA amyloid	ggt agc gct ctg gca ggt gtt gtt cct cag tac ggc ggc ggt ggt	
	material	aac cac ggt ggt ggc ggt aat aat agc ggc cca aat tct gag ctg	
	subunit with	aac att tac cag tac ggt ggc ggt aac tct gca ctt gct ctg caa	
	appended	act gat gcc cgt aac tct gac ttg act att acc cag cat ggc ggc	
	SpyTag	ggt aat ggt gca gat gtt ggt cag ggc tca gat gac agc tca atc	
		gat ctg acc caa cgt ggc ttc ggt aac agc gct act ctt gat cag	
		tgg aac ggc aaa aat tct gaa atg acg gtt aaa cag ttc ggt ggt	
		ggc aac ggt gct gca gtt gac cag act gca tct aac tcc tcc gtc	
		aac gtg act cag gtt ggc ttt ggt aac aac gcg acc gct cat cag	
		tac ggc ggg ggc tcc ggc ggg ggc tcc gcg cac atc gtt atg gtc	

		gat gca tat aaa ccc acc aaa taa	
csgA _{lsopeptagC}	Gene for the	atg aaa ctt tta aaa gta gca gca att gca gca atc gta ttc tcc	This
	CsgA amyloid	ggt agc gct ctg gca ggt gtt gtt cct cag tac ggc ggc ggc ggt	work
	material	aac cac ggt ggt ggc ggt aat aat agc ggc cca aat tct gag ctg	
	subunit with	aac att tac cag tac ggt ggc ggt aac tct gca ctt gct ctg caa	
	appended	act gat gcc cgt aac tct gac ttg act att acc cag cat ggc ggc	
	IsopeptagC	ggt aat ggt gca gat gtt ggt cag ggc tca gat gac agc tca atc	
		gat ctg acc caa cgt ggc ttc ggt aac agc gct act ctt gat cag	
		tgg aac ggc aaa aat tct gaa atg acg gtt aaa cag ttc ggt ggt	
		ggc aac ggt gct gca gtt gac cag act gca tct aac tcc tcc gtc	
		aac gtg act cag gtt ggc ttt ggt aac aac gcg acc gct cat cag	
		tac gga ggt gga agt ggc ggc gga agt acc gac aaa gat atg	
		act atc acc ttc acg aat aaa aaa gac gcg gaa taa	
csgA _{IsopeptagN}	Gene for the	atg aaa ctt tta aaa gta gca gca att gca gca atc gta ttc tcc	This
	CsgA amyloid	ggt agc gct ctg gca ggt gtt gtt cct cag tac ggc ggc ggt ggt	work
	material	aac cac ggt ggt ggc ggt aat aat agc ggc cca aat tct gag ctg	
	subunit with	aac att tac cag tac ggt ggc ggt aac tct gca ctt gct ctg caa	
	appended	act gat gcc cgt aac tct gac ttg act att acc cag cat ggc ggc	
	IsopeptagN	ggt aat ggt gca gat gtt ggt cag ggc tca gat gac agc tca atc	
		gat ctg acc caa cgt ggc ttc ggt aac agc gct act ctt gat cag	
		tgg aac ggc aaa aat tct gaa atg acg gtt aaa cag ttc ggt ggt	
		ggc aac ggt gct gca gtt gac cag act gca tct aac tcc tcc gtc	
		aac gtg act cag gtt ggc ttt ggt aac aac gcg acc gct cat cag	
		tac gga ggt gga agt ggc ggc gga agt gct aca aca gtt cac ggg	
		gag act gtt gta aac gga gcc aaa cta aca gtt aca aaa aac ctt	
		gat tta gtt aat agc aat gca taa	
Cys ₂ -	Gene for the	atg tgt tgt tcg tac tac cat cac cat cac cat cac gat tac gac	2
SpyCatcher	Cys ₂ -	atc cca acg acc gaa aac ctg tat ttt cag ggc gcc atg gtt gat	
	SpyCatcher	acc tta tca ggt tta tca agt gag caa ggt cag tcc ggt gat atg	
	protein	aca att gaa gaa gat agt gct acc cat att aaa ttc tca aaa cgt	
		gat gag gac ggc aaa gag tta gct ggt gca act atg gag ttg cgt	
		gat tca tct ggt aaa act att agt aca tgg att tca gat gga caa	
		gtg aaa gat ttc tac ctg tat cca gga aaa tat aca ttt gtc gaa	
		acc gca gca cca gac ggt tat gag gta gca act gct att acc ttt	
		aca gtt aat gag caa ggt cag gtt act gta aat ggc aaa gca act	
		aaa ggt gac gct cat att taa	

Cys ₂ -PilinC	Gene for the	atg tgt tgt ggc agc agc cat cat cat cat cat cac agc agc ggc	This
	Cys ₂ -PilinC	ctg gtg ccg cgc ggc agc cat atg gct aca aca gtt cac ggg gag	work
	protein	act gtt gta aac gga gcc aaa cta aca gtt aca aaa aac ctt gat	
		tta gtt aat agc aat gca tta att cca aat aca gat ttt aca ttt	
		aaa atc gaa cct gat act act gtc aac gaa gac gga aat aag ttt	
		aaa ggt gta gct ttg aac aca ccg atg act aaa gtc act tac acc	
		aat tca gat aaa ggt gga tca aat acg aaa act gca gaa ttt gat	
		ttt tca gaa gtt act ttt gaa aaa cca ggt gtt tat tat tac aaa	
		gta act gag gag aag ata gat aaa gtt cct ggt gtt tct tat gat	
		aca aca tct tac act gtt caa gtt cat gtc ttg tgg aat gaa gag	
		caa caa aaa cca gta gct act tat att gtt ggt tat aaa gaa ggt	
		agt aag gtg cca att cag ttc aaa aat agc tta gat tct act aca	
		tta acg gtg aag aaa aaa gtt tca ggt acc ggt gga gat cgc tct	
		aaa gat ttt aat ttt ggt ctg act tta aaa gca aat cag tat tat	
		aag gcg tca gaa aaa gtc atg att gag aag aca act aaa ggt	
		ggt caa gct cct gtt caa aca gag gct agt ata gat caa ctc tat	
		cat ttt acc ttg aaa gat ggt gaa tca atc aaa gtc aca aat ctt	
		cca gta ggt gtg gat tat gtt gtc act gaa gac gat tac aaa tca	
		gaa aaa tat aca acc aac gtg gaa gtt agt cct caa gat gga gct	
		gta aaa aat atc gca ggt aat tca act gaa caa gag aca tct act	
		gat aaa gat atg acc att taa	

PilinN-Cys ₂	Gene for the	atg ggc agc agc cat cat cat cat cat cac agc agc ggc ctg gtg	This
	PilinN-Cys ₂	ccg cgc ggc agc cat atg gga tta att cca aat aca gat ttt aca	work
	protein	ttt aaa atc gaa cct gat act act gtc aac gaa gac gga aat aag	
		ttt aaa ggt gta gct ttg aac aca ccg atg act aaa gtc act tac	
		acc aat tca gat aaa ggt gga tca aat acg aaa act gca gaa ttt	
		gat ttt tca gaa gtt act ttt gaa aaa cca ggt gtt tat tat tac	
		aaa gta act gag gag aag ata gat aaa gtt cct ggt gtt tct tat	
		gat aca aca tct tac act gtt caa gtt cat gtc ttg tgg aat gaa	
		gag caa caa aaa cca gta gct act tat att gtt ggt tat aaa gaa	
		ggt agt aag gtg cca att cag ttc aaa aat agc tta gat tct act	
		aca tta acg gtg aag aaa aaa gtt tca ggt acc ggt gga gat cgc	
		tct aaa gat ttt aat ttt ggt ctg act tta aaa gca aat cag tat	
		tat aag gcg tca gaa aaa gtc atg att gag aag aca act aaa ggt	
		ggt caa gct cct gtt caa aca gag gct agt ata gat caa ctc tat	
		cat ttt acc ttg aaa gat ggt gaa tca atc aaa gtc aca aat ctt	
		cca gta ggt gtg gat tat gtt gtc act gaa gac gat tac aaa tca	
		gaa aaa tat aca acc aac gtg gaa gtt agt cct caa gat gga gct	
		gta aaa aat atc gca ggt aat tca act gaa caa gag aca tct act	
		gat aaa gat atg acc att act ttt aca aat aaa aaa gac ttt gaa	
		gga tca gga cat cac cat cac cat cac tgt tgt taa	

Table S2. Plasmids used in this work.

Plasmid name	Plasmid ID	Description	Source
pZA-CmR-rr12-pL(tetO)-	pAYC003	p15A origin, Cm resistance, rr12	2
csgA _{HisTag}		riboregulator, pL(tetO) promoter,	
	csgA _{HisTag} output gene		
pDEST14-T7-Cys ₂ -SpyCatcher	pAYC016	pBR322 origin, Amp resistance, T7	2
		promoter, Cys ₂ -SpyCatcher output gene	
pET28a-T7-Cys ₂ -PilinC	pAYC019	pBR322 origin, Kan resistance, T7	This work
		promoter, <i>Cys₂-PilinC</i> output gene	
pET28a-T7- PilinN-Cys ₂	pAYC020	pBR322 origin, Kan resistance, T7	This work
		promoter, <i>PilinN-Cys</i> ₂ output gene	
pZA-CmR-rr12-pL(tetO)-	pAYC021	p15A origin, Cm resistance, rr12	This work
csgA _{SpyTag}		riboregulator, pL(tetO) promoter,	
		<i>csgA_{spyTag}</i> output gene	
pZA-CmR-rr12-pL(tetO)-	pAYC022	p15A origin, Cm resistance, rr12	This work
csgA _{IsopeptagC}		riboregulator, pL(tetO) promoter,	
		csgA _{IsopepTagC} output gene	
pZA-CmR-rr12-pL(tetO)-	pAYC023	p15A origin, Cm resistance, rr12	This work
csgA _{IsopeptagN}		riboregulator, pL(tetO) promoter,	
csgA _{IsopepTagN} output gene			

Table S3. Cell strains used in this work.

Strain name	Stain ID	Description	Antibiotic	Source
			Resistance	
MG1655 PRO ΔcsgA	fAYC002	E. coli host strain with PRO cassette	Spec, Kan	1
ompR234		(P _{laci} ^q / <i>lacl</i> , P _{N25} / <i>tetR</i> , Spec ^R) that		
		constitutively expresses TetR and		
		Lacl repressors, with knock-out of		
		endogenous csgA, and with a		
		ompR234 allele that confers the		
		ability to produce fibrils in liquid M63		
		minimal media.		
aTc _{Receiver} / CsgA _{HisTag}	fAYC003	E. coli strain that expresses CsgA _{His}	Spec, Kan, Cm	2
		under tight regulation by an		
		anhydrotetracycline (aTc) inducer-		
		responsive riboregulator. Made by		
		transforming pZA-CmR-rr12-		
		pL(tetO)- <i>csgA_{HisTag}</i> plasmid into		
		MG1655 PRO ∆csgA ompR234.		
BL21(DE3) pLysS /	fAYC016	E. coli strain that expresses Cys ₂ -	Cm, Amp	2
pDEST14-T7-		SpyCatcher when induced by IPTG.		
Cys ₂ -SpyCatcher		Made by transforming pDEST14-T7-		
		<i>Cys₂-SpyCatcher</i> into BL21(DE3)		
		pLysS.		
BL21(DE3) pLysS /	fAYC022	E. coli strain that expresses Cys ₂ -	Cm, Kan	This work
pET28a-T7-		PilinC when induced by IPTG. Made		
Cys ₂ -PilinC		by transforming pET28a-T7-Cys ₂ -		
		PilinC into BL21(DE3) pLysS.		
BL21(DE3) pLysS /	fAYC023	E. coli strain that expresses PilinN-	Cm, Kan	This work
pET28a-T7-		Cys_2 when induced by IPTG. Made by		
PilinN-Cys ₂		transforming pET28a-T7-PilinN-Cys ₂		
		into BL21(DE3) pLysS.		
aTc _{Receiver} / CsgA _{SpyTag}	fAYC024	E. coli strain that expresses CsgA _{SpyTag}	Spec, Kan, Cm	This work
		under tight regulation by an aTc		
		inducer-responsive riboregulator.		
		Made by transforming pZA-CmR-		
		rr12-pL(tetO)- <i>csgA_{SpyTag}</i> into		

		MG1655 PRO ∆csgA ompR234.		
aTc _{Receiver} /	fAYC025	<i>E. coli</i> strain that expresses	Spec, Kan, Cm	This work
$CsgA_{IsopeptagC}$		$CsgA_{lsopeptagC}$ under tight regulation		
		by an aTc inducer-responsive		
		riboregulator. Made by transforming		
		pZA-CmR-rr12-pL(tetO)- <i>csgA_{lsopeptagC}</i>		
		into MG1655 PRO ∆csgA ompR234.		
aTc _{Receiver} /	fAYC026	E. coli strain that expresses	Spec, Kan, Cm	This work
CsgA _{IsopeptagN}		$CsgA_{IsopeptagN}$ under tight regulation		
		by an aTc inducer-responsive		
		riboregulator. Made by transforming		
		pZA-CmR-rr12-pL(tetO)- <i>csgA_{lsopeptagN}</i>		
		into MG1655 PRO ∆csgA ompR234.		

Figure S1. Determination of fluorescence quantum yields (QY) of the red CdTe/CdS-SpyCatcher (RQD650, QY = 67%), green CdTe/CdS-PilinC (GQD530, QY = 30%), and blue ZnCdSe/ZnS-PilinN (BQD440, QY = 32%) conjugates. To determine these quantum yields, we obtained UV-absorption spectra, corresponding photoluminescence spectra, and corresponding slope determinations for the fluorescent standards: Rhodamine 110 (R110, QY = 100% in ethanol + 0.01 HCl), Rhodamine 101 (R101, QY = 92% in ethanol), and Coumarin 102 (C102, QY = 76.4% in ethanol).

Figure S2. (a) Photographs of RQD-SpyCatcher conjugates assembled with *E. coli* expressing wild-type (wt) CsgA, CsgASpyTag, or CsgAIsopeptagC amyloid fibrils as well as GQD-PilinC conjugates self-assembled with CsgAIsopeptagC amyloid fibrils. (**b&c**) TEM images from the middle glass dish in image **a** demonstrate CsgA_{SpyTag} amyloid fibrils organizing CdTe/CdS QD-SpyCatcher conjugates. Image **c** is from the white rectangle marked in (**b**). (**d**) Photographs (illuminated with a 365 nm UV lamp in the dark) of the red CdTe/CdS QD-SpyCatcher conjugates assembled on CsgA_{SpyTag} amyloid fibrils synthesized by living cells grown in glass dishes. (**e**) Photographs of freeze-dried CsgA_{SpyTag} amyloid fibrils with living cells on their own (left), as well as with green (middle) or red (right) CdTe/CdS QD-SpyCatcher conjugates under illumination with a 365 nm UV lamp under ambient light.

Figure S3. Large-scale synthesis of CsgA_{SpyTag} amyloid fibrils by living cells. (**a&b**) Pictures of freeze-dried CsgA_{SpyTag} amyloid fibril powders from five batches of one-liter-scale bacterial cultures under (**a**) ambient light and (**b**) 365 nm UV light. **c&d**, TEM images of freeze-dried CsgA_{SpyTag} amyloid fibrils with living cells dispersed in 1XPBS buffer and then assembled with (**c**) unconjugated CdSe/CdS core/shell QDs and (**d**) CdSe/CdS QD-SpyCatcher conjugates.

Figure S4. (a), PL emission spectra for red CdTe/CdS QD-SpyCatcher and green CdTe/CdS QD-PilinC conjugates with CsgA_{wt} amyloid fibers (black curve) or co-organized on CsgA_{SpyTag} + CsgA_{IsopeptagC} amyloid fibers (red curve) fabricated by living cells. EDS spectra, TEM, and HRTEM of the red-emission CdTe/CdS QD-SpyCatcher and green-emission CdTe/CdS QD-PilinC conjugates co-assembled on mixed CsgA_{SpyTag} and CsgA_{IsopeptagC} amyloid fibrils with living cells. (b) PL emission spectra for red CdTe/CdS QD-SpyCatcher, green CdTe/CdS QD-PilinC, and blue ZnCdSe/ZnS QD-PilinN conjugates with CsgA_{wt} amyloid fibers (black curve) or co-assembled on CsgA_{SpyTag} + CsgA_{IsopeptagC}+ CsgA_{IsopeptagN} amyloid fibers (red curve) produced by living cells. EDS spectra, TEM, and HRTEM of the red CdTe/CdS QD-SpyCatcher, green CdTe/CdS QD-PilinN conjugates co-organized with mixed CsgA_{SpyTag} + CsgA_{IsopeptagC}+ CsgA_{IsopeptagC}+ CsgA_{IsopeptagC} amyloid fibrils. TEM images repeated from main figure.

Additional References:

- 1 M. R. Chapman, L. S. Robinson, J. S. Pinkner, R. Roth, J. Heuser, M. Hammar, S. Normark and S. J. Hultgren, *Science*, 2002, **295**, 851-855.
- 2 A. Y. Chen, et al., , *Nature Mater.*, 2014, **13**, 515-523.
- 3 J. M. Callura, C. R. Cantor and J. J. Collins, *Proc. Natl. Acad. Sci. USA* 2012, **109**, 5850-5855.
- 4 R. Lutz and H. Bujard, *Nucleic acids research*, 1997, **25**, 1203-1210.
- 5 C. Prigent-Combaret, E. Brombacher, O. Vidal, A. Ambert, P. Lejeune, P. Landini and C. Dorel, *J. Bacteriol.*, 2001, **183**, 7213-7223.
- 6 B. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-Linek, V. T. Moy and M. Howarth, *Proc. Natl. Acad. Sci. USA*, 2012, **109**, E690-E697.
- 7 B. Zakeri and M. Howarth, J. Am. Chem. Soc., 2010, 132, 4526-4527.
- 8 Z. T. Deng, A. Samanta, J. Nangreave, H. Yan and Y. Liu, *J. Am. Chem. Soc.*, 2012, **134**, 17424-17427.
- 9 Z. T. Deng, O. Schulz, S. Lin, B. Q. Ding, X. W. Liu, X. X. Wei, R. Ros, H. Yan and Y. Liu, *J. Am. Chem. Soc.*, 2010, **132**, 5592-5593.
- 10 Y. G. Zheng, Z. C. Yang and J. Y. Ying, *Adv Mater*, 2007, **19**, 1475-1479.